
High-precision computation of Wasserstein barycenters
in low dimensions: beyond gridding

Jason Altschuler

NYU, NASC Seminar, September 2021

Joint work with my roommate Enric Boix during COVID quarantine

Enric with chocolate & math Enric’s quarantine bread Collaborating on our home whiteboard

Why average? De-noise, summarize, compute exemplar, interpolate, cluster, …

Ex: point clouds Ex: statistical models

𝝁𝟏 𝝁𝟐

𝝁𝟑

Why probability distributions? Point clouds in machine learning, posterior distributions in statistics,
images in computer vision, object meshes in computer graphics, fMRI scans in neuroscience, …

Modern challenge: average probability distributions

Modern challenge: average probability distributions

Barycenter: canonical notion of average, given distance

!𝝁 = argmin
!

∑"#$% 𝒅𝟐(𝝁𝒊, 𝝂)

But how to measure distance?

Integrate vertical distances Integrate horizontal distances

min
!∈#(%,')

$𝑐 𝑥, 𝑦 𝑑𝜋(𝑥, 𝑦)

𝐿$ norms, Kullback-Leibler, etc.

How to measure distance between distributions?

Wasserstein distance (aka Optimal Transport)

Integrate vertical distances Integrate horizontal distances

min
!∈#(%,')

$𝑐 𝑥, 𝑦 𝑑𝜋(𝑥, 𝑦)

𝐿$ norms, Kullback-Leibler, etc.

How to measure distance between distributions?

Wasserstein distance (aka Optimal Transport)

Integrate vertical distances Integrate horizontal distances

min
!∈#(%,')

$𝑐 𝑥, 𝑦 𝑑𝜋(𝑥, 𝑦)

𝐿$ norms, Kullback-Leibler, etc.

Ø Captures geometric properties of data!
Ø But, computation is more difficult…

How to measure distance between distributions?

Wasserstein distance (aka Optimal Transport)

Wasserstein barycenter
(computed with our algorithm)

𝐿! barycenter

(points are plotted as disks with area proportional to probability mass)

Ex: averaging images of concentric ellipses (, , , etc.)

Wasserstein distance captures the data’s geometry

Wasserstein barycenters, in the wild

ML: average data sets to cluster
[Cuturi-Doucet 14, Ho et al 17,…]

Graphics: average 3D shapes to interpolate [Solomon et al 2014, …]

ML: average posterior distributions to improve
Bayesian learning [Srivastava et al 2018, …]

Signal processing: average spatial sensor
measurements to denoise [Elvander et al 2019, ...]

Probability: couple distributions for variance
minimization [Knott-Smith 94, Rüschendorf-Uckelmann 02]

And much, much more….

Outline

• Algorithmics

• Techniques

• Outlook (and our general MOT framework)

Outline

• Algorithmics

• Techniques

• Outlook (and our general MOT framework)

Task: given k distributions, each on n points in 𝑹𝒅, find
argmin

"#$%&#'(%#)* +
∑,-./ 𝑊0(𝜇, , 𝜈)

in poly(k,n,d) time.

Ex of input with k=3 distributions, on n=3 points, in dimension d=2

Algorithmics

Input size is O(knd)

This is joint optimization over both:
1. Support (“where”)

2. Mass (“how much”)

Algorithmics

Task: given k distributions, each on n points in 𝑹𝒅, find
argmin

"#$%&#'(%#)* +
∑,-./ 𝑊0(𝜇, , 𝜈)

in poly(k,n,d) time.

vs

vs

Algorithmics

This is joint optimization over both:
1. Support

1. Mass: easy (linear program if fixed support)

Task: given k distributions, each on n points in 𝑹𝒅, find
argmin

"#$%&#'(%#)* +
∑,-./ 𝑊0(𝜇, , 𝜈)

in poly(k,n,d) time.

