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Abstract

The core of classical optimization focuses on the setting where decision variables are
vectors in Rn. However, modern applications throughout machine learning, applied
mathematics, and engineering demand high-dimensional optimization problems
where decision variables are probability distributions. Can such optimization
problems be solved efficiently? This thesis presents two interrelated lines of work in
this direction through the common thread of Optimal Transport. A unifying theme
is the optimization of joint probability distributions with constrained marginals.

Part I of this thesis considers Optimal Transport and other optimization
problems over joint distributions with two constrained marginals. Such tasks
are fundamental in alignment problems, matrix problems, graph problems, and
more. Chapters 2-4 establish near-linear runtimes for approximation algorithms
for several classical problems under this umbrella: Optimal Transport, Minimum-
Mean-Cycle, Matrix Balancing, and Matrix Scaling. Two recurring key themes
are the use of entropic regularization for exploiting separability of optimization
constraints, and the use of probabilistic inequalities for obtaining dimension-free
convergence bounds. A dictionary is presented that unifies these various problems,
which were historically studied in disparate communities.

Part II of this thesis considers Multimarginal Optimal Transport (MOT)
and other optimization problems over joint distributions with many constrained
marginals. Despite the syntactic similarities with the problems in part I, these
problems require fundamentally different algorithms and analyses. The key issue
limiting the many applications of MOT is that in general, MOT requires expo-
nential time in the number of marginals k and their support sizes n. Chapters
5-6 develop a general theory about what “structure” makes MOT solvable in time



4

that is polynomial in n and k. We demonstrate this general theory on applications
in diverse fields ranging from operations research to data science to fluid dynamics
to quantum chemistry. Chapter 7 dedicates special attention to the popular MOT
application of Wasserstein barycenters—resolving the complexity of this problem
and uncovering the subtle dependence of the dimension on the answer.
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Title: Professor of Electrical Engineering and Computer Science
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“How’s the research going?” — Pablo
“I’m really confused.” — Jason
“Fantastic! From confusion comes enlightment, or something like that.” — Pablo
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Chapter 1

Introduction

Broadly speaking, the research field of optimization provides a mathematical
formalism for decision making. Expressed succinctly, the central question of this
field is how to solve problems of the form

min
x∈X

f(x). (1.1)

Here, the variable x represents the decision to be made, the set X represents the
constraints on the decision, and the function f represents the objective for which
the decision should be optimized. The generality of such a formalism enables
the recasting of problems from diverse fields in a unified framework—for example
designing the most cost-efficient way to ship widgets from factories to stores, or
training a machine learning classifier in a way that best fits the observed data.

Of course, a formalism like (1.1) is primarily useful if one can arrive at its
solution. Typically a closed-form expression is impossible, and as such the goal is
to design algorithms which compute solutions numerically. The goal of the field
of optimization is the design and analysis of such algorithms. The most basic
questions are: when can the optimization be performed efficiently and accurately?
How efficiently? How accurately? And in what sense? In practice, in theory, in
both?

The core of classical optimization focuses on understanding these questions
in the setting where the decision variable x is an arbitrary vector, say in Rn.
However, modern applications throughout machine learning, applied mathematics,
and engineering demand high-dimensional optimization problems where decision
variables are probability distributions. Can such optimization problems be solved
efficiently?

This thesis presents two interrelated lines of work in this direction through
the common thread of Optimal Transport. A unifying theme is the optimiza-
tion of (discrete but very high-dimensional) joint probability distributions with
constrained marginals.

13



14 CHAPTER 1. INTRODUCTION

� 1.1 Outline

Here, we briefly summarize the main contributions of this thesis. See the individual
chapters for a more detailed discussion of the results and related work.

This thesis is thematically divided into two parts: the first part considers
Optimal Transport and other matrix-like problems; the second part considers
Multimarginal Optimal Transport and other tensor-like problems. Despite their
syntactic similarities, the problems in these two parts exhibit fundamentally dif-
ferent algorithmic phenomena and are thus treated separately.

� 1.1.1 Part I: Optimal Transport and matrix-like problems

Vignette: Optimal Transport. We begin by introducing Optimal Transport (OT)
since it is a canonical example of the broader class of problems studied in Part
I—not to mention a significant problem in its own right. OT was originally
proposed by Monge in the 1700s when he asked: what is the least-effort way to
move a pile of dirt into a nearby ditch of equal volume [155]? In the language of
modern mathematics, OT is a distance between two probability distributions on
a metric space, defined as the least effort required to move one distribution to the
other. In recent years, OT has become central to diverse applications in machine
learning, computer graphics, and the sciences because it provides a geometrically-
meaningful measure of distance between complex data distributions beyond just
piles of dirt—e.g., data distributions arising from point clouds, images, object
meshes, document embeddings, or fMRI brain scans. See the monograph [178] for
an overview of the many modern applications of OT.

A central challenge in modern OT applications is scalable computation. Indeed,
the definition of OT implicitly demands the resolution of an optimization problem:
how much mass Pxy should one send from each point x in one distribution µ to
each point y in the other distribution ν? That is, solve

min
P∈M(µ,ν)

∑
xy

PxyCxy (1.2)

where Cxy denotes the cost of moving one unit of mass from point x to point y, and
M(µ, ν) denotes the transportation polytope which consists of joint probability
distributions Pxy that have marginals µ and ν. These marginal constraints encode
the fact that µ is transported to ν: for each point x in distribution µ, the total
mass sent from x is

∑
y Pxy = µ(x); and similarly, for each point y in distribution

ν, the total mass sent to y is
∑

x Pxy = ν(y).
Data-driven applications require the computation of OT between discrete

distributions (i.e., empirical data distributions), each with 6 n data points, for n
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large. In this setting, joint distributions Pxy with constrained marginals can be
identified with n×n non-negative matrices with fixed row and column sums. The
optimization problem (1.2) defining OT is thus a linear program with n2 variables,
n2 non-negativity constraints, and 2n equality constraints. The challenge is that,
of course, this is a very large linear program when the number of data points
n is large. Solving such a linear program is challenging when n is in, say, the
many thousands, let alone millions, and is it a longstanding challenge to develop
algorithms that can compute OT in a reasonable amount of time for large values
of n. See Chapter 2 for a discussion of the extensive literature on OT algorithms
which dates back to Jacobi in the 19th century.

A more general story. Part I of this thesis is about a more general story, in which
OT serves as one example. The unifying theme is optimization problems over
joint probability distributions Pxy with constrained marginals. As mentioned
above, OT is of this form—and in the discrete setting of interest, OT can be
equivalently re-interpreted as an optimization problem over non-negative matrices
with constrained row and column sums. This correspondence can be reversed:
classical matrix problems can also be viewed under the lens of optimization over
probability distributions. This includes classical periodic optimization problems
such as Min-Mean-Cycle, and ubiquitous pre-conditioning problems such as Matrix
Balancing and Matrix Scaling.

The relationship between these three problems and OT is summarized in Ta-
ble 1.1. The relationship between OT and Matrix Scaling is classical and dates
back to the 1960s [232]: briefly, the latter can be reformulated as an optimiza-
tion problem that is identical to the one defining OT (1.2), modulo a certain
entropic regularization term. This fact is well-known to the modern OT commu-
nity as it forms the basis for what is by-now the standard algorithmic approach
for computing OT at scale—namely using an algorithm for Matrix Scaling (the
Sinkhorn algorithm) to compute approximate OT solutions. Much less well-
known are the relationships between the other problems in Table 1.1. Briefly,
Min-Mean-Cycle and Matrix Balancing—just like OT and Matrix Scaling—both
have natural reformulations as optimization problems over non-negative matri-
ces with constrained row and column sums (or equivalently, joint probability
distributions Pxy with constrained marginals). The key difference is replacing
the transportation polytope {P ∈ Rn×n

>0 : P1 = µ, P T1 = ν} by the circulation
polytope {P ∈ Rn×n

>0 : P1 = P T1}—i.e., replacing the constraint of fixed row and
column sums with the constraint of symmetric row and column sums.

Scalable algorithms? Scalability is the key issue for all four of these optimization
problems. Each has a long line of algorithmic work dating back more than half
a century. However, at the beginning of the author’s PhD, the state-of-the-
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Fixed marginals Symmetric marginals

Linear program Optimal Transport Min-Mean-Cycle
Entropic regularization Matrix Scaling Matrix Balancing

Polytope Transportation polytope Circulation polytope
Simple algorithm Sinkhorn algorithm Osborne algorithm
Algorithm in dual Block coordinate descent Entrywise coordinate descent

Per-iteration progress KL divergence Hellinger divergence

Table 1.1: Although not traditionally viewed in this way, the four bolded optimization
problems can be viewed under the same lens: each optimizes a probability distribution
with similar constraints and objectives. Part I of this thesis fully exposes the unifying
connections in this table and exploits them to obtain near-optimal runtimes for all four
problems. These results are a combination of the papers [17, 18, 19].

art algorithms in practice either had no provable guarantees, or had extremely
prohibitive Õ(n3) runtime1 which is far too slow for modern applications.

Part I of this thesis establishes Õ(n2) runtimes for approximation algorithms
for all four problems. These algorithms have nearly-optimal runtime: they solve
in roughly the same amount of time as just reading the n× n matrix input. As
such, these Õ(n2) runtimes are often called “near-linear” since they are linear in
the input size n2 up to lower-order logarithmic factors.

Moreover, we emphasize that these algorithms are not just theoretical bench-
marks, but are actually effective in practice. Indeed, the runtime improvement
from Õ(n3) to Õ(n2) enables solving Min-Mean-Cycle problems ∼10× larger in
the same amount of time. And for the other three problems, our results estab-
lish near-optimal runtimes for ∼60-year-old algorithms that have long been the
go-to algorithms of practitioners. For example, the (entropic) OT algorithm we
study is the default in standard software packages (e.g., POT, OTT, OTJulia,
and GeomLoss), and the Matrix Balancing and Scaling algorithms we study are
used in standard numerical packages (e.g., MATLAB, R, Lapack, and Eispack) for
pre-conditioning before ubiquitous computations like eigenvalue decomposition
and matrix exponentiation. Our results provide theoretical justification for the
practical efficacy of these widespread algorithms.

At a high level, our approach to all four problems has several key recurring
themes, as outlined in Table 1.1. On the algorithmic side, solve the entropi-
cally regularized program rather than the linear program (followed possibly by
a rounding post-processing step), because the entropic regularization allows us
to algorithmically exploit the separability of the marginal constraints. And on
the analysis side, interpret the resulting algorithm as a form of dual coordinate

1Throughout, the notation Õ(·) suppresses lower-order polylogarithmic factors for simplicity.
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descent, observe that each iteration improves an appropriate dual potential by
an amount that can be quantified by the current imbalance—either in Kullback-
Leibler or Hellinger divergence—and use probabilistic inequalities to convert this
per-iteration improvement to a final runtime analysis in a dimension-free way,
which is crucial for near-linear runtimes. However, instantiating this high-level
flow differs between the individual problems in several important ways, for ex-
ample how to quantify the per-iteration progress, how to deal with the fact that
fixed marginal constraints are completely separable whereas symmetric marginal
constraints are not, and how to round to a feasible solution after optimization.
Part I explains the algorithms and analyses for these four problems.

We now briefly outline the individual contributions of the chapters in part I.

Chapter 2. This chapter revisits the problem of Optimal Transport, which as
mentioned above is central to modern applications spanning computer science,
data science, and the natural sciences. However, despite the recent introduction
of several algorithms with good empirical performance, it was unknown whether
general OT distances can be approximated in near-linear time.

We demonstrate that, with an appropriate choice of parameters, the Sinkhorn
algorithm—originally designed for Matrix Scaling, and with a rich history dating
back nearly a century (for a historical perspective see the survey [118])—is in fact
a near-linear time approximation algorithm for computing OT distances between
discrete measures. This is the first proof that such near-linear time results are
achievable for OT. Core to our work is a new analysis of the classical Sinkhorn
algorithm which we show converges in a number of iterations independent of the
dimension n of the matrix to scale.

Chapter 3. This chapter revisits the problem of Matrix Balancing, a pre-conditioning
primitive used ubiquitously for computing eigenvalues and matrix exponentials.
Since 1960, Osborne’s algorithm has been the practitioners’ algorithm of choice,
and is now implemented in most numerical software packages. However, the the-
oretical properties of Osborne’s algorithm are not well understood and in fact
polynomial runtimes were not known for more than half a century. We show
that a simple random variant of Osborne’s algorithm converges in the `1 norm in
near-linear time in the input sparsity. Previous work had established near-linear
runtimes either only for `2 accuracy (a weaker criterion which is less relevant
for applications), or through an entirely different algorithm based on (currently)
impractical Laplacian solvers.

