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Given (large) matrix A in R™" and target rank k << m,n:

Low-Rank Approximation

arg min
X, rank(X)=k

A - XI5

Optimal solution: k-rank SVD
Applications:

Dimensionality reduction
Signal denoising
Compression
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Column Subset Selection (CSS)

* Columns often have important meaning
 (CSS: Low-rank matrix approximation in column space of A

argmin ||A — HA[S]AH%
SC[n], |S|=k

n k n

X




Why use CSS for dimensionality reduction?

* Unsupervised
e Don’t need labeled data

* Classifier independent
e Can reuse output for different classifiers

* Interpretable
* Generate features by subselecting instead of arbitrary function

* Efficient during inference
e Feature subselection (CSS) better than matrix multiplication (SVD) if:
* Latency sensitive
* SVD projection matrix prohibitively large
* Sparse
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(Very simplified) background on CSS

CSS is UG-hard [civril 2014]

Importance sampling [Drineas et al. 2004, Frieze et al. 2004, ...]
 Fast, but additive-error bounds

More complicated algorithms [pesphande et al. 2006, Drineas et al. 2006,
Boutsidis et al. 2009, Boutsidis et al. 2011, Cohen et al. 2015, ...]
e Multiplicative-error bounds, but complicated - not as fast/distributable



(Very simplified) background on CSS

CSS is UG-hard civril 2014]

Importance sampling [Drineas et al. 2004, Frieze et al. 2004, ...]
 Fast, but additive-error bounds

More complicated algorithms [pesphande et al. 2006, Drineas et al. 2006,
Boutsidis et al. 2009, Boutsidis et al. 2011, Cohen et al. 2015, ...]
e Multiplicative-error bounds, but complicated - not as fast/distributable

Greedy [Farahat et al. 2011, Civril et al. 2011, Boutsidis et al. 2015]
* Multiplicative-error bounds and fast/distributable



Contributions
* Prove tight approximation guarantee for the greedy algorithm
* First distributed implementation with provable approximation factors
* Further optimizations for the greedy algorithm

* Empirical results showing these algorithms are extremely scalable and
have accuracy comparable with the state-of-the-art



Generalized Column Subset Selection (GCSS)

argmin |A - HA[S]AH%

CSS (A, k) Scln], |S|=k I
Gess(A, B,k)  argmin |A-TIgs1Al%
Scln], |S|=k

GCSS(A, B, k) uses k columns of B to approximate A
Note: GCSS(A, A, k) = CSS(A, k)



Convenient reformulation of GCSS

arg max HHB:S]AH% = argmin ||A - I:B[S]AH%
Scn], |S|=k 4 Scln], |S]=k 4
denote by f(S) original GCSS cost function

« GCSS <<= maximizing f subject to cardinality constraint

* Intuition: f measures how much of A is “covered/explained” by
selected columns
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GREEDY algorithm to maximize f

S« &

fore=1:Fk
Pick column B; that maximizes f(Su{B;})
S« Su {BJ}

Return S



Our result: Analysis of GREEDY

Consider GCSS(A, B, k) with accuracy parameter € > 0. Let OPTy be the

optimal set of £ columns from B. If r =0 (wmin(kOPTk)) then:

f(GREEDY,) > (1-¢) f(OPT})
And this is tight up to a constant factor.




Our result: Analysis of GREEDY

Consider GCSS(A, B, k) with accuracy parameter € > 0. Let OPTy be the
optimal set of £ columns from B. If r = O( k ) then:

€ Omin (OPTy)
f(GREEDY,) > (1-¢) f(OPT})
And this is tight up to a constant factor.

. " . !
*  We expect vectors in OPT}, to be well-conditioned (think “almost orthogonal”) == —oGp75 small

1 k
* If ;. opty boundedbya constant, then only need T:O(g) columns

 Significantimprovement upon current bounds: depend on worst singular value of any k columns
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DISTGREEDY: GCSS(A,B,k) with L machines
B

InnEnn

\ __—

32k 32k 32k
- GREEDY [A.T S, = GREEDY|| A, T, _
Sl GR ( o O-min(OPTk) )\ ( 2 ” (%SL GREEDY (A, TL, O-mln(OPTk:)

Designated machine

S = GREEDY [ A Os- L2
B ’z’:l Z’O-min(OPTk:)