vs

vs

This is joint optimization over both:
Support

1. Mass: easy (linear program if fixed support)

ISSUE

Algorithmics

Task: given k distributions, each on n points in 𝑹𝒅, find
argmin

"#$%&#'(%#)* +
∑,-./ 𝑊0(𝜇, , 𝜈)

in poly(k,n,d) time.

vs

This is joint optimization over both:
Support
Ø Optimization is infinite dimensional

1. Mass: easy (linear program if fixed support)

Algorithmics

Task: given k distributions, each on n points in 𝑹𝒅, find
argmin

"#$%&#'(%#)* +
∑,-./ 𝑊0(𝜇, , 𝜈)

in poly(k,n,d) time.

vs

ISSUE

This is joint optimization over both:
Support
Ø Optimization is infinite dimensional
Ø Exists barycenter with O(nk) support… but how to find??

1. Mass: easy (linear program if fixed support)

Algorithmics

Task: given k distributions, each on n points in 𝑹𝒅, find
argmin

"#$%&#'(%#)* +
∑,-./ 𝑊0(𝜇, , 𝜈)

in poly(k,n,d) time.

vs

ISSUE

• Exponential runtimes in d

• Exponential runtime in k

k = # distributions, n = # points in each, d = dimension

Previous algorithms: exponential runtime or heuristics

• Exponential runtimes in d
ØRestrict support to 𝜀-net à approximate answer
ØRuntime factors of Ω(!

"%
)

ØIntractable beyond dimension d=3
ØIntractable beyond few digits of accuracy

• Exponential runtime in k

k = # distributions, n = # points in each, d = dimension

Previous algorithms: exponential runtime or heuristics

[Cuturi-Doucet 14, Solomon et al 15, Benamou et al 15, Carlier et al 15, Staib et al 17,
Janati et al 18, Kroshnin et al 19, Shen et al 20, Lin et al 20, Ge et al 20…] Ex: if 𝜀=1e-5 and d=3, then &

'!
= 10&(

• Exponential runtimes in d
ØRestrict support to 𝜀-net à approximate answer
ØRuntime factors of Ω(!

"%
)

ØIntractable beyond dimension d=3
ØIntractable beyond few digits of accuracy

• Exponential runtime in k
ØRestrict support to special 𝑛# points à exact answer
ØRuntime factors of Ω n$

ØIntractable beyond tiny inputs (e.g. n=k=10)

k = # distributions, n = # points in each, d = dimension

𝝁𝟑

𝝁𝟏 𝝁𝟐

Previous algorithms: exponential runtime or heuristics

[Agueh-Carlier 11, Benamou et al 15, Anderes et al 15, …]

[Cuturi-Doucet 14, Solomon et al 15, Benamou et al 15, Carlier et al 15, Staib et al 17,
Janati et al 18, Kroshnin et al 19, Shen et al 20, Lin et al 20, Ge et al 20…]

Multimarginal OT

Limitation: LP with "
#-

variablesFixed-support (aka gridding)

Limitation: LP with n$ variables

Neural networks

Adaptive fixed-support

…

Limitation: no
polynomial-time guaranteesFunctional gradient descent

Frank-Wolfe approaches

Wasserstein
Barycenter

Previous algorithms and limitations, circa 2020

Fixed-support 2-approx Limitation: cannot get better
approximation than factor of 2

k = # distributions, n = # points in each, d = dimension

“It is open whether a discrete barycenter can be
computed in polynomial time.” – Borgwardt 2017

“The [Wasserstein Barycenter problem] is notoriously
difficult to solve.” – Ho, Lin, Cuturi, Jordan 2020

High dimension

Previously: only for tiny input sizes
due to Ω(𝑛%) runtime factors

Fixed dimension

Previously: only to a few digits of accuracy
due to Ω($

(%
) runtime factors

So can you compute Wasserstein barycenters or not?

k = # distributions, n = # points in each, d = dimension

Explicit runtime is 𝑛𝑘)(+)

Fixed dimension

Previously: only to a few digits of accuracy
due to Ω($

(%
) runtime factors

Theorem [AB’20] For any fixed dimension d,
can solve exactly in poly(n,k) time.