Our results are established through an intuitive potential argument that lever-
ages a convex optimization perspective of Osborne’s algorithm, and relates the
per-iteration progress to the current imbalance as measured in Hellinger distance.
Unlike previous analyses, we critically exploit log-convexity of the potential. Our
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analysis technique is robust in that it also enables us to establish significantly
improved runtime bounds for other variants of Osborne’s algorithm, establish poly-
nomial bit complexity, and establish improved runtimes if an associated graph is
moderately connected.

Chapter 4. This chapter revisits Min-Mean-Cycle, a classical problem in graph
theory with extensive applications in periodic optimization, algorithm design,
control theory, and max-plus algebra. We propose an approximation algorithm
that, for graphs with polylogarithmic diameter, achieves a near-linear runtime.
In particular, this is the first algorithm whose runtime scales in the number of
vertices n as Õ(n2) for the complete graph. Moreover, unconditionally on the
diameter, the algorithm only uses O(n) memory beyond reading the input, making
it “memory-optimal.” Our approach is based on solving a linear programming
relaxation using entropic regularization, which modulo a post-processing rounding
step, reduces the problem to Matrix Balancing—á la the classical reduction of OT
to Matrix Scaling.

The proposed algorithm is practical and simple to implement. Preliminary
numerical simulations demonstate that in practice, the proposed algorithm can
compute high-quality solutions in essentially linear runtime and for ∼10× larger
problem sizes than the state-of-the-art algorithms implemented in the popular,
heavily-optimized C++ software package LEMON.

� 1.1.2 Part II: Multimarginal Optimal Transport and tensor-like problems

From two marginals to many marginals. The optimization problems described above
involve joint probability distributions with two marginals. Part II of the thesis
tackles problems with many marginals k. These optimization problems—often
called Multimarginal Optimal Transport (MOT) in the setting of linear optimiza-
tion and constrained marginals—are central to diverse applications. Examples
range from averaging k data distributions in data science, to performing inference
from k measurements in machine learning, to simulating incompressible fluids
over k timesteps in fluid dynamics, to analyzing stable systems of k electrons in
quantum chemistry.

A central challenge in all of these problems is that in general, it is intractable to
even store a k-variate distribution, let alone to solve for the optimal one. Indeed,
a k-variate joint distribution in which each variable takes n possible values is in
correspondence with a k-order tensor that has nk entries. This complexity nk

grows exponentially, and is intractable beyond tiny input sizes like n = k = 10.
Here, nearly-linear runtime in n and k seem too much to hope for—but can we
at least lower the complexity from exponential to polynomial?

Remarkably, specially tailored algorithms with polynomial runtime were known
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Figure 1.1: Overview of Part II of this thesis: elucidating the boundary between
tractability and intractability for Multimarginal Optimal Transport and other opti-
mization problems over probability distributions with many marginals (equivalently:
tensors). Here, the fundamental goal to achieve is polynomial runtime. These results
are a combination of the papers [11, 12, 13, 14].

for several MOT applications, see Chapter 6 for details. But these algorithms do
not extend to the many other MOT applications. Can those be solved efficiently
too? More generally:

What optimization problems over joint probability distributions

are solvable in polynomial time in the number of marginals?

In nearly all applications of MOT, the input has a concise implicit representation of
size that is polynomial in k rather than exponential. In such setups, is exponential
runtime avoidable? What “structure” of an MOT problem enables solving it in
polynomial time? How do you check if that structure is present? What candidate
algorithms might exploit that structure? Do some algorithms require strictly more
structure than other algorithms?

Part II of this thesis attack these foundational questions from both fronts—
by designing polynomial-time algorithms when possible, or by proving rigorous
hardness results otherwise. We outline these results below; see Figure 1.1 for a
summary.

Chapter 5. In this chapter, we investigate the fundamental limitations of the
rapidly growing line of research that seeks polynomial-time algorithms for struc-
tured MOT problems. Specifically, we establish the intractability of a number of
MOT problems studied in the literature that have resisted previous algorithmic
efforts. For instance, we demonstrate that in the absence of further structure,
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MOT is intractable even if the objective function decomposes into pairwise in-
teractions between the variables, or if it decomposes in a low-rank manner with
super-constant rank. As another example, we provide evidence that repulsive
costs make MOT intractable by showing that several such problems of interest are
NP-hard to solve, including, notably, the popular MOT formulation of Density
Functional Theory when using the Coulomb-Buckingham potential. See Figure 1.1,
left.

All of our hardness results hold even for approximate computation—and to the
best of our knowledge, these are the first inapproximability results for any MOT
problems. Together, these intractability results help guide the search for efficient
MOT algorithms since they establish that these commonly occuring structural
properties of MOT problems are, by themselves, insufficient for developing efficient
algorithms.

Chapter 6. This chapter complements the intractability results in the previous
chapter by developing a unified algorithmic framework for MOT. This framework
builds upon classical ideas from oracle-based optimization in order to characterize
the “structure” that an MOT problem must possess in order to be solvable in
polynomial time. This framework has several benefits. First, it enables us to
show that the Sinkhorn algorithm, which is currently the most popular MOT
algorithm, requires strictly more structure than other algorithms do to solve MOT
in polynomial time. Second, our framework makes it much simpler to develop
polynomial time algorithms for a given MOT problem. In particular, it is necessary
and sufficient to (approximately) solve the dual feasibility oracle—which is much
more amenable to standard algorithmic techniques.

We illustrate this ease-of-use by developing polynomial-time algorithms for
three general classes of MOT cost structures: (1) graphical structure; (2) set-
optimization structure; and (3) low-rank plus sparse structure. For structure (1),
we recover the known result that Sinkhorn has polynomial runtime; moreover, we
provide the first polynomial-time algorithms for computing solutions that are exact
and sparse. For structures (2)-(3), we give the first polynomial-time algorithms,
even for approximate computation. Together, these three structures encompass
many—if not most—current applications of MOT. We demonstrate this general
theory on applications in diverse fields ranging from operations research to data
science to fluid dynamics. See Figure 1.1, right. Two particularly notable ap-
plications are the first polynomial-time algorithms that compute high-precision
solutions for the 30-year-old problem of generalized Euler flows and for the pop-
ular geometric problem of computing low-dimensional Wasserstein barycenters
(detailed in Chapter 7).
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Chapter 7. This chapter highlights the application of our general MOT framework
to one particularly popular instance of MOT: the computation of Wasserstein
barycenters (a.k.a., Optimal Transport barycenters). Wasserstein barycenters
provide a geometrically-meaningful notion of average between probability distri-
butions, and over the past decade have emerged as a central tool in data science
for manipulating and interpreting complicated geometric data. However, despite
considerable attention, the most fundamental question about the complexity of
Wasserstein barycenters remained open: can they be computed in polynomial
time?

In this chapter, we resolve this problem and uncover that the answer depends
subtly on the dimension due to the continuous nature of the problem. Specifically,
we establish that Wasserstein barycenters are NP-hard to compute in high dimen-
sion, but can be computed in polynomial time in any fixed dimension (e.g., as in
physical, imaging, or graphics applications). This uncovers a “curse of dimension-
ality” for Wasserstein barycenter computation which does not occur for Optimal
Transport computation.

� 1.2 Related publications

The contents of this thesis are based on the following published papers.2

Chapter 2. J.M. Altschuler, J. Weed, and P. Rigollet. Near-linear time approx-
imation algorithms for Optimal Transport via Sinkhorn iteration. Advances in
Neural Information Processing Systems (NeurIPS), 2017. [19]

Chapter 3. J.M. Altschuler and P.A. Parrilo. Approximating Min-Mean-Cycle
for low-diameter graphs in near-optimal time and memory. SIAM Journal on
Optimization (SIOPT), 2022. [18]

Chapter 4. J.M. Altschuler and P.A. Parrilo. Near-linear convergence of the
Random Osborne algorithm for Matrix Balancing. Mathematical Programming
(MAPR), 2022. [18]

Chapter 5. J.M. Altschuler and E. Boix-Adserá. Hardness results for Multi-
marginal Optimal Transport problems. Dicrete Optimization (DISOPT), 2021. [12]

Chapter 6. J.M. Altschuler and E. Boix-Adserá. Polynomial-time algorithms
for Multimarginal Optimal Transport problems with structure. Mathematical
Programming (MAPR), 2022. [13]

2Also, a unified exposition of the results in Part I will appear in an invited paper to SIAG/OPT
Views and News.
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Chapter 7.

• J.M. Altschuler and E. Boix-Adserá. Wasserstein barycenters are NP-hard
to compute. SIAM Journal on Mathematics of Data Science (SIMODS),
2022. [11]

• J.M. Altschuler and E. Boix-Adserá. Wasserstein barycenters can be com-
puted in polynomial time in fixed dimension. Journal of Machine Learning
Research (JMLR), 2021. [14]

Three remarks about how we have organized the thesis for the purpose of
readability. First, we have omitted several details and auxiliary results from the
above papers in the interest of brevity. Second, some parts of the above papers
are moved to different chapters in order to avoid redundancy. Third, the notation
is largely consistent between chapters, and for the convenience of the reader, each
chapter introduces the notation relevant to that chapter.
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Entropic OT and Matrix-Like
Problems
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Chapter 2

Near-linear time approximation
algorithms for Optimal Transport

via Sinkhorn iteration

Computing Optimal Transport distances such as the earth mover’s distance is a
fundamental problem in machine learning, statistics, and computer vision. Despite
the recent introduction of several algorithms with good empirical performance, it
is unknown whether general Optimal Transport distances can be approximated
in near-linear time. This chapter demonstrates that this ambitious goal is in
fact achieved by the Sinkhorn algorithm—a classical algorithm that was recently
popularized by the influential 2013 paper of Cuturi—and provides guidance to-
wards parameter tuning for this algorithm. This result relies on a new analysis of
Sinkhorn iterations that also directly suggests a new algorithm GREENKHORN with
the same theoretical guarantees. Numerical simulations illustrate that in terms of
the number of arithmetic operations, GREENKHORN significantly outperforms the
classical SINKHORN algorithm in practice.

� 2.1 Introduction

Computing distances between probability measures on metric spaces, or more
generally between point clouds, plays an increasingly preponderant role in ma-
chine learning [24, 122, 146, 157, 192], statistics [38, 88, 171, 214] and computer
vision [44, 189, 206]. A prominent example of such distances is the earth mover’s
distance introduced in [230] (see also [189]), which is a special case of Wasserstein
distance, or Optimal Transport (OT) distance [225].

While OT distances exhibit a unique ability to capture geometric features
of the objects at hand, they suffer from a heavy computational cost that has
been prohibitive in large scale machine-learning applications until the recent re1-

1This algorithm and its core entropic regularization ideas have a long history in the trans-

25



26
CHAPTER 2. NEAR-LINEAR TIME APPROXIMATION ALGORITHMS FOR OPTIMAL TRANSPORT VIA

SINKHORN ITERATION

popularization of Sinkhorn Distances by Cuturi [73]. Combined with other nu-
merical tricks, these recent advances have enabled the treatment of large clouds
of points in computer graphics such as triangle meshes [206] and high-resolution
neuroimaging data [99]. Sinkhorn Distances mainly rely on the idea of entropy
penalization, which has been implemented in similar problems at least since
Schrödinger [142, 197]. This powerful idea has been successfully applied to a
variety of contexts not only as a statistical tool for model selection [123, 186, 187]
and online learning [56], but also as an optimization gadget in first-order opti-
mization methods such as mirror descent and proximal methods [51].

Related work. Computing an OT distance amounts to solving the following
linear system:

min
P∈Ur,c

〈P,C〉 , (2.1)

where
Ur,c :=

{
P ∈ Rn×n

+ : P1 = r , P>1 = c
}
,

is the transport polytope, 1 is the all-ones vector in Rn, C ∈ Rn×n
+ is a given cost

matrix, and r ∈ Rn, c ∈ Rn are given vectors with positive entries that sum to
one. Typically C is a matrix containing pairwise distances, but in this chapter we
allow C to be any positive dense matrix with bounded entries since our results
are more general. For brevity, this chapter focuses on square matrices C and P ,
since extensions to the rectangular case are straightforward.

This chapter is at the intersection of two lines of research: a practical one
that pursues fast algorithms for Optimal Transport problems and a theoretical
one that aims at finding (near) linear time approximation algorithms for simple
problems that are already known to run in polynomial time.

