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Low-Rank	Approximation

Given	(large)	matrix	A	in	Rmxn and	target	rank	k	<<	m,n:

• Optimal	solution:	k-rank	SVD
• Applications:

• Dimensionality	reduction
• Signal	denoising
• Compression
• ...



Column	Subset	Selection	(CSS)
• Columns	often	have	important	meaning
• CSS:	Low-rank	matrix	approximation	in	column	space	of	A

m

n

m

k
k

n

A[S]AAA



Why	use	CSS	for	dimensionality	reduction?
• Unsupervised
• Don’t	need	labeled	data

• Classifier	independent
• Can	reuse	output	for	different	classifiers

• Interpretable
• Generate	features	by	subselecting instead	of	arbitrary	function

• Efficient	during	inference
• Feature	subselection (CSS)	better	than	matrix	multiplication	(SVD)	if:
• Latency	sensitive
• SVD	projection	matrix	prohibitively	large
• Sparse
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• CSS	is	UG-hard [Civril 2014]

• Importance	sampling [Drineas et	al.	2004,	Frieze	et	al.	2004,	…]
• Fast,	but	additive-error	bounds

• More	complicated	algorithms [Desphande et	al.	2006,	Drineas et	al.	2006,	
Boutsidis et	al.	2009,	Boutsidis et	al.	2011,	Cohen	et	al.	2015,	…]
• Multiplicative-error	bounds,	but	complicated	→	not	as	fast/distributable

(Very	simplified)	background	on	CSS
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Contributions
• Prove	tight	approximation	guarantee	for	the	greedy	algorithm

• First	distributed	implementation	with	provable	approximation	factors

• Further	optimizations	for	the	greedy	algorithm

• Empirical	results	showing	these	algorithms	are	extremely	scalable	and	
have	accuracy	comparable	with	the	state-of-the-art



CSS	(A,	k)

GCSS(A,	B,	k)

• GCSS(A,	B,	k)	uses	k	columns	of	B	to	approximate	A

• Note:	GCSS(A,	A,	k)	=	CSS(A,	k)

Generalized	Column	Subset	Selection	(GCSS)



denote by	f(S)												 original	GCSS	cost	function

• GCSS maximizing	f	subject	to	cardinality	constraint
• Intuition:	f	measures	how	much	of	A	is	“covered/explained”	by	

selected	columns

Convenient	reformulation	of	GCSS
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GREEDY	algorithm	to	maximize	f



Our	result:	Analysis	of	GREEDY	



• We	expect	vectors	in													to	be	well-conditioned	(think	“almost	orthogonal”)												 small

• If																	 bounded	by	a	constant,	then	only	need															 columns

• Significant	improvement	upon	current	bounds:	depend	on	worst singular	value	of	any k	columns

Our	result:	Analysis	of	GREEDY	
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DISTGREEDY:	GCSS(A,B,k)	with	L	machines
B

…

…

Machine	1 Machine	LMachine	2

Designated	machine



DISTGREEDY:	first	observations
• Easy/natural	to	implement	in	MapReduce

• 2-pass	streaming	algorithm	in	random	arrival	model	for	columns

• Can	also	do	multiple	rounds/epochs.	Good	for:
• Massive	datasets
• Getting	better	approximations	(next	slide)



Our	results:	Analysis	of	DISTGREEDY
Consider	an	instance	GCSS(A,	B,	k)
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4	optimizations	that	preserve	our											approximation	for

1.	JL	Lemma [Johnson	&	Lindenstrauss 1982,	Sarlos 2006]:	randomly	project	to																																															rows	while	

still	preserving	k-linear	combos	

2.	Projection-Cost	Preserving	Sketches	[Cohen	et	al.	2015]:	sketch	A	with																			 columns.

3.	“Stochastic	Greedy”	[Mirzasoleiman et	al. 2015]:	each	iteration	only	uses																	 marginal	utility	calls	

instead	of						..

4.	Updating	A	every	iteration [Farahat et	al.	2013]:	after	each	iteration,	remove	projections	of	A	and	B	onto	

selected	column.	Reduces	complexity	of	marginal	utility	from	

Scalable	Implementation:	GREEDY++
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“Small”	dataset	(mnist):	to	show	accuracy

• Takeaway: GREEDY,	GREEDY++,	and	GREEDY-core	have	roughly	same	
accuracy	as	state-of-the-art



Large	dataset	(news20.binary)	to	show	scalability

• Takeaway:	DISTGREEDY	able	to	scale	to	massive	datasets	while	still	
selecting	effective	features
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Proof	sketch:	Analysis	of	GREEDY

● Key	lemma:	Exists	element	of	OPTk that	gives	large	marginal	
gain	to	GREEDYr

● Closes	gap	to	f(OPTk)
● Similar	to	submodular functions
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Questions?