High dimension

Previously: only for tiny input sizes
due to Ω(𝑛%) runtime factors

So can you compute Wasserstein barycenters or not?

Enables computing high-precision solutions
at previously intractable scales.

100 101 102 103

10°7

10°3

101

k = # distributions, n = # points in each, d = dimension

Fixed dimension

Previously: only to a few digits of accuracy
due to Ω($

(%
) runtime factors

Theorem [AB’20] For any fixed dimension d,
can solve exactly in poly(n,k) time.

High dimension

Previously: only for tiny input sizes
due to Ω(𝑛%) runtime factors

So can you compute Wasserstein barycenters or not?

time (s)

ac
cu

ra
cy

our alg

k = # distributions, n = # points in each, d = dimension

Fixed dimension

Previously: only to a few digits of accuracy
due to Ω($

(%
) runtime factors

Theorem [AB’20] For any fixed dimension d,
can solve exactly in poly(n,k) time.

High dimension

Previously: only for tiny input sizes
due to Ω(𝑛%) runtime factors

So can you compute Wasserstein barycenters or not?

k = # distributions, n = # points in each, d = dimension

Fixed dimension

Previously: only to a few digits of accuracy
due to Ω($

(%
) runtime factors

Theorem [AB’20] For any fixed dimension d,
can solve exactly in poly(n,k) time.

High dimension

Previously: only for tiny input sizes
due to Ω(𝑛%) runtime factors

So can you compute Wasserstein barycenters or not?

Enables computing high-precision solutions
at previously intractable scales.

Solution also has sparse support (≤ 𝑛𝑘).
Enables fast downstream computation.

k = # distributions, n = # points in each, d = dimension

Fixed dimension

Previously: only to a few digits of accuracy
due to Ω($

(%
) runtime factors

Theorem [AB’20] For any fixed dimension d,
can solve exactly in poly(n,k) time.

High dimension

Previously: only for tiny input sizes
due to Ω(𝑛%) runtime factors

Theorem [AB’21] Unless P=NP, there
is no poly(n,k,d) time algorithm.

So can you compute Wasserstein barycenters or not?

Enables computing high-precision solutions
at previously intractable scales.

Robust phenomenon: hardness extends to
approximate computation, seemingly simple cases,
and other Optimal Transport metrics.

Fixed dimension

Previously: only to a few digits of accuracy
due to Ω($

(%
) runtime factors

Theorem [AB’20] For any fixed dimension d,
can solve exactly in poly(n,k) time.

High dimension

Previously: only for tiny input sizes
due to Ω(𝑛%) runtime factors

Theorem [AB’21] Unless P=NP, there
is no poly(n,k,d) time algorithm.

So can you compute Wasserstein barycenters or not?

Enables computing high-precision solutions
at previously intractable scales.

Resolves the computational complexity of Wasserstein barycenters
Uncovers “curse of dimensionality” for Wasserstein barycenters that doesn’t occur for Wasserstein distance

(aka, for comparing k distributions rather than just 2)

Robust phenomenon: hardness extends to
approximate computation, seemingly simple cases,
and other Optimal Transport metrics.

Outline

• Algorithmics

• Techniques

• Outlook (and our general MOT framework)

Background: LP reformulation (1/3)

• Transportation polytope is the set of matrices with fixed row/col sums

𝑀 𝜇$, 𝜇) = { 𝑃 ∈ 𝑅*+,×, ∶ 9
.
𝑃/,. = 𝜇$ 𝑥 , 9

/
𝑃/,. = 𝜇) 𝑦 }

• Note: 𝑛) variables and 2n equality constraints

• Aside: Wasserstein distance is a linear program over this polytope, i.e.