Noticing that (2.1) is a linear program with O(n) linear constraints and certain
graphical structure, one can use the recent Lee-Sidford linear solver to find a
solution in time Õ(n2.5) [140], improving over the previous standard of O(n3.5)
[185]. While no practical implementation of the Lee-Sidford algorithm is known,
it provides a theoretical benchmark for our methods. Their result is part of a long
line of work initiated by the seminal paper of Spielman and Teng [207] on solving
linear systems of equations, that has provided a building block for near-linear
time approximation algorithms in a variety of combinatorially structured linear
problems. Our work fits into this line of work in the sense that it provides the
first near-linear time guarantee to approximate (2.1). However, our work presents
a striking difference: we analyze algorithms that are also practically efficient.

portation community dating back more than half a century [232]; for a historical perspective,
see, e.g., [118, 195] and the references within.
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Practical algorithms for computing OT distances include Orlin’s algorithm for
the Uncapacitated Minimum Cost Flow problem via a standard reduction. Akin
to interior point methods, it has a provable complexity of O(n3 log n). This cubic
dependence on the dimension is also observed in practice, thereby preventing large-
scale applications. To overcome the limitations of such general solvers, various
ideas ranging from graph sparsification [177] to metric embedding [100, 119, 200]
have been proposed over the years to deal with particular cases of OT distance. At
the same time, recent years have witnessed the development of scalable methods for
general OT that leverage the idea of entropic regularization [32, 73, 93]. However,
their apparent practical efficacy still lacks theoretical guarantees. In particular,
the existence of algorithms to compute or approximate general OT distances
in time nearly linear in the input size n2 is an open question. Therefore, new
tools are needed to develop provably near-linear time algorithms for OT distance
computation.

Our contribution. The contribution of this chapter is twofold. First we
demonstrate that, with an appropriate choice of parameters, the classical Sinkhorn
algorithm is in fact a near-linear time approximation algorithm for computing OT
distances between discrete measures. This is the first proof that such near-linear
time results are achievable for Optimal Transport. Core to our work is a new
analysis of the Sinkhorn iteration algorithm, which we show converges in a number
of iterations independent of the dimension n of the matrix to balance using a new
and arguably more natural analysis of these iterations. In particular, this analysis
directly suggests a greedy variant of Sinkhorn iterations that also provably runs
in near-linear time and, while less parallelizable, significantly outperforms the
classical algorithm in practice in terms of arithmetic operations. Finally, while
most approximation algorithms output an approximation of the optimum value
of the linear program (2.1), we also describe a simple rounding algorithm that
provably outputs a feasible solution to (2.1). Specifically, for any ε > 0 and
bounded, positive cost matrix C, we describe an algorithm that runs in time
Õ(n2/ ε4) and outputs P̂ ∈ Ur,c such that

〈P̂ , C〉 ≤ min
P∈Ur,c

〈P,C〉+ ε

Notation. We denote non-negative real numbers by R+, the set of integers
{1, . . . , n} by [n], and the d-dimensional simplex by ∆d := {x ∈ Rd

+ :
∑d

i=1 xi =
1}. For two probability distributions p, q ∈ ∆d such that p is absolutely continuous
w.r.t. q, we define the entropy H(p) of p and the Kullback-Leibler divergence
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DKL(p‖q) between p and q respectively by

H(p) =
d∑
i=1

pi log
1

pi
, DKL(p‖q) :=

d∑
i=1

pi log

(
pi
qi

)
.

We use 1 to denote the all-ones vector in Rn. For a matrix A = (Aij), we denote
by exp(A) the matrix with entries (eAij). For A ∈ Rn×n, we denote its row and
columns sums by r(A) := A1 ∈ Rn and c(A) := A>1 ∈ Rn, respectively. We
write ‖A‖max = maxij |Aij|. For two matrices of the same dimensions, we denote
the Frobenius inner product of A and B by 〈A,B〉 =

∑
ij AijBij. For a vector

x ∈ Rn, we write diag(x) ∈ Rn×n to denote the diagonal matrix with entries
(diag(x))ii = xi.

For any two nonnegative sequences (un)n, (vn)n, we write un = Õ(vn) if there
exist positive constants C, c such that un ≤ Cvn(log n)c. For any two real numbers,
we write a ∧ b = min(a, b).

� 2.2 Optimal Transport in near-linear time

In this section, we describe the main algorithm studied in this chapter. Pseudocode
appears in Algorithm 2.1.

η ← 4 logn
ε , ε′ ← ε

4‖C‖max

\\ Step 1: Approximately project onto Ur,c
1: A← exp(−ηC)
2: B ← PROJ(A,Ur,c, ε′)

\\ Step 2: Round to feasible point in Ur,c
3: Output P̂ ← ROUND(B,Ur,c)

Algorithm 2.1: APPROXOT(C, r, c, ε)

The core of our algorithm is the computation of an approximate Sinkhorn
projection of the entrywise-exponentiated matrix A = exp(−ηC) (Step 1). We
discuss this step and its connection to entropic penalization in §2.2.1. Since our
approximate Sinkhorn projection is not guaranteed to lie in the feasible set, we
round our approximation to ensure that it lies in Ur,c (Step 2). More details about
the rounding procedure appear in §2.2.2.

Our main theorem about Algorithm 2.1 is the following accuracy and runtime
guarantee.
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Theorem 2.2.1. Algorithm 2.1 returns a point P̂ ∈ Ur,c satisfying

〈P̂ , C〉 6 min
P∈Ur,c

〈P,C〉+ ε

in O(n2 + S) operations, where S is the number of operations of the subroutine
PROJ(A,Ur,c, ε′). In particular, if ‖C‖max 6 L, then S can be O(n2L3(log n) ε−3),
so that Algorithm 2.1 requires O(n2L3(log n) ε−3) operations.

For simplicity, we state Theorem 2.2.1 in terms of elementary arithmetic
operations, and do not consider bit complexity issues arising from the taking
of exponentials in Step 1. It can be easily shown [127] that the maximum bit
complexity throughout the execution of our algorithm is O(L(log n)/ ε). As a
result, factoring in bit complexity leads to a runtime of O(n2L4(log n)2 ε−4), which
is truly near-linear.2

� 2.2.1 Approximate Sinkhorn projection

The core of our algorithm is the entropic penalty

P η := arg min
P∈Ur,c

{
〈P,C〉 − η−1H(P )

}
, (2.2)

where H is the entrywise entropy. Using this entropic penalty for transportation
dates back at least to [232]. The key benefit of this entropic penalty is that
the solution to (2.2) can be characterized explicitly by analyzing its first-order
conditions for optimality (see, e.g., [73] for a proof).

Theorem 2.2.2. For any cost matrix C and r, c ∈ ∆n, the minimization progam (2.2)
has a unique minimum at P η ∈ Ur,c of the form P η = XAY , where A = exp(−ηC)
and X, Y ∈ Rn×n

+ are both diagonal matrices. The matrices (X, Y ) are unique up
to a constant factor.

We call the matrix P η appearing in Theorem 2.2.2 the Sinkhorn projection of A,
denoted ΠS(A,Ur,c), after Sinkhorn, who proved uniqueness in [203]. Computing
ΠS(A,Ur,c) exactly is impractical, so we implement instead an approximate version
PROJ(A,Ur,c, ε′) that outputs a matrix B = XAY which may not lie in Ur,c but
satisfies the condition ‖r(B) − r‖1 + ‖c(B) − c‖1 6 ε′. We stress that this
condition is very natural from a statistical standpoint, since it requires that r(B)
and c(B) are close to the target marginals r and c in total variation distance.
Prior work on approximate Sinkhorn projection focuses on the weaker condition

2We remark that with a more careful analysis, this bit complexity can be reduced from
O(L(log n)/ ε) to logarithmic size O(log(Ln/ ε)), see §3.10.4.
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‖r(B)− r‖2 + ‖c(B)− c‖2 6 ε′. Not only do such bounds lack statistical meaning,
but they also fail to yield useful approximation guarantees for OT distances. We
discuss this issue and give an algorithm to compute PROJ(A,Ur,c, ε′) in §2.3.

Theorem 2.2.3. Let ‖C‖max 6 L. There exists an implementation of the pro-
cedure PROJ(A,Ur,c, ε′) requiring O(n2L3(log n) ε−3) elementary arithmetic opera-
tions that outputs a matrix B = XAY where X, Y ∈ Rn×n

+ are diagonal matrices
and

‖r(B)− r‖1 + ‖c(B)− c‖1 6 ε′ .

Proof. Theorems 2.3.1 and 2.3.5 imply that both the SINKHORN and GREENKHORN

algorithms yield a matrix B of the desired accuracy in O(n2(ε′)−2 log s
`
) elementary

arithmetic operations, where s is the sum of the entries of A and ` is the smallest
entry of A. Since the matrix C is nonnegative, s 6 n2. The smallest entry of A is
e−η‖C‖max , so log 1/` = η‖C‖max. We obtain

S = O(n2(ε′)−2(log n+ η‖C‖max)η‖C‖max) ,

and plugging in the values of η and ε′ finishes the proof.

� 2.2.2 Rounding to a feasible point

The rounding procedure we implement is very simple, and is based on the obser-
vation that calculating the Optimal Transport with respect to the total variation
distance is computationally cheap.

1: X ← diagonal with Xii = ri
ri(F ) ∧ 1

2: F ← XF
3: Y ← diagonal with Yjj =

cj
cj(F ) ∧ 1

4: F ← FY
5: errr ← r − r(F ), errc ← c− c(F )
6: Output G← F + errrerr>c /‖errr‖1

Algorithm 2.2: ROUND(F,Ur,c)

Theorem 2.2.4. If r, c ∈ ∆n and F ∈ Rn×n
+ , then there exists G ∈ Ur,c satisfying

‖G− F‖1 6 ‖r(F )− r‖1 + ‖c(F )− c‖1 .

Such a G can be computed in O(n2) time by Algorithm 2.2.

A proof of Theorem 2.2.4 is deferred to §2.5.
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� 2.2.3 Proof of Theorem 2.2.1

We have already established that Steps 1 and 2 run in S and O(n2) time, respec-
tively, so the runtime guarantee is immediate.

Let B be the output of PROJ(A,Ur,c, ε′), and let P ∗ ∈ arg minP∈Ur,c〈P,C〉 be
an optimal solution to the original OT program.

We first show that 〈B,C〉 is not much larger than 〈P ∗, C〉. To that end, write
r′ := r(B) and c′ := c(B). Since B = XAY for positive diagonal matrices X and
Y , Theorem 2.2.2 implies B is the optimal solution to

min
P∈Ur′,c′

〈P,C〉 − η−1H(P ) . (2.3)

By Theorem 2.2.4, there exists a matrix P ′ ∈ Ur′,c′ such that

‖P ′ − P ∗‖1 6 ‖r′ − r‖1 + ‖c′ − c‖1 .

Moreover, since B is an optimal solution of (2.3), we have

〈B,C〉 − η−1H(B) 6 〈P ′, C〉 − η−1H(P ′) .

Thus, by Hölder’s inequality

〈B,C〉 − 〈P ∗, C〉 = 〈B,C〉 − 〈P ′, C〉+ 〈P ′, C〉 − 〈P ∗, C〉
6 η−1(H(B)−H(P ′)) + (‖r′ − r‖1 + ‖c′ − c‖1)‖C‖max

6 2η−1 log n+ (‖r′ − r‖1 + ‖c′ − c‖1)‖C‖max , (2.4)

where we have used the fact that 0 ≤ H(B), H(P ′) ≤ 2 log n.
Theorem 2.2.4 implies that the output P̂ of ROUND(B,Ur,c, ε′) satisfies

‖B − P̂‖1 6 ‖r′ − r‖1 + ‖c′ − c‖1 .

Together with (2.4) and Hölder’s inequality, it yields

〈P̂ , C〉 6 min
P∈Ur,c

〈P,C〉+ 2η−1 log n+ 2(‖r′ − r‖1 + ‖c′ − c‖1)‖C‖max .

Applying the guarantee of PROJ(A,Ur,c) yields

〈P̂ , C〉 6 min
P∈Ur,c

〈P,C〉+
2 log n

η
+ 2 ε′ ‖C‖max .

Plugging in the values of η and ε′ prescribed in Algorithm 2.1 yields the claim.
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� 2.3 Linear-time approximate Sinkhorn projection

Given a matrix A, Sinkhorn proposed a simple iterative algorithm to approximate
the Sinkhorn projection ΠS(A,Ur,c), which is commonly known as the Sinkhorn-
Knopp algorithm or RAS method. Despite the simplicity of this algorithm and its
good performance in practice, it has been difficult to analyze. As a result, recent
work showing that ΠS(A,Ur,c) can be approximated in near-linear time [9, 67] has
bypassed the Sinkhorn-Knopp algorithm entirely. Though these results come with
provable convergence guarantees, the algorithms they propose are not currently
implementable in practice. In our work, we obtain a new analysis of the simple and
practical Sinkhorn-Knopp algorithm, showing that it also approximates ΠS(A,Ur,c)
in near-linear time.

Pseudocode for the Sinkhorn-Knopp algorithm appears in Algorithm 2.3. In
brief, it is an alternating projection procedure which renormalizes the rows and
columns of A in turn so that they match the desired row and column marginals r
and c. At each step, it prescribes to either modify all the rows by multiplying row
i by ri/ri(A) for i ∈ [n], or to do the analogous operation on the columns. (We
interpret the quantity 0/0 as 1 in this algorithm if ever it occurs.)