DISTGREEDY: first observations

* Easy/natural to implement in MapReduce
e 2-pass streaming algorithm in random arrival model for columns

* Can also do multiple rounds/epochs. Good for:
* Massive datasets

» Getting better approximations (next slide)



Our results: Analysis of DISTGREEDY

Consider an instance GCSS(A, B, k)

1 round result: DISTGREEDY with =0 ( k ) gives

O'min(OPT)
f(OPTy) )
H(OPTk)

objective value Q(

Umax(OPTk )
Omin(OPTy)

Condition number

Multi-round result: O(@) rounds gives objective value

O((1-e)f(OPTY))
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Scalable Implementation: GREEDY++

4 optimizationsthat preserveour 1 — € approximationfor GREEDY (A e R™™4 B e R™"E k)

klog ( max(na,n
1.JL Lemma [Johnson & Lindenstrauss 1982, Sarlos 2006]: randomly project to |m'~ (max(n, n)) rows while
k k

6’2

still preserving k-linear combos || civ[3 € [1x¢- | Y e;T(v:)]3
=1 =1

L

= columns.

2. Projection-Cost Preserving Sketches [cohen et al. 2015]: sketch A with |, ~

marginal utility calls

3. “Stochastic Greedy” [Mirzasoleiman et al. 2015]: each iteration only uses n?Blog%

instead of npg.

4. U pdatlng A every iteration [rarahat et al. 2013]: after each iteration, remove projections of A and B onto

selected column. Reduces complexity of marginal utility from |kmna — mna + mnp
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“Small” dataset (mnist): to show accuracy

0.92
. 0.90
0 0.88}
_ . ' ' e PCA 5 0.86; PCA|
m = 60K instances _ |
’ &4 Random 8 : Random
- ) | 0.82
n= 784 features ¥ GREEDY o GREEDY
¢4 GREEDY++ - 0.80} GREEDY++
10 classes e—e GREEDY-core g 0.78} GREEDY-core
-3 2-Phase | 0.76 @@ 2-Phase
0.6 . t : 0.7 t ,
%0 100 150 200 250 300 350 400 40700 150 200 250 300 350 400
# selected columns # selected columns
fraction of matrix covered accuracy of LIBLINEAR
by selected features SVM using selected features

 Takeaway: GREEDY, GREEDY++, and GREEDY-core have roughly same
accuracy as state-of-the-art



Large dataset (news20.binary) to show scalability

k Rand 2-Phase DISTGREEDY PCA

500 549 | 81.8(1.0) 80.2 (72.3) 85.8 (1.3)
0.033% nonzero entries 1000 | 59.2 [ 84.4 (1.0) 82.9 (16.4) 88.6 (1.4)
7 classes 2500 | 67.6 | 87.9(1.0) 85.5(2.4) 90.6 (1.7)

classification accuracy using selected features
(Speedup over 2-phase algorithm in parentheses)

m = | 5K instances

n = 00K features

» Takeaway: DISTGREEDY able to scale to massive datasets while still
selecting effective features
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Proof sketch: Analysis of GREEDY

0 f(OPTYy)

f(GREEDY,)

e Keylemma: Exists element of OPT, that gives large marginal

gain to GREEDY,
e Closes gapto f(OPT,)

e Similar to submodular functions
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min OPT
Tmin( 4k f(OPT})
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| l > l
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Proof sketch: Analysis of GREEDY

(f(OPTy) - f(GREEDYr+1))2
Omin(OPTy) 1k f(OPTy)

0 f(GREEDY, ) l f(OPTy)
| I >} > I

f(GREEDY, ) F(GREEDY,,; uv')

e Keylemma: Exists element of OPT, that gives large marginal

gain to GREEDY,
e Closes gapto f(OPT,)

e Similar to submodular functions



Proof sketch: Analysis of GREEDY

Umin(OPTk) (f(OPTk) B f(GREEDYr+1))

1k f(OPTy)
| | ———t |
Ff(GREEDY,) f(GREEDY, ., uv)

e Keylemma: Exists element of OPT, that gives large marginal

gain to GREEDY,
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e Similar to submodular functions



Proof sketch: Analysis of GREEDY

0 f(GREEDY,.,) f(OPT)

| 3 H |

f(GREEDY,)

e Keylemma: Exists element of OPT, that gives large marginal

gain to GREEDY,
e Closes gapto f(OPT,)

e Similar to submodular functions



Questions?