W0 𝜇1, 𝜇0 = min
2∈4(6.,6/)

∑8,9𝑃8,9𝐶8,9

with cost 𝐶/,. = 𝑥 − 𝑦)

𝜇$(𝑥)
𝑷𝒙,𝒚

𝜇)(𝑦)

Background: LP reformulation (2/3)

𝜇)

𝜇$

𝜇)

𝜇$

𝜇1

• Multimarginal transportation polytope is the set of tensors with fixed marginals

𝑀 𝜇$, … , 𝜇% = { 𝑃 ∈ 𝑅*+, ⊗% ∶ 𝑚" 𝑃 = 𝜇" }

Note: 𝑛% variables and nk equality constraints

k=2 k=3

Background: LP reformulation (3/3)

• Multimarginal Optimal Transport is linear programming over the transportation polytope

min
3∈5(7-,…,7.)

9
/-,…,/.

𝑃/-,…,/.𝐶/-,…,/.

• Lemma [AC’11]. Wasserstein Barycenter min
!
∑"#$% 𝑊) 𝜇" , 𝜈 equals MOT with cost

𝐶/-,…,/. = min
.∈:%

∑"#$% 𝑥" − 𝑦)

• Corollary. Can restrict barycenter support to 𝑛% points.

• Key issue: this LP reformulation has 𝒏𝒌 variables.
• 𝑛% is humongous (e.g., k=100 images)
• Can’t even store cost C or solution P. And even if you could, can’t solve…
• Key obstacle for all previous attempts at polynomial-time algorithms…

Wasserstein
barycenter

MOT with
barycenter cost

Separation oracle
for dual MOT LP

Poly-time in fixed dim
[Intersect power diagrams]

NP-hard in high dim
[Reduce from Clique]

Pro: finite size LP
Con: n/ variables

Pro: combinatorial opt
Con: n/ possibilities

Key algorithmic insight: MOT is not a generic LP. Can solve separation oracle
efficiently by exploiting the structure of low-dimensional power diagrams.

3. Computational geometry &
computational complexity ideas

Steps for solutionClassical
1. LP re-formulation 2. Implicit LP ideas

[AB1] A. & Boix, Wasserstein barycenters can be computed in polynomial time in fixed dimension. Journal of Machine Learning Research, 2021.
[AB2] A. & Boix, Wasserstein barycenters are NP-hard to compute. SIAM Journal on Mathematics of Data Science, 2021.

Wasserstein
barycenter

MOT with
barycenter cost

Separation oracle
for dual MOT LP

Poly-time in fixed dim
[Intersect power diagrams]

NP-hard in high dim
[Reduce from Clique]

Pro: finite size LP
Con: n/ variables

Pro: combinatorial opt
Con: n/ possibilities

Steps for solutionClassical
1. LP re-formulation 2. Implicit LP ideas

MOT with
cost C

Separation oracle for
dual MOT LP, with cost C

This is an illustrative application of our general framework for “structured” MOT problems

Ø We show (in)tractability for general classes of costs C
Ø Beyond geometric structure: graphical / combinatorial / low-rank structure, etc.
Ø Diverse applications in the sciences, stay tuned…

3. Computational geometry &
computational complexity ideas

Wasserstein
barycenter

MOT with
barycenter cost

Separation oracle
for dual MOT LP

Poly-time in fixed dim
[Intersect power diagrams]

NP-hard in high dim
[Reduce from Clique]

Pro: finite size LP
Con: n/ variables

Pro: combinatorial opt
Con: n/ possibilities

3. Computational geometry &
computational complexity ideas

Steps for solutionClassical
1. LP re-formulation 2. Implicit LP ideas

next

Key algorithmic insight: MOT is not a generic LP. Can solve separation oracle
efficiently by exploiting the structure of low-dimensional power diagrams.

[AB1] A. & Boix, Wasserstein barycenters can be computed in polynomial time in fixed dimension. Journal of Machine Learning Research, 2021.
[AB2] A. & Boix, Wasserstein barycenters are NP-hard to compute. SIAM Journal on Mathematics of Data Science, 2021.