1: Initialize k ← 0
2: A(0) ← A/‖A‖1, X(0) ← I, Y (0) ← I
3: while dist(A(k),Ur,c) > ε do
4: k ← k + 1
5: if k odd then
6: X ← diagonal with Xii = ri

ri(A(k−1))

7: X(k) ← X(k−1)X, Y (k) ← Y (k−1)

8: else
9: Y ← diagonal with Yjj =

cj
cj(A(k−1))

10: Y (k) ← Y (k−1)Y , X(k) ← X(k−1)

11: A(k) = X(k)AY (k)

12: Output B ← A(k)

Algorithm 2.3: SINKHORN(A,Ur,c, ε′)

It is clear that, if Algorithm 2.3 terminates, then its output B satisfies
distM(B,Ur,c) 6 ε′. (The choice of metric in which to measure distM(A,Ur,c)
will be discussed further below.) If m is the number of nonzero entries in A, then
each iteration of Sinkhorn can be performed in O(m) time. Therefore the total
running time of Algorithm 2.3 is linear in m so long as the number of iterations
depends only on ε′ but not on n or m.
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Before this work, the best analysis of the RAS method appeared in [127]. They
defined

distM(A,Ur,c) = ‖r(A)− r‖2 + ‖c(A)− c‖2 ,

and showed that if A is strictly positive with minij Aij = ` and
∑

ij Aij = s, then
Algorithm 2.3 outputs a matrix B satisfying

‖r(B)− r‖2 + ‖c(B)− c‖2 6 ε′ (2.5)

in O
(
ρ(ε′)−2 log(s/`)

)
iterations, where ρ > 0 is such that ri, ci ≤ ρ for all i ∈ [n].

While this result appears to show that we can obtain an ε′-approximate scaling of
A in only Õ((ε′)−2) iterations, this impression is misleading. Indeed, the `2 norm
is not an appropriate measure of closeness between probability vectors, since very
different distributions on large alphabets can nevertheless have small `2 distance:
for example, (n−1, . . . , n−1, 0, . . . , 0) and (0, . . . , 0, n−1, . . . , n−1) in ∆2n have `2

distance
√

2/n even though they have disjoint support. As noted above, for
statistical problems, including computation of the OT distance, it is more natural
to measure distance in `1 norm.

The best `1 guarantee available from previous work implies that a matrix B
can be obtained satisfying

‖r(B)− r‖1 + ‖c(B)− c‖1 6 ε′

in O
(
nρ(ε′)−2 log(s/`)

)
iterations, where the extra factor of n is the price to pay

to convert an `2 bound to an `1 bound. Note that ρ > 1/n, so nρ is always
larger than 1. In the extreme where r or c contains an entry of constant size,
nρ = Ω(n). However, if r = c = 1n/n are uniform distributions, then nρ = 1
and no dependence on the dimension appears. Our new analysis allows to a
dimension-independent bound on the number of iterations beyond the uniform
case.

Theorem 2.3.1. Algorithm 2.3 with distM(A,Ur,c) = ‖r(A)− r‖1 + ‖c(A)− c‖1

outputs a matrix B satisfying distM(B,Ur,c) 6 ε′ in O
(
(ε′)−2 log(s/`)

)
iterations.

Comparing our result with the bound on `2 distance, we see that our bound is
always stronger, by up to a factor of n. Moreover, our analysis is extremely short.
Our improved results and simplified proof follow directly from the fact that we
carry out the analysis entirely with respect to the Kullback–Leibler divergence, a
common measure of statistical distance. This measure possesses a close connection
to the total-variation distance via Pinsker’s inequality (Lemma 2.3.4, below), from
which we obtain the desired `1 bound. A full proof appears in §2.3.1.

We also propose a new algorithm, GREENKHORN (for “Greedy Sinkhorn”), which
enjoys precisely the same bound as SINKHORN, but which works better in many
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practical situations (see §2.4 for experimental results). We emphasize that previous
analyses of Sinkhorn iteration did not apply to GREENKHORN, but our new analysis
handles the GREENKHORN algorithm with only trivial modifications.

� 2.3.1 New analysis of Sinkhorn iteration

We analyze Sinkhorn iterations by considering the following auxiliary function,
which has appeared in much of the literature on Sinkhorn projections [67, 124,
125, 127]. Given a matrix A and desired row and column sums r and c, we define
f : Rn×Rn → R by

f(x, y) =
∑
ij

Aije
xi+yj − 〈r, x〉 − 〈c, y〉 .

It is easy to check that a minimizer (x∗, y∗) of f yields the Sinkhorn projection
of A: writing X = diag(exp(x∗)) and Y = diag(exp(y∗)), first order optimality
conditions imply that XAY lies in Ur,c, and therefore XAY = ΠS(A,Ur,c).

Since the first step of Algorithm 2.3 renormalizes A to have total mass 1, we
can assume in our analysis that s = 1 at the price of replacing ` by `/s. This
simplification is valid because our bound involves the scale-invariant quantity s/`.
Likewise, if ri or cj is zero for some i, j ∈ [n], then the corresponding rows and
columns of A(k) contain only zeroes throughout the execution of the algorithm.
We therefore restrict our attention to the submatrix indexed by positive entries
of r and c.

Algorithm 2.3 updates one of the diagonal matrices X(k) and Y (k) at each step.
Write xk for the vector whose ith entry is logX

(k)
ii , and similarly let yk be the

vector with entries log Y
(k)
jj . We call these vectors the scaling vectors corresponding

to A(k).
The proof of Theorem 2.3.1 relies on the following Lemmas that relate the

successive improvements of the function f to the Kullback-Leibler divergence
between target and current row/column sums. Similar ideas can be traced back at
least to [105] where an analysis of Sinkhorn iterations for bi-stochastic targets is
sketched in the context of a different problem, detecting the existence of a perfect
matching in a bipartite graph.

Lemma 2.3.2. If k > 2, then

f(xk−1, yk−1)− f(xk, yk) = DKL(r‖r(A(k−1))) +DKL(c‖c(A(k−1))) .

Proof. Assume without loss of generality that k is odd, so that c(A(k−1)) = c and
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r(A(k)) = r. (If k is even, interchange the roles of r and c.) By definition,

f(xk−1, yk−1)− f(xk, yk) =
∑
ij

(
A

(k−1)
ij − A(k)

ij

)
+ 〈r, xk − xk−1〉+ 〈c, yk − yk−1〉

=
∑
i

ri(x
k
i − xk−1

i )

= DKL(r‖r(A(k−1)) +DKL(c‖c(A(k−1))) ,

where we have used that: ‖A(k−1)‖1 = ‖A(k)‖1 = 1 and Y (k) = Y (k−1); for all i,

ri(x
k
i − xk−1

i ) = ri log
X

(k)
ii

X
(k−1)
ii

= ri log
ri

ri(A(k−1))
;

and DKL(c‖c(A(k−1))) = 0 since c = c(A(k−1)).

The next lemma has already appeared in the literature and we defer its proof
to §2.5.

Lemma 2.3.3. If A is a positive matrix with total mass s, then

f(x1, y1)− min
x,y∈R

f(x, y) 6 f(0, 0)− min
x,y∈R

f(x, y) 6 log
s

`
.

Lemma 2.3.4 (Pinsker’s Inequality [219]). For any p, q ∈ ∆n2 such that p is
absolutely continuous with respect to q, we have

‖p− q‖1 6
√

2DKL(p‖q) .

Proof of Theorem 2.3.1. Let k∗ be the first iteration such that

‖r(A(k∗))− r‖1 + ‖c(A(k∗))− c‖1 6 ε .

Pinsker’s inequality implies that for any k < k∗, we have

ε2 < (‖r(A(k))− r‖1 + ‖c(A(k))− c‖1)2 6 4(DKL(r‖r(A(k))) +DKL(c‖c(A(k))) ,

so Lemmas 2.3.2 and 2.3.3 implies that we terminate in

k∗ ≤ 4 ε−2 log
(s
`

)
steps, as claimed.
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� 2.3.2 Greedy sinkhorn

In addition to a new analysis of SINKHORN, we propose a new algorithm which
enjoys the same convergence guarantee but with better performance in practice
in terms of the number of arithmetic operations. Instead of alternating updates
of all rows and columns of A, GREENKHORN simply updates the best single row or
column at each step, thus updating only O(n) entries of A, rather than O(n2) per
iteration. Our analysis shows GREENKHORN might require n times more iterations
than SINKHORN, so that the runtime guarantees of the two algorithms are the same.
However, GREENKHORN tends to make much faster progress in practice.

This algorithm is an extremely natural modification of the RAS method, but
previous analyses of RAS cannot be modified to extract any meaningful perfor-
mance guarantees. On the other hand, our new analysis applies to GREENKHORN

with only trivial modifications.

1: A← A/‖A‖1
2: while distM(A,Ur,c) > ε do
3: I ← arg maxi ρ(ri, ri(A))
4: J ← arg maxj ρ(cj , cj(A))
5: if ρ(rI , rI(A)) > ρ(cJ , cJ(A)) then
6: Rescale Ith row of A by rI/rI(A)
7: else
8: Rescale Jth row of A by cJ/cJ(A)

9: Output B ← A

Algorithm 2.4: GREENKHORN(A,Ur,c, ε′)

Pseudocode for GREENKHORN appears in Algorithm 2.4. As in SINKHORN,

distM(A,Ur,c) = ‖r(A)− r‖1 + ‖c(A)− c‖1 .

Violations of the row and column constraints are measured by the distance function
ρ : R+×R+ → [0,+∞] given by

ρ(a, b) = b− a+ a log
a

b
.

Since ρ is not symmetric, it is not a metric; however, the function ρ is nonnegative
and satisfies ρ(a, b) = 0 iff a = b.

We note that after r(A) and c(A) are computed once at the beginning of the
algorithm, GREENKHORN can be implemented such that each iteration runs in only
O(n) time.
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Theorem 2.3.5. The algorithm GREENKHORN yields a matrix satisfying distM(B,Ur,c) 6
ε′ in O(n(ε′)−2 log(s/`)) iterations. Since each iteration requires O(n) operations,
such a matrix can be found in O(n2(ε′)−2 log(s/`)) arithmetic operations.

The analysis requires the following Lemma, which is an easy modification of
Lemma 2.3.2.

Lemma 2.3.6. Let A′ and A′′ be successive iterates of GREENKHORN, with cor-
responding scaling vectors (x′, y′) and (x′′, y′′). If A′′ was obtained from A′ by
updating row I, then

f(x′, y′)− f(x′′, y′′) = ρ(rI , rI(A
′)) ,

and if it was obtained by updating column J , then

f(x′, y′)− f(x′′, y′′) = ρ(cJ , cJ(A′)) .

We also require the following extension of Pinsker’s inequality (the proof is
deferred to §2.5).

Lemma 2.3.7. For any α ∈ ∆n, β ∈ Rn
+, define ρ(α, β) =

∑
i ρ(αi, βi). If

ρ(α, β) 6 1, then

‖α− β‖1 6
√

7ρ(α, β) .

Proof of Theorem 2.3.5. We follow the proof of Theorem 2.3.1. If ‖r(A)− r‖1 +
‖c(A)− c‖1 > ε, then we make at least

1

2n
(ρ(r, r(A)) + ρ(c, c(A))) >

1

14n
(‖r(A)− r‖2

1 + ‖c(A)− c‖2
1) >

1

28n
ε2

progress at each step, so we terminate in at most 28n ε−2 log(s/`) iterations.

� 2.4 Empirical results

Cuturi [73] already gave experimental evidence that using SINKHORN to solve (2.2)
outperforms state-of-the-art techniques for Optimal Transport. In this section, we
provide strong empirical evidence that our proposed GREENKHORN algorithm sig-
nificantly outperforms SINKHORN in terms of the number of arithmetic operations.

Remark 2.4.1 (Parallelizability). GREENKHORN, at least as written, is less paral-
lelizable than SINKHORN since the latter can perform n row/column updates simul-
taneously using matrix-vector multiplication. On the other hand, as demonstrated
numerically here, GREENKHORN can provide significant savings by only updating
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Figure 2.1: Comparison of GREENKHORN and SINKHORN on pairs of MNIST images of
dimension 28× 28 (top) and random images of dimension 20× 20 with 20% foreground
(bottom). Left: distance dist(A,Ur,c) to the transport polytope (average over 10 random
pairs of images). Right: maximum, median, and minimum values of the competitive
ratio ln (dist(AS ,Ur,c)/dist(AG,Ur,c)) over 10 runs.

the most salient rows/columns. In practice, the most prudent option may be a
combination of the two, for example running GREENKHORN with k row/column up-
dates per iteration, where 1� k � n, in order to balance both the benefits of both
parallelizability and fewer arithmetic operations. Here, we ignore parallelizability
questions and focus solely on the hardware-independent question of the number of
arithmetic operations.