Obvious obstacle is 𝑛= variables.

Ø Can’t even write down the cost C or solution P.

Ø Let alone run standard LP solvers, Sinkhorn, etc. since they all have 𝑛%(#) runtime.

Dual LP has nk variables…

But it still has 𝑛= constraints. [Dualizing swaps exponential primal variables -> dual constraints]

Solving MOT in poly(n,k) time seems impossible…

min
2∈4(6(,…,6))

&
8(,…,8)

𝑃8(,…,8)𝐶8(,…,8)

k = # distributions, n = # points in each, d = dimension

max
?(,…,?)∈@*

∑AB1= 𝑝A , 𝜇A s.t. ∑AB1= 𝑝A 8+ ≤ 𝐶8(,…,8) for all 𝑥1, … , 𝑥=

• Theorem [K’80,GLS’81]: Can solve convex optimization in N variables in poly(N) time
if there exists poly(N) time implementation of separation oracle for its feasibility set.

• Key point: independent of # constraints.

Feasible sets are sometimes simple even if many constraints

feasible infeasible

x x

K K

For dual MOT LP, K has exponentially many facets.
Key Q: can you find a violated constraint efficiently?

But… does this result apply to the dual MOT LP?

• Theorem [K’80,GLS’81]: Can solve convex optimization in N variables in poly(N) time
if there exists poly(N) time implementation of separation oracle for its feasibility set.

Key issue: efficient separation oracle?
Ø No for general MOT costs!
Ø Must exploit “structure” of the relevant MOT cost, stay tuned...

Other important technical issues:
Ø For algorithms: can we recover primal MOT solution? Yes [AB1]
Ø For hardness: can we show inapproximability? Yes [AB2]

Wasserstein
barycenter

MOT with
barycenter cost

Separation oracle
for dual MOT LP

Poly-time in fixed dim
[Intersect power diagrams]

NP-hard in high dim
[Reduce from Clique]

Pro: finite size LP
Con: n/ variables

Pro: combinatorial opt
Con: n/ possibilities

3. Computational geometry &
computational complexity ideas

Steps for solutionClassical
1. LP re-formulation 2. Implicit LP ideas

next

Key algorithmic insight: MOT is not a generic LP. Can solve separation oracle
efficiently by exploiting the structure of low-dimensional power diagrams.

[AB1] A. & Boix, Wasserstein barycenters can be computed in polynomial time in fixed dimension. Journal of Machine Learning Research, 2021.
[AB2] A. & Boix, Wasserstein barycenters are NP-hard to compute. SIAM Journal on Mathematics of Data Science, 2021.

Separation oracle (re-interpreted & simplified)

Compute: min
2%∈4%,…, 2&∈4&

min
7∈8'

∑,-./ ||𝑥, − 𝑦||0

Input: k sets of 𝑛 points in 𝑅9

HubOne point per set

Natural approach: first solve for y.
Problem becomes: find k closest points, 1 per set.

min
8(∈C(,…,D,∈E,

∑A,FB1= 𝑥A − 𝑥F
0

But 𝒏𝒌 choices, unclear how to solve efficiently…

Compute: min
2%∈4%,…, 2&∈4&

min
7∈8'

∑,-./ ||𝑥, − 𝑦||0

Input: k sets of 𝑛 points in 𝑅9

How to solve the separation oracle?

Compute: min
!∈#<

min
$=∈%=,…, $>∈%>

∑()*+ ||𝑥(− 𝑦||,

Easy given y: take closest point to y.

Ø But, how to optimize nonconvex F(y) over 𝒚 ∈ 𝑹𝒅?
• Piecewise convex on finitely many convex domains (“pieces”)
• Naive bound is 𝑛% pieces (1 piece per tuple 𝑥$, … , 𝑥%)

Ø Key lemma: For fixed d, only poly(n,k) pieces!