We consider transportation between pairs of m×m greyscale images, normal-
ized to have unit total mass. The target marginals r and c represent two images
in a pair, and C ∈ Rm2×m2

is the matrix of `1 distances between pixel locations.
Therefore, we aim to compute the earth mover’s distance.

We run experiments on two datasets: real images, from mnist, and synthetic
images, as in Figure 2.2.

� 2.4.1 MNIST

We first compare the behavior of GREENKHORN and SINKHORN on real images. To
that end, we choose 10 random pairs of images from the MNIST dataset, and
for each one analyze the performance of APPROXOT when using both GREENKHORN

and SINKHORN for the approximate projection step. We add negligible noise 0.01
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to each background pixel with intensity 0. Figure 2.1 paints a clear picture:
GREENKHORN significantly outperforms SINKHORN both in the short and long term.

� 2.4.2 Random images

Figure 2.2: Synthetic image.

To better understand the empirical be-
havior of both algorithms in a number
of different regimes, we devised a syn-
thetic and tunable framework whereby
we generate images by choosing a ran-
domly positioned “foreground” square
in an otherwise black background. The
size of this square is a tunable parame-
ter varied between 20%, 50%, and 80%
of the total image’s area. Intensities of
background pixels are drawn uniformly
from [0, 1]; foreground pixels are drawn
uniformly from [0, 50]. Such an image
is depicted in Figure 2.2, and results appear in Figure 2.1.

We perform two other experiments with random images in Figure 2.3. In the
first, we vary the number of background pixels and show that GREENKHORN performs
better when the number of background pixels is larger. We conjecture that this is
related to the fact that GREENKHORN only updates salient rows and columns at each
step, whereas SINKHORN wastes time updating rows and columns corresponding
to background pixels, which have negligible impact. This demonstrates that
GREENKHORN is a better choice especially when data is sparse, which is often the
case in practice.

In the second, we consider the role of the regularization parameter η. Our
analysis requires taking η of order log n/ ε, but Cuturi [73] observed that in practice
η can be much smaller. Cuturi showed that SINKHORN outperforms state-of-the
art techniques for computing OT distance even when η is a small constant, and
Figure 2.3 shows that GREENKHORN runs faster than SINKHORN in this regime with
no loss in accuracy.
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Figure 2.3: Left: Comparison of median competitive ratio for random images containing
20%, 50%, and 80% foreground. Right: Performance of GREENKHORN and SINKHORN for
small values of η.

� 2.5 Deferred details

� 2.5.1 Proof of Theorem 2.2.4

Let G be the output of ROUND(F,Ur,c). The entries of F are nonnegative through-
out, and at the end of the algorithm errr and errc are both nonnegative, with
‖errr‖1 = ‖errc‖1 = 1− ‖F‖1. Therefore the entries of G are nonnegative and

r(G) = r(F ) + r(errrerr>c /‖errr‖1) = r(F ) + errr = r ,

and likewise c(G) = c. This establishes that G ∈ Ur,c.
Let ∆ = 1 − ‖F‖1 be the total amount of mass subtracted from F during

the course of the algorithm. Since we only remove mass from F from rows and
columns which are over weight, we have

∆ 6
n∑
i=1

(r(F )i − ri)+ +
n∑
j=1

(c(F )j − cj)+

6
1

2
(‖r(F )− r‖1 + ‖c(F )− c‖1) .

We obtain

‖G− F‖1 6 ∆ + ‖errrerr>c ‖1/‖errr‖1

= 2∆ 6 ‖r(F )− r‖1 + ‖c(F )− c‖1 .

Finally, we prove the O(n2) runtime bound follows by observing that each
rescaling and computing the matrix errrerr>c /‖errr‖1 both require at most O(n2)
time.
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� 2.5.2 Proof of Lemma 2.3.3

The first inequality follows from the fact that rescaling the rows or columns
of A always leads to improvement in the value of f . Then as in the proof of
Lemma 2.3.2,

f(x(0), y(0))− f(x(1), y(1)) = 〈r, x(1)〉+ 〈c, y(1)〉

=
∑
ij

A
(1)
ij log

A
(1)
ij

Aij

= DKL(A(1)‖A) > 0 .

We now prove the second claim. Recall that we assume that we have rescaled
A in such a way that ‖A‖1 = 1 and its smallest entry is `/s. Since A is positive,
[203] shows that ΠS(A) exists and is unique. Let (x∗, y∗) be corresponding scaling
factors. Then

f(x(0), y(0))− f(x∗, y∗) = 〈r, x∗〉+ 〈c, y∗〉 .
Since

Aije
x∗i +y∗j 6

∑
ij

Aije
x∗i +y∗j = 1 ,

we have
x∗i + y∗j 6 log

s

`
,

for all i, j ∈ [n]. Because r and c are both probability vectors,

〈r, x∗〉+ 〈c, y∗〉 6 log
s

`
.

� 2.5.3 Proof of Lemma 2.3.6

We prove only the case where a row was updated, since the column case is exactly
the same.

By definition,

f(x′, y′)− f(x′′, y′′) =
∑
ij

(A′ij − A′′ij) + 〈r, x′′ − x′〉+ 〈c, y′′ − y′〉 .

Observe that A′ and A′′ differ only in the Ith row, and x′′ and x′ differ only in
the Ith entry, and y′′ = y′. Hence

f(x′, y′)− f(x′′, y′′) = rI(A
′)− rI(A′′) + rI(x

′′
I − x′I)

= ρ(rI , rI(A
′)) ,

where we have used the fact that rI(A
′′) = rI and x′′I − x′I = log(rI/rI(A

′)).
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� 2.5.4 Proof of Lemma 2.3.7

Let s =
∑

i βi, and write β̄ = β/s. The definition of ρ implies

ρ(α, β) =
∑
i

(βi − αi) + αi log
αi
βi

= s− 1 +
∑
i

αi log
αi
sβ̄i

= s− 1− (log s)
∑
i

αi +DKL(α‖β̄)

= s− 1− log s+DKL(α‖β̄) .

Note that both s− 1− log s and DKL(α‖β̄) are nonnegative. If ρ(α, β) 6 1, then
in particular s− 1− log s 6 1, and it can be seen that s− 1− log s > (s− 1)2/5
in this range. Applying Lemma 2.3.4 (Pinsker’s inequality) yields

ρ(α, β) >
1

5
(s− 1)2 +

1

2
‖α− β̄‖2

1 .

By the triangle inequality and convexity,

‖α− β‖2
1 6 (‖β̄ − β‖1 + ‖α− β̄‖1)2

= (|s− 1|+ ‖α− β̄‖1)2

6
7

5
(s− 1)2 +

7

2
‖α− β̄‖2

1 .

The claim follows from the above two displays.



Chapter 3

Near-linear convergence of the
Random Osborne algorithm for

Matrix Balancing

We revisit Matrix Balancing, a pre-conditioning task used ubiquitously for com-
puting eigenvalues and matrix exponentials. Since 1960, Osborne’s algorithm
has been the practitioners’ algorithm of choice, and is now implemented in most
numerical software packages. However, the theoretical properties of Osborne’s
algorithm are not well understood. Here, we show that a simple random vari-
ant of Osborne’s algorithm converges in near-linear time in the input sparsity.
Specifically, it balances K ∈ Rn×n

>0 after O(mε−2 log κ) arithmetic operations in
expectation and with high probability, where m is the number of nonzeros in K, ε
is the `1 accuracy, and κ =

∑
ijKij/(minij:Kij 6=0Kij) measures the conditioning of

K. Previous work had established near-linear runtimes either only for `2 accuracy
(a weaker criterion which is less relevant for applications), or through an entirely
different algorithm based on (currently) impractical Laplacian solvers.

We further show that if the graph with adjacency matrix K is moderately
connected—e.g., if K has at least one positive row/column pair—then Osborne’s
algorithm initially converges exponentially fast, yielding an improved runtime
O(mε−1 log κ). We also address numerical precision issues by showing that these
runtime bounds still hold when using O(log(nκ/ ε))-bit numbers.

Our results are established through an intuitive potential argument that lever-
ages a convex optimization perspective of Osborne’s algorithm, and relates the
per-iteration progress to the current imbalance as measured in Hellinger distance.
Unlike previous analyses, we critically exploit log-convexity of the potential. No-
tably, our analysis extends to other variants of Osborne’s algorithm: along the
way, we also establish significantly improved runtime bounds for cyclic, greedy,
and parallelized variants of Osborne’s algorithm.

43
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� 3.1 Introduction

Let 1 denote the all-ones vector in Rn. A nonnegative square matrix A ∈ Rn×n
>0 is

said to be balanced if its row sums r(A) := A1 equal its column sums c(A) := AT1,
i.e.

r(A) = c(A). (3.1)

This chapter revisits the classical problem of Matrix Balancing—sometimes also
called diagonal similarity scaling or line-sum-symmetric scaling—which asks:
given a nonnegative matrix K ∈ Rn×n

>0 , find a positive diagonal matrix D (if
one exists1) such that A := DKD−1 is balanced.

Matrix Balancing is a fundamental problem in numerical linear algebra, sci-
entific computing, and theoretical computer science with many applications and
an extensive literature dating back to 1960. The original papers [166, 175] consid-
ered the setup of balancing a matrix so that for every i, its i-th row and column
have the same `p norm (rather than sum). Despite this problem’s rich history,
for nearly 60 years polynomial runtimes were unknown for Osborne’s algorithm,
the standard algorithm used in practice, until the breakthrough papers [198] for
p =∞ and then [167] for p finite. See Remark 3.1.5 for an expanded discussion of
this history, the relations between these Matrix Balancing variants, and a straight-
forward reduction which extends all near-linear runtime results established in this
chapter to `p Matrix Balancing for finite p.

A particularly celebrated application of Matrix Balancing is pre-conditioning
matrices before linear algebraic computations such as eigenvalue decomposition [166,
175] and matrix exponentiation [113, 228]. The point is that performing these lin-
ear algebra tasks on a balanced matrix can drastically improve numerical stability
and readily recovers the desired answer on the original matrix [166]. Moreover, in
practice, the runtime of (approximate) Matrix Balancing is essentially negligible
compared to the runtime of these downstream tasks [180, §11.6.1]. The ubiquity
of these applications has led to the implementation of Matrix Balancing in most
linear algebra software packages, including EISPACK [205], LAPACK [23], R [184],
and MATLAB [150]. In fact, Matrix Balancing is performed by default in the
command for eigenvalue decomposition in MATLAB [151] and in the command
for matrix exponentation for R [98]. Matrix Balancing also has other diverse
applications in economics [195], information retrieval [217], and combinatorial
optimization [18].

In practice, Matrix Balancing is performed approximately rather than exactly,
since this can be done efficiently and typically suffices for applications. Specifically,

1K can be balanced if and only if K is irreducible [83]. This can be efficiently checked in
linear time [215].
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in the approximate Matrix Balancing problem, the goal is to compute a scaling
A := DKD−1 that is ε-balanced in the `1 sense, i.e.,

‖r(A)− c(A)‖1∑
ij Aij

6 ε . (3.2)

Remark 3.1.1 (`1 versus `2 error criterion). Several papers [126, 167] study
approximate Matrix Balancing with `2 error criterion—rather than `1 as done
here in (3.2) and in e.g., [161]—for what appears to be essentially historical
reasons. Here, we focus solely on the `1 error criterion as it appears to be more
useful for applications—e.g., it is critical for near-linear time approximation of
the Min-Mean-Cycle problem [18]—in large part due to its natural interpretations
in both probabilistic problems (as total variation imbalance) and graph theoretic
problems (as netflow imbalance) [18, Remarks 2.1 and 5.8].2 Note also that the
approximate balancing criterion (3.2) is significantly easier to achieve3 for `2 than
`1: in fact, any matrix can be balanced to constant `2 error by only rescaling a
vanishing 1/n fraction of the entries [167], whereas this is impossible for the `1

norm. (Note that this issue of which norm to measure error should not be confused
with the `p Matrix Balancing problem, see Remark 3.1.5.)

� 3.1.1 Previous algorithms

The many applications of Matrix Balancing have motivated an extensive literature
focused on solving it efficiently. However, there is still a large gap between theory
and practice, and several key issues remain. We overview the relevant previous
results below.

� 3.1.1.1 Practical state-of-the-art

Ever since its invention in 1960, Osborne’s algorithm has been the algorithm
of choice for practitioners [166, 175]. Osborne’s algorithm is a simple iterative
algorithm which initializes D to the identity (i.e., no balancing), and then in each
iteration performs an Osborne update on some update coordinate k ∈ [n], in which
Dkk is updated to

√
ck(A)/rk(A)Dkk so that the k-th row sum rk(A) and k-th

2The analogous observation has also been made for the intimately related problem of Ma-
trix Scaling. For example, the `1 norm is pivotal there for applications including Optimal
Transport [19] and Bipartite Perfect Matching [57].

3As a simple concrete example, let n be even and consider the n × n matrix A which is 0
everywhere except is the identity on the top right n/2× n/2 block. Note that r(A)/

∑
ij Aij =

[ 2
n1n/2,0n/2]T and c(A)/

∑
ij Aij = [0n/2,

2
n1n/2]T . Thus A is as unbalanced as possible in `1

norm since ‖r(A) − c(A)‖1/
∑

ij Aij = 2; however, A is very well balanced in `2 norm since

‖r(A)− c(A)‖2/
∑

ij Aij = 2/
√
n is vanishingly small.
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column sum ck(A) of the current balancing A = DKD−1 agree.4 A more precise
statement is in Algorithm 3.1 later.

The classical version of Osborne’s algorithm, henceforth called Round-Robin
Cyclic Osborne, chooses the update coordinates by repeatedly cycling through
{1, . . . , n}. This algorithm5 performs remarkably well in practice and is the
implementation of choice in most linear algebra software packages.

Despite this widespread adoption of Osborne’s algorithm, a theoretical un-
derstanding of its convergence has proven to be quite challenging: indeed, non-
asymptotic convergence bounds (i.e., runtime bounds) were not known for nearly
60 years until the breakthrough 2017 paper [167]. The paper [167] shows6 that
Round-Robin Cyclic Osborne computes an ε-balancing after O(mn2 ε−2 log κ)
arithmetic operations, where m is the number of nonzeros in K, and κ :=
(
∑

ijKij)/(minij:Kij 6=0 Kij). They also show faster Õ(n2 ε−2 log κ) runtimes for two
variants of Osborne’s algorithm which choose update coordinates in different orders
than cyclically. Here and henceforth, the Õ notation suppresses polylogarithmic
factors in n and ε−1. The first variant, which we call Greedy Osborne, chooses the
coordinate with maximal imbalance as measured by arg maxk(

√
rk(A)−

√
ck(A))2.

They show that Greedy Osborne’s runtime dependence on ε can be improved from
ε−2 to ε−1; however, this comes at the high cost of an extra factor of n. A
disadvantage of Greedy Osborne is that it has numerical precision issues and
requires operating on O(n log κ)-bit numbers. The second variant, which we call
Weighted Random Osborne, chooses coordinate k with probability proportional to
rk(A) + ck(A), and can be implemented using O(log(nκ/ ε))-bit numbers.

Collectively, these runtime bounds are fundamental results since they establish
that Osborne’s algorithm has polynomial runtime in n and ε−1, and moreover
that variants of it converge in roughly Õ(n2 ε−2) time for matrices satisfying
log κ = Õ(1)—henceforth called well-conditioned matrices. However, these theo-
retical runtime bounds are still much slower than both Osborne’s rapid empirical
convergence and the state-of-the-art theoretical algorithms described below.

Two remaining open questions that this chapter seeks to address are:

4We assume throughout that the diagonal of K is zero. This ensures that the Osborne update
makes the row and column sums agree. This assumption is without loss of generality because if
D ε-balances K with zeroed-out diagonal, then it also ε-balances K.

5To be precise, following [175], some implementations have two minor modifications: a pre-
processing step where K is permuted to a triangular block matrix with irreducible diagonal
blocks; and a restriction of the entries of D to exact powers of the radix base. We presently
ignore these minor modifications since the former is easily performed in linear-time [215], and
the latter is solely to safeguard against numerical precision issues in practice.

6Note that in [167], bounds are written for the `2 error criterion; see Remark 3.1.1.



Sec. 3.1. Introduction 47

1. Near-linear runtime7. Does (any variant of) Osborne’s algorithm have
near-linear runtime in the input sparsity m? The fastest known runtimes
scale as n2, which is significantly slower for sparse problems.

2. Scalability in accuracy. The fastest runtimes for (any variant of) Osborne’s
algorithm scale poorly in the accuracy as ε−2. (Except Greedy Osborne, for
which it is only known that ε−2 can be replaced by ε−1 at the high cost of an
extra factor of n.) Can this be improved?

� 3.1.1.2 Theoretical state-of-the-art

A separate line of work leverages sophisticated optimization techniques to solve a
convex optimization problem equivalent to Matrix Balancing. These algorithms
have log ε−1 dependence on the accuracy, but are not practical (at least cur-
rently) due to costly overheads required by their significantly more complicated
iterations. This direction originated in [126], which showed that the Ellipsoid
algorithm produces an approximate balancing in Õ(n4 log((log κ)/ ε)) arithmetic
operations on O(log(nκ/ ε))-bit numbers. Recently, [67]8 gave an Interior Point
algorithm with runtime Õ(m3/2 log(κ/ ε)) and a Newton-type algorithm with run-
time Õ(md log2(κ/ ε) log κ), where d denotes the diameter of the directed graph
GK with vertices [n] and edges {(i, j) : Kij > 0} [67, Theorem 4.18, Theorem 6.1,
and Lemma 4.24]. Note that under the condition that K is a well-connected ma-
trix—by which we mean that GK has polylogarithmic diameter d = Õ(1)—then
this latter algorithm has near-linear runtime in the input sparsity m. However,
these algorithms heavily rely upon near-linear time Laplacian solvers, for which
practical implementations are not known.

� 3.1.2 Contributions

Random Osborne converges in near-linear time. Our main result (The-
orem 3.5.1) addresses the two open questions above by showing that a simple
random variant of the ubiquitously used Osborne’s algorithm has runtime that is
(i) near-linear in the input sparsity m, and also (ii) linear in the inverse accuracy
ε−1 for well-connected inputs. Property (i) amends the aforementioned gap be-
tween theory and practice that the fastest known runtime of Osborne’s algorithm
scales as n2 [167], while a different, impractical algorithm has theoretical runtime
which is (conditionally) near-linear in m [67]. Property (ii) shows that improving

7Throughout, we say a runtime is near-linear if it is O(m), up to polylogarithmic factors in
n and polynomial factors in the inverse accuracy ε−1.

8Similar runtimes were also developed by [9].
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Variant Best runtime (arithmetic ops) Polylog bits

Cyclic (Round-Robin) Õ(mn2/ ε2) [167] No

Cyclic (Random-Reshuffle) Õ(mn/ ε) (Theorem 3.6.1) Yes (Theorem 3.8.1)

Weighted Random Õ(n2/ ε2) [167] Yes [167]

Greedy Õ((n2/ ε2) ∧ (n3/ ε)) [167] −→ Õ(n2/ ε) (Theorem 3.4.1) No

Random Õ(m/ε) (Theorem 3.5.1) Yes (Theorem 3.8.1)

Table 3.1: Variants of Osborne’s algorithm for balancing a matrix K ∈ Rn×n>0 with
m nonzeros to ε `1 accuracy. For simplicity, here K is assumed well-conditioned (i.e.,
log κ = Õ(1)) and well-connected (i.e., d = Õ(1)); see the main text for detailed
dependence on log κ and d. Note that in [167], bounds are written for the `2 error
criterion; see Remark 3.1.1. See the main text for descriptions of each variant, and
also §3.2.4 for more details on Random-Reshuffle Cyclic, Greedy, and Random Osborne.
Our new bounds are in bold. Theorems 3.4.1 and 3.6.1 provide runtimes which, while
not-linear, improve upon previous complexity bounds for greedy and cyclic variants of
the Osborne algorithm, respectively. Our main result, Theorem 3.5.1, provides the first
near-linear runtime for any variant of Osborne’s algorithm.

the runtime dependence in ε from ε−2 to ε−1 does not require paying a costly
factor of n (c.f., [167]).

Specifically, we propose a variant of Osborne’s algorithm—henceforth called
Random Osborne9— which chooses update coordinates uniformly at random, and
show the following.

Theorem 3.1.2 (Informal version of Theorem 3.5.1). Random Osborne solves
the approximate Matrix Balancing problem on input K ∈ Rn×n

>0 to accuracy ε > 0
after

O

(
m

ε

(
1

ε
∧ d
)

log κ

)
, (3.3)

arithmetic operations, both in expectation and with high probability.

We make several remarks about Theorem 3.1.2. First, we interpret the run-
time (3.3). This is the minimum of O(mε−2 log κ) and O(mdε−1 log κ). The
former is near-linear in m. The latter is too if GK has polylogarithmic diam-
eter d = Õ(1)—important special cases include matrices K containing at least
one strictly positive row/column pair (there, d = 1), and matrices with random
sparsity patterns (there, d = Õ(1) with high probability, see, e.g., [43, Theorem
10.10]). Note that the complexity of Matrix Balancing is intimately related to

9Not to be confused with the different randomized variant of Osborne’s algorithm in [167,
§5], which draws coordinates with non-uniform probabilities. We call that algorithm Weighted
Random Osborne to avoid confusion.
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Variant Best runtime (rounds) Total work Polylog bits

Cyclic Block (Random-Reshuffle) Õ(p2/ ε) Õ(mp/ ε) Yes

Greedy Block Õ(p/ ε) Õ(mp/ ε) No

Random Block Õ(p/ ε) Õ(m/ε) Yes

Table 3.2: Parallelized variants of Osborne’s algorithm for balancing a matrix K ∈ Rn×n>0

with m nonzeros to ε `1 accuracy, given a partitioning of the dataset into p blocks (see
§3.2.5 for details). For simplicity, here K is assumed well-conditioned (i.e., log κ = Õ(1))
and well-connected (i.e., d = Õ(1)); see the main text for detailed dependence on log κ
and d. All results are ours. The runtime and work bounds are in Theorem 3.7.1, and
the bit-complexity bounds are in Theorem 3.8.1.

the connectivity of GK : indeed, K can be balanced if and only if GK is strongly
connected (i.e., if and only if d is finite) [166]. Intuitively, the runtime dependence
on d is a quantitative measure of “how balanceable” the input K is.

We note that the high probability bound in Theorem 3.1.2 has tails that decay
exponentially fast. This is optimal with our analysis, see Remark 3.5.4.

Next, we comment on the log κ term in the runtime. This term appears in
all other state-of-the-art runtimes [67, 167] and is mild: indeed, log κ 6 logm +
log(maxijKij/minij:Kij>0Kij), where the former summand is Õ(1)—hence why
the runtime is near -linear—and the latter is the input size for the entries of K.
In particular, if K has quasi-polynomially bounded entries, then log κ = Õ(1).

Next, we compare to existing runtimes. Theorem 3.5.1 (a.k.a., the formal
version of Theorem 3.1.2) gives a faster runtime than any existing practical al-
gorithm, see Table 3.1. If comparing to the (impractical) algorithm of [67] on
a purely theoretical plane, neither runtime dominates the other, and which is
faster depends on the precise parameter regime: [67] is better for high accuracy
solutions10, while Random Osborne has better dependence on the conditioning κ
of K and the connectivity d of GK .

Finally, we remark about bit-complexity. In §3.8, we show that with only
minor modification, Random Osborne is implementable using numbers with only
logarithmically few O(log(nκ/ ε)) bits; see Theorem 3.8.1 for formal statement.

Simple, streamlined analysis for different Osborne variants. We prove
Theorem 3.1.2 using an intuitive potential argument (overviewed in §3.1.3 below).
An attractive feature of this argument is that with only minor modification, it
adapts to other Osborne variants. We elaborate below; see also Tables 3.1 and 3.2

10We remark that in practical applications of Matrix Balancing such as pre-conditioning, low
accuracy solutions typically suffice. Indeed, this is a motivation of the commonly used variant
of Osborne’s algorithm which restricts entries of the scaling D to exact powers of the radix
base [175].
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for summaries of our improved rates.
Greedy Osborne. We show an improved runtime for Greedy Osborne where

the ε−2 dependence is improved to ε−1 at the cost of d (rather than a full factor
of n as in [167]). Specifically, in Theorem 3.4.1, we show convergence after
O(n2 ε−1(ε−1 ∧d) log κ) arithmetic operations, which improves upon the previous
best O(n2 ε−1 log n ·(ε−1 log κ∧n log(κ/ ε))) from [167]. (The other improved log n
factor comes from simplifying the data structure used for efficient greedy updates,
see Remark 3.2.7.)

Random-Reshuffle Cyclic Osborne. We analyze Random-Reshuffle Cyclic Os-
borne, which is the variant of Osborne’s algorithm that cycles through all n indices
using a fresh random permutation in each cycle. We show that this algorithm
converges after O(mnε−1(ε−1 ∧d) log κ) arithmetic operations (Theorem 3.6.1).
Previously, the only known runtime bound for any variant of Osborne with “cyclic”
updates in the sense that each index is updated exactly once per epoch, was the
O(mn2 ε−2 log κ) runtime bound for Round-Robin Cyclic Osborne [167]. Although
the version of Cyclic Osborne we study is different than the one studied in [167],
we note that our runtime bound is a factor of n faster, and additionally a factor
of 1/ ε faster if the matrix is well-connected. Moreover, we show that Random-
Reshuffle Cyclic Osborne can be implemented on numbers with O(log(nκ/ ε))-bit
numbers (Theorem 3.8.1), whereas the analysis of Round-Robin Cyclic Osborne
in [167] requires O(n log κ)-bit numbers.