Ø Algorithm: Enumerate pieces. Easily optimize y on each piece. Return best.

Poly(n,k) time algorithm in fixed dimension

Key lemma: 𝐹 𝑦 = min
DH∈EH,…, DI∈EI

∑FGHI ||𝑥F − 𝑦||J has poly(n,k) pieces.

k = # sets, n = # points per set, d = dimension (fixed here)

Voronoi diagram for each set 𝑆-.

overlay

Key lemma: 𝐹 𝑦 = min
DH∈EH,…, DI∈EI

∑FGHI ||𝑥F − 𝑦||J has poly(n,k) pieces.

k = # sets, n = # points per set, d = dimension (fixed here)

Voronoi diagram for each set 𝑆-.

overlay

Key lemma: 𝐹 𝑦 = min
DH∈EH,…, DI∈EI

∑FGHI ||𝑥F − 𝑦||J has poly(n,k) pieces.

k = # sets, n = # points per set, d = dimension (fixed here)

Voronoi diagram for each set 𝑆-.

overlay

Key lemma: 𝐹 𝑦 = min
DH∈EH,…, DI∈EI

∑FGHI ||𝑥F − 𝑦||J has poly(n,k) pieces.

k = # sets, n = # points per set, d = dimension (fixed here)

Voronoi diagram for each set 𝑆-.

overlay

Proof. As 𝑦 varies in overlay cell, the 𝑥!, … , 𝑥# are fixed.

Key lemma: 𝐹 𝑦 = min
DH∈EH,…, DI∈EI

∑FGHI ||𝑥F − 𝑦||J has poly(n,k) pieces.

k = # sets, n = # points per set, d = dimension (fixed here)

Voronoi diagram for each set 𝑆-.

overlay

Proof. As 𝑦 varies in overlay cell, the 𝑥!, … , 𝑥# are fixed. So, 1 piece per nonempty overlay cell. How many?

13 cells. Less than 𝒏𝒌 = 𝟑𝟑 = 𝟐𝟕!

Key lemma: 𝐹 𝑦 = min
DH∈EH,…, DI∈EI

∑FGHI ||𝑥F − 𝑦||J has poly(n,k) pieces.

k = # sets, n = # points per set, d = dimension (fixed here)

Voronoi diagram for each set 𝑆-.

overlay

Proof. As 𝑦 varies in overlay cell, the 𝑥!, … , 𝑥# are fixed. So, 1 piece per nonempty overlay cell. How many?

13 cells. Less than 𝒏𝒌 = 𝟑𝟑 = 𝟐𝟕!

Key lemma: 𝐹 𝑦 = min
DH∈EH,…, DI∈EI

∑FGHI ||𝑥F − 𝑦||J has poly(n,k) pieces.

k = # sets, n = # points per set, d = dimension (fixed here)

Voronoi diagram for each set 𝑆-.

overlay

Proof. As 𝑦 varies in overlay cell, the 𝑥!, … , 𝑥# are fixed. So, 1 piece per nonempty overlay cell. How many?
Ø Each Voronoi diagram is partition of R. defined by at most /

0 hyperplanes.
Ø Overlaying k Voronoi diagrams unions at most 𝑡 = 𝑘 /

0 hyperplanes.
Ø Q: How many cells are in an arrangement of hyperplanes? [Schläfli 1901]

Key lemma: 𝐹 𝑦 = min
DH∈EH,…, DI∈EI

∑FGHI ||𝑥F − 𝑦||J has poly(n,k) pieces.

k = # sets, n = # points per set, d = dimension (fixed here)

Voronoi diagram for each set 𝑆-.

overlay

Proof. As 𝑦 varies in overlay cell, the 𝑥!, … , 𝑥# are fixed. So, 1 piece per nonempty overlay cell. How many?
Ø Each Voronoi diagram is partition of R. defined by at most /

0 hyperplanes.
Ø Overlaying k Voronoi diagrams unions at most 𝑡 = 𝑘 /

0 hyperplanes.
Ø Q: How many cells are in an arrangement of hyperplanes? [Schläfli 1901]
Ø A: In R0, the arrangement defines planar graph with:

• Edges: e ≤ 𝑡0

• Faces: 𝑓 = 𝑒 − 𝑣 + 2 ≤ t0 + 2 = 𝐩𝐨𝐥𝐲(𝐧, 𝐤)

In R1, the bound is
∑234+ 5

2 = nk)(+)

Wasserstein
barycenter

MOT with
barycenter cost

Separation oracle
for dual MOT LP

Poly-time in fixed dim
[Intersect power diagrams]

NP-hard in high dim
[Reduce from Clique]

Pro: finite size LP
Con: n/ variables

Pro: combinatorial opt
Con: n/ possibilities

3. Computational geometry &
computational complexity ideas

Steps for solutionClassical
1. LP re-formulation 2. Implicit LP ideas

[AB1] A. & Boix, Wasserstein barycenters can be computed in polynomial time in fixed dimension. Journal of Machine Learning Research, 2021.
[AB2] A. & Boix, Wasserstein barycenters are NP-hard to compute. SIAM Journal on Mathematics of Data Science, 2021.

Skipped today

Key algorithmic insight: MOT is not a generic LP. Can solve separation oracle
efficiently by exploiting the structure of low-dimensional power diagrams.

Outline

• Algorithmics

• Techniques

• Outlook (and our general MOT framework)

Can you solve other MOT problems in poly(n,k) time?

• Remarkably, there are poly-time algorithms for several other MOT problems:
• Generalized Euler flows [BCCNP’15], tree-structured costs [HRCK’20], …

• But, specially-tailored techniques. Unclear if extend to other applications.

• Q: Are there general “structural” properties that make MOT solvable in poly(n,k) time?

• We identify general classes of costs C for which MOT is tractable [AB3]
Ø Leads to first polynomial-time algorithms for many problems thought to take exponential time.
Ø Leads to first high-precision algorithms for all problems known to be polynomial-time solvable.

• We show first rigorous NP-hardness for MOT problems [AB4]
Ø Guides the algorithmic search by showing necessity of the structures exploited by [AB3]

[AB3] A. & Boix, Polynomial-time algorithms for Multimarginal Optimal Transport problems with structure, arXiv:2008.03006, 2020.
[AB4] A. & Boix, Hardness results for Multimarginal Optimal Transport problems, Discrete Optimization, 2021.

Structured MOT: a few application highlights
• Ex in fluid dynamics: first exact algorithm for generalized Euler flows [AB3]

• This problem was the original motivation of MOT [Brenier ’89]

• Ex in computational chemistry: NP-hardness for density functional theory [AB4]
• This problem captures the strong-interaction limit [Buzzano et al ‘12]

• Ex in operations research: first polynomial-time approximation algorithm for
quantile aggregation [in preparation]
• In contrast to NP-hardness for exact solution [Coffman and Yannakakis ‘84]

Ø What can Wasserstein Barycenters do for you?
• Average data distributions in a geometrically meaningful way.
• Applications: summarize, de-noise, cluster, …

Ø Can you compute them fast?
• Yes in fixed dimensions – now, to high precision [JMLR ’21]. Key insight: solve separation oracle can be

efficiently solved by exploiting the structure of low-dimensional power diagrams.
• No in high dimensions [SIMODS ’21]. Key insight: separation oracle encodes hard combinatorial problems.

Ø General theory of when MOT is poly(n,k) solvable [arXiv ’20, Discrete Opt. ’21]
• Leads to many new applications. Leads to first exact/sparse solutions for known examples.

Takeaways

Ø Many important directions
• Practical heuristics: NP-hardness guides future algorithm design
• Practical scale: go beyond “poly” runtimes
• Practical paradigms: repeated solving in pipelines