Parallelized Osborne. We also show fast convergence for the analogous greedy,
cyclic, and random variants of a parallelized version of Osborne’s algorithm that
is recalled in §3.2.5. These runtimes bounds are summarized in Table 3.2. Our
main result here is that—modulo at most a single log n factor arising from the
conditioning log κ of the input—Random Block Osborne converges after (i) only
a linear number O(p

ε
(1
ε
∧ d) log κ) of synchronization rounds in the size p of the

dataset partition; and (ii) the same amount of total work as its non-parallelized
counterpart Random Osborne, which is in particular near-linear in m (see Theo-
rem 3.1.2 and the ensuing discussion). Property (i) shows that, when giving an
optimal coloring of GK , Random Osborne converges in linear time in the chro-
matic number χ(GK) of GK (see §3.2.5 for further details). Property (ii) shows
that the speedup of parallelization comes at no cost in the total work.

� 3.1.3 Overview of approach

We establish all of our runtime bounds with essentially the same potential ar-
gument. Below, we first sketch this argument for Greedy Osborne, since it is
the simplest. Next, we describe the modifications for Random Osborne—the
argument is identical modulo probabilistic tools which, albeit necessary for a rig-
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orous analysis, are not the heart of the argument. We then outline the analysis
for Random-Reshuffle Cyclic Osborne, which follows as a straightforward corol-
lary. We then briefly remark upon the very minor modifications required for the
parallelized Osborne variants.

For all variants, the potential we use is D 7→ Φ(D)− infD∗ Φ(D∗), where for a
positive diagonal matrix D, we write Φ(D) = log

∑
ij Aij to denote the logarithm

of the sum of the entries of the current balancing A = DKD−1. Minimizing this
potential function is well-known to be equivalent to Matrix Balancing; details in
the Preliminaries section §3.2.3. Note also that Osborne’s algorithm is equivalent
to Exact Coordinate Descent on this function—which, importantly, is convex
after a re-parameterization; see §3.2.4. In the interest of accessibility, the below
overview describes our approach at an informal level that does not require further
background. Later, §3.2 provides these preliminaries, and §3.3 gives the technical
details of the potential argument.

� 3.1.3.1 Argument for Greedy Osborne

Here we sketch the O(n2 ε−1(ε−1 ∧d) log κ) runtime we establish for Greedy Os-
borne in §3.4. Since each Greedy Osborne iteration takes O(n) arithmetic opera-
tions (see §3.2.4), it suffices to bound the number of iterations byO(n ε−1(ε−1 ∧d) log κ).

The first step is relating the per-iteration progress of Osborne’s algorithm to
the imbalance of the current balancing—as measured in Hellinger distance H(·, ·).
Specifically, we show that an Osborne update decreases the potential function by
at least

(per-iteration decrease in potential) &
H2 (r(P ), c(P ))

n
, (3.4)

where P = A/
∑

ij Aij is the normalization of the current scaling A = DKD−1.
Note that since P is normalized, its marginals r(P ) and c(P ) are both probability
distributions.

The second step is lower bounding this Hellinger imbalance H2 (r(P ), c(P ))
by something large, so that we can argue that each iteration makes significant
progress. Following is a simple such lower bound that yields an O(n2 ε−2 log κ)
runtime bound. Modulo small constant factors: a standard inequality in statistics
lower bounds Hellinger distance by `1 distance (a.k.a. total variation distance),
and the `1 distance is by definition at least ε if the current iterate is not ε-balanced
(see (3.2)). Therefore

(per-iteration decrease in potential) &
ε2

n
(3.5)
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for each iteration before convergence. Since the potential is initially not very large
(at most log κ, see Lemma 3.3.1) and by construction always nonnegative, the
total number of iterations before convergence is therefore at most n ε−2 log κ.

The key to the improved bound is an extra inequality that shows that the
per-iteration decrease is very large when the potential is large. Specifically, this
inequality—which has a simple proof using convexity of the potential—implies
the following improvement of (3.5)

(per-iteration decrease in potential) &
1

n

[
(current potential)

R
∨ ε
]2

(3.6)

where R = d log κ. The per-iteration decrease is thus governed by the maximum
of these two quantities. In words, the former ensures a relative improvement in
the potential, and the latter ensures an additive improvement. Which is bigger
depends on the current potential: the former dominates when the potential is
Ω(εR), and the latter for O(εR). It can be shown that both “phases” require
O(n ε−1 d log κ) iterations, yielding the desired improved rate (details in §3.4).

� 3.1.3.2 Argument for Random Osborne

The argument for Random Osborne is nearly identical, except for two minor
changes. The first change is the per-iteration potential decrease. All the same
bounds hold (i.e., (3.4), (3.5), and (3.6)), except that they are now in expectation
rather than deterministic. Nevertheless, this large expected progress is sufficient
to obtain the same iteration-complexity bound. Specifically, an expected bound
on the number of iterations is proved using Doob’s Optional Stopping Theorem,
and a h.p. bound using a martingale Chernoff bound (details in §3.5.2).

The second change is the per-iteration runtime: it is faster in expectation.

Observation 3.1.3 (Per-iteration runtime of Random Osborne). An iteration of
Random Osborne requires O(m/n) arithmetic operations in expectation.

Proof. The number of arithmetic operations required by an Osborne update on
coordinate k is proportional to the number of nonzero entries on the k-th row and
column of K. Since Random Osborne draws k uniformly from [n], this number of
nonzeros is 2m/n in expectation.

Note that this per-iteration runtime is n2/m times faster than Greedy Os-
borne’s. This is why our bound on the total runtime of Random Osborne is
roughly O(m), whereas for Greedy Osborne it is O(n2).

A technical nuance is that arguing a final runtime bound from a per-iteration
runtime and an iteration-complexity bound is a bit more involved for Random
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Osborne. This is essentially because the number of iterations is not statistically
independent from the per-iteration runtimes. For Greedy Osborne, the final
runtime is bounded simply by the product of the per-iteration runtime and the
number of iterations. We show a similar bound for Random Osborne in expectation
via a slight variant of Wald’s inequality, and w.h.p. via a Chernoff bound; details
in §3.5.1.

� 3.1.3.3 Argument for Random-Reshuffle Cyclic Osborne

Analyzing Cyclic Osborne (either Round-Robin or Random-Reshuffle) is difficult
because the improvement of an Osborne update is significantly affected by the
previous Osborne updates in the cycle—and this effect is difficult to track. We
observe that our improved analysis for Random Osborne implies, as a straightfor-
ward corollary, a fast runtime for Random-Reshuffle Cyclic Osborne. Specifically,
since Osborne updates monotonically improve the potential, the per-cycle im-
provement of Random-Reshuffle Cyclic Osborne is at least the improvement of the
first iteration of the cycle, which equals the improvement of a single iteration of
Random Osborne. This implies that Random-Reshuffle Cyclic Osborne requires
at most n times more iterations than Random Osborne. Details in §3.6. We
remark that while arguing about a cycle only through its first iteration is clearly
quite pessimistic, improvements seem difficult. A similar difficulty occurs for the
analysis of Cyclic Coordinate Descent in more general convex optimization setups;
see, e.g., [212, 233].

� 3.1.3.4 Argument for parallelized Osborne

The argument for the parallelized variants of Osborne are nearly identical to
the arguments for their non-parallelized counterparts, described above. Specifi-
cally, the main difference for the random and greedy variants is just that in the
bounds (3.4), (3.5), and (3.6), the 1/n factor is improved to 1 over the partitioning
size p. The same argument then results in a final runtime that is sped up by this
factor of n/p. The only difference for analyzing the Random-Reshuffle Cyclic
variant is that here, the analogous coupling argument only gives a slowdown of p
rather than n. Details in §3.7.

� 3.1.3.5 Key differences from previous approaches

The only other polynomial-time analysis of Osborne’s algorithm also uses a po-
tential argument [167]. However, our argument differs in several key ways—which
enables much tighter bounds as well as a simpler argument that extends to many
variants of Osborne’s algorithm. Notably, their proof of Lemma 3.1 (which is
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where they show that each iteration of Greedy Osborne makes progress; c.f. our
Lemma 3.4.2) is specifically tailored to Greedy Osborne11 and seems unextendable
to other variants such as Random Osborne. In particular, this precludes obtaining
the near-linear runtime shown in this chapter. Another key difference is that they
do not use convexity of their potential (explicitly written on [167, page 157]),
whereas we exploit not only convexity but also log-convexity (note our potential
is the logarithm of theirs). Specifically, they use [167, Lemma 2.2] to improve
ε−2 to ε−1 dependence at the cost of an extra factor of n, whereas here we show
a significantly tighter bound (see the proof of Proposition 3.3.3) that saves this
factor of n for well-connected graphs by exploiting log-convexity of their potential.

� 3.1.4 Other related work

We briefly remark about several related lines of work. Reference [63] gives heuris-
tics for speeding up Osborne’s algorithm on sparse matrices in practice, but does
not provide runtime bounds. Reference [168] gives a more complicated version of
Osborne’s algorithm that obtains a stricter approximate balancing in a polynomial
(albeit less practical) runtime of roughly Õ(n19 ε−4 log4 κ). Reference [148] gives
an asynchronous distributed version of Osborne’s algorithm with applications to
epidemic suppression.

Remark 3.1.4 (Fast Coordinate Descent). Since Osborne’s algorithm is Exact
Coordinate Descent on a certain associated convex optimization problem (details
in §3.2.4), it is natural to ask what runtimes the extensive literature on Coordinate
Descent implies for Matrix Balancing. However, applying general-purpose bounds
on Coordinate Descent out-of-the-box gives quite pessimistic runtime bounds for
Matrix Balancing12, essentially because they only rely on coordinate-smoothness

11Specifically, to prove their Lemma 3.1, [167] uses in (3.6) the inequality maxi∈[n] ai/bi >
( 1
n

∑n
j=1 aj)/(

1
n

∑n
j=1 bj) for positive a1, . . . , an, b1, . . . , bn. Extending their analysis of Greedy

Osborne to Random Osborne would require replacing maxi∈[n] ai/bi by 1
n

∑n
i=1 ai/bi in that

inequality; however, this inequality is false because an average of ratios is in general incomparable
to the ratio of averages. We bypass this obstacle by arguing in such a way that the quantity we
need to bound is not a fraction, since such an analysis readily extends to Random Osborne by
linearity of expectation (see (3.21) and Lemma 3.5.2).

12E.g., consider applying the state-of-the-art guarantees of [8, 163] for accelerated Coordinate
Descent algorithms (which, note also, do not correspond exactly to Osborne’s algorithm since
they do not perform exact coordinate minimization). These bounds apply to Random Coordinate
Descent with judiciously chosen non-uniform sampling probabilities, and yield an iteration
bound of (

∑n
i=i

√
Li)δ

−1/2‖x∗‖2 for minimizing Φ (defined in §3.2.3) to δ additive accuracy,
where Li is the smoothness of Φ on coordinate i. By [126, Corollary 2] and Cauchy-Schwarz,
δ = O(ε2 /n) ensures that such a δ-approximate minimizer of Φ corresponds to an ε-approximate
balancing. Bounding Li 6 1 and ‖x∗‖2 6

√
nd log κ by Corollary 3.3.6 therefore yields a bound
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of the function. In order to achieve the near-linear time bounds in this chapter,
we heavily exploit the further global structure of the specific convex optimization
problem at hand.

Remark 3.1.5 (`p Matrix Balancing and Max Balancing). Historically, Matrix
Balancing was first studied in the setting of: given input K ∈ Cn×n and p ∈ [1,∞],
compute A = DKD−1 such that for each i ∈ [n], the i-th row and column of A have
(approximately) equal `p norm. (Note that this choice of `p norm for balancing
should not be confused with the error criterion discussion in Remark 3.1.1.) The
Matrix Balancing problem studied in this chapter is a special case of this: it
is `1 balancing a nonnegative matrix. However, it is actually no less general,
in the sense that for any finite p, `p balancing K ∈ Cn×n is trivially reducible
to `1 balancing the nonnegative matrix with entries |Kij|p, see, e.g., [188]. Thus,
following the literature, we focus only on the version of Matrix Balancing described
above.

A particularly interesting limiting case of `p Matrix Balancing is the case of p =
∞, a.k.a. Max-Balancing. In this case, the aforementioned reduction from p finite
to p = 1 no longer applies. There is an extensive literature on this problem dating
back to 1960, including polynomial-time combinatorial algorithms [194, 238] as well
as a natural analog of Osborne’s algorithm [166]. Just like the case of finite p, for
`∞ Matrix Balancing Osborne’s algorithm has long been the choice in practice, yet
its analysis has proven difficult. Indeed, breakthroughs took roughly half a century:
asymptotic convergence was not even known until 1998 [62], and the first runtime
bound was shown only a few years ago [198]. However, despite the syntactic
similarity of `p Matrix Balancing for p finite and p infinite, the two problems
are fundamentally very different: not only are the balancing goals different (which
begets remarkably different properties, e.g., the `∞ Matrix Balancing solution is not
unique [62]), but also the algorithms are quite different (even the analogous versions
of Osborne’s algorithm) and their analyses do not appear to carry over [167].

Remark 3.1.6 (Matrix Scaling and Sinkhorn’s algorithm). Here we contextualize
the Matrix Balancing problem studied in this chapter with the related problem of
Matrix Scaling studied in Chapter 2. Recall that the Matrix Scaling problem is:
given K ∈ Rn×n

>0 and vectors µ, ν ∈ Rn
>0 satisfying

∑
i µi =

∑
i νi, find positive

diagonal matrices D1, D2 such that A := D1KD2 satisfies r(A) = µ and c(A) = ν.
The many applications of Matrix Scaling have motivated an extensive literature
on it; see, e.g., the survey [118]. In analog to Osborne’s algorithm for Matrix
Balancing, there is a simple iterative procedure (Sinkhorn’s algorithm) for Matrix

of O(n2 ε−1 d log κ) iterations. Since iterations takes O(m/n) time on average, this yields a final
runtime bound of O(mnε−1 d log κ), which is not near-linear.
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Scaling [203]. Chapter 2 shows that Sinkhorn’s algorithm converges in near-linear
time [19]. The analysis there also uses a potential argument. Interestingly, the
per-iteration potential improvement for Matrix Scaling is the Kullback-Leibler di-
vergence of the current imbalance, whereas for Matrix Balancing it is the Hellinger
divergence. Further connections related to algorithmic techniques in this chapter
are deferred to §3.10.4.

� 3.1.5 Roadmap

§3.2 recalls preliminary background. §3.3 establishes the key lemmas in the poten-
tial argument. §3.4, §3.5, §3.6, and §3.7 use these tools to prove fast convergence
for Greedy, Random, Random-Reshuffle Cyclic, and parallelized Osborne variants,
respectively. For simplicity of exposition, these sections assume exact arithmetic;
bit-complexity issues are addressed in §3.8. §3.9 concludes with several open
questions.

� 3.2 Preliminaries

� 3.2.1 Notation

For the convenience of the reader, we collect here the notation used commonly
throughout the chapter. We reserve K ∈ Rn×n

>0 for the matrix we seek to balance,
ε > 0 for the balancing accuracy, m for the number of nonzero entries in K,
GK for the graph associated to K, and d for the diameter of GK . We assume
throughout that the diagonal of K is zero; this is without loss of generality because
if D solves the ε-balancing problem for the matrix K with zeroed-out diagonal,
then D solves the ε-balancing problem for K. The support, maximum entry,
minimum nonzero entry, and condition number of K are respectively denoted
by supp(K) = {(i, j) : Kij > 0}, Kmax = maxijKij, Kmin = min(i,j)∈supp(K) Kij,

and κ = (
∑

ijKij)/Kmin. The Õ notation suppresses polylogarithmic factors in
n and ε. The all-ones and all-zeros vectors in Rn are respectively denoted by 1
and 0. Let v ∈ Rn. The `1 norm, `∞ norm, and variation semi-norm of v are
respectively ‖v‖1 =

∑n
i=1 |vi|, ‖v‖∞ = maxi∈[n] |vi|, and ‖v‖var = maxi vi−minj vj.

We denote the entrywise exponentiation of v by ev ∈ Rn, and the diagonalization
of v by diag(v) ∈ Rn×n. The set of discrete probability distributions on n atoms is
identified with the simplex ∆n = {p ∈ Rn

>0 :
∑n

i=1 pi = 1}. Let µ, ν ∈ ∆n. Their

Hellinger distance is H(µ, ν) =
√

1
2

∑n
`=1(
√
µ` −

√
ν`)2, and their total variation

distance is TV(µ, ν) = ‖µ − ν‖1/2. We abbreviate “with high probability” by
w.h.p., “high probability” by h.p., and “almost surely” by a.s. We denote the
minimum of a, b ∈ R by a ∧ b, and the maximum by a ∨ b. Logarithms take base
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e unless otherwise specified. All other specific notation is introduced in the main
text.

� 3.2.2 Matrix Balancing

The formal definition of the (approximate) Matrix Balancing problem is in the
“log domain” (i.e., output x ∈ Rn rather than diag(ex)). This is in part to avoid
bit-complexity issues (see §3.8).

Definition 3.2.1 (Matrix Balancing). The Matrix Balancing problem BAL(K)
for input K ∈ Rn×n

>0 is to compute a vector x ∈ Rn such that diag(ex)K diag(e−x)
is balanced.

Definition 3.2.2 (Approximate Matrix Balancing). The approximate Matrix
Balancing problem ABAL(K, ε) for inputs K ∈ Rn×n

>0 and ε > 0 is to compute a
vector x ∈ Rn such that diag(ex)K diag(e−x) is ε-balanced (see (3.1)).

K ∈ Rn×n
>0 is said to be balanceable if BAL(K) has a solution. It is known that

non-balanceable matrices can be approximately balanced to arbitrary precision
(i.e., ABAL has a solution for every K ∈ Rn×n

>0 and ε > 0), and moreover that
this is efficiently reducible to approximately balancing balanceable matrices, see,
e.g., [63, 67]. Thus, following the literature, we assume throughout that K is
balanceable. In the sequel, we make use of the following classical characterization
of balanceable matrices in terms of their sparsity patterns.

Lemma 3.2.3 (Characterization of balanceability). K ∈ Rn×n
>0 is balanceable if

and only if it is irreducible—i.e., if and only if GK is strongly connected [166].

� 3.2.3 Matrix Balancing as convex optimization

Key to to our analysis—as well as much of the other Matrix Balancing literature
(e.g., [67, 126, 161, 167])—is the classical connection between (approximately)
balancing a matrixK ∈ Rn×n

>0 and (approximately) solving the convex optimization
problem

min
x∈Rn

Φ(x) := log
∑
ij

exi−xjKij. (3.7)

In words, balancing K is equivalent to scaling DKD−1 so that the sum of its
entries is minimized. This equivalence follows from KKT conditions and convexity
of Φ(x), which ensures that local optimality implies global optimality. Intuition
comes from computing the gradient:

∇Φ(x) =
A1− AT1∑

ij Aij
, where A := diag(ex)K diag(e−x). (3.8)
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Indeed, solutions of BAL(K) are points where this gradient vanishes, and thus are
in correspondence with minimizers of Φ. This also holds approximately: solutions
of ABAL(K, ε) are in correspondence with ε-stationary points for Φ w.r.t. the `1

norm, i.e., x ∈ Rn for which ‖∇Φ(x)‖1 6 ε. The following lemma summarizes
these classical connections; for a proof see, e.g., [126].

Lemma 3.2.4 (Matrix Balancing as convex optimization). Let K ∈ Rn×n
>0 and

ε > 0. Then:

1. Φ is convex over Rn.

2. x ∈ Rn is a solution to BAL(K) if and only if x minimizes Φ.

3. x ∈ Rn is a solution to ABAL(K, ε) if and only if ‖∇Φ(x)‖1 6 ε.

4. If K is balanceable, then Φ has a unique minimizer modulo translations of 1.

� 3.2.4 Osborne’s algorithm as coordinate descent

Lemma 3.2.4 equates the problems of (approximate) Matrix Balancing and (ap-
proximate) optimization of (3.7). This correspondence extends to algorithms. In
particular, in the sequel, we repeatedly leverage the following known connection,
which appears in, e.g., [167].

Observation 3.2.5 (Osborne’s algorithm as Cordinate Descent). Osborne’s al-
gorithm for Matrix Balancing is equivalent to Exact Coordinate Descent for opti-
mizing (3.7).

To explain this connection, let us recall the basics of both algorithms. Exact
Coordinate Descent is an iterative algorithm for minimizing a function Φ that
maintains an iterate x ∈ Rn, and in each iteration updates x along a coordinate
k ∈ [n] by

x← arg min
z∈{x+αek :α∈R}

Φ(z), (3.9)

where ek denotes the k-th standard basis vector in Rn. In words, this update (3.9)
improves the objective Φ(x) as much as possible by varying only the k-th coordi-
nate of x.

Osborne’s algorithm, as introduced briefly in §3.1, is an iterative algorithm
for Matrix Balancing that repeatedly balances row/column pairs. Algorithm 3.1
provides pseudocode for an implementation on the “log domain” that maintains
the logarithms x ∈ Rn of the scalings rather than the scalings diag(ex) them-
selves. The connection in Observation 3.2.5 is thus, stated more precisely, that
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Osborne’s algorithm is a specification of the Exact Coordinate Descent algorithm
to minimizing the function Φ in (3.7) with initialization of 0. This is because the
Exact Coordinate Descent update to Φ on coordinate k ∈ [n] updates xk so that
∂Φ
∂xk

(x) = 0, which by the derivative computation in (3.8) amounts to updating xk
so that the k-th row and column sums of the current balancing are equal—which
is precisely the update rule for Osborne’s algorithm on coordinate k.

Input: Matrix K ∈ Rn×n>0 and accuracy ε > 0
Output: Vector x ∈ Rn that solves ABAL(K, ε)

1: x← 0 . Initialize
2: while diag(ex)K diag(e−x) is not ε-balanced do
3: Choose update coordinate k ∈ [n]

4: xk ← xk + log(ck(diag(ex)K diag(e−x)))−log(rk(diag(ex)K diag(e−x)))
2 . Update

5: return x

Algorithm 3.1: Osborne’s algorithm for Matrix Balancing. The variant (e.g., Greedy,
Random, etc.) depends on how the update coordinate k is chosen in Line 3.

We note that besides elucidating Observation 3.2.5, the log-domain imple-
mentation of Osborne’s Algorithm in Algorithm 3.1 is also critical for numerical
precision, both in theory and practice.

Remark 3.2.6 (Log-domain implementation). In practice, Osborne’s algorithm
should be implemented in the “logarithmic domain”, i.e., store the iterates x
rather than the scalings diag(ex), operate on K through logKij (see Remark 3.8.2),
and compute Osborne updates using the following standard trick for numerically
computing log-sum-exp: log(

∑n
i=1 e

zi) = maxj zj + log(
∑n

i=1 e
zi−maxj zj). In §3.8,

we show that essentially just these modifications enable a provably logarithmic
bit-complexity for several variants of Osborne’s algorithm (Theorem 3.8.1).

It remains to discuss the choice of update coordinate in Osborne’s algorithm
(Line 3 of Algorithm 3.1), or equivalently, in Coordinate Descent. We focus on
the following natural options:

• Random-Reshuffle Cyclic Osborne. Cycle through the coordinates, us-
ing an independent random permutation for the order each cycle.

• Greedy Osborne. Choose the coordinate k for which the k-th row and
column sums of the current scaling A := diag(ex)K diag(e−x) disagree most,
as measured by

arg max
k∈[n]

∣∣∣√rk(A)−
√
ck(A)

∣∣∣ . (3.10)
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(Ties are broken arbitrarily, e.g., lowest number.)

• Random Osborne. Sample k uniformly from [n], independently between
iterations.

Remark 3.2.7 (Efficient implementation of Greedy). In order to efficiently com-
pute (3.10), Greedy Osborne maintains an auxiliary data structure: the row and
column sums of the current balancing. This requires only O(n) additional space,
O(m) additional computation in a pre-processing step, and O(n) additional per-
iteration computation for maintenance (increasing the per-iteration runtime by a
small constant factor).

� 3.2.5 Parallelizing Osborne’s algorithm via graph coloring

For scalability, parallelization of Osborne’s algorithm can be critical. It is well-
known (see, e.g., [36]) that Osborne’s algorithm can be parallelized when one can
compute a (small) coloring of GK , i.e., a partitioning S1, . . . , Sp of the vertices [n]
such that any two vertices in the same partitioning are non-adjacent. This idea
stems from the observation that simultaneous Osborne updates do not interfere
with each other when performed on coordinates corresponding to non-adjacent
vertices in GK . Indeed, this suggests a simple, natural parallelization of Osborne’s
algorithm given a coloring: update in parallel all coordinates of the same color.
We call this algorithm Block Osborne due to the following connection to Exact
Block Coordinate Descent, i.e., the variant of Exact Coordinate Descent where
an iteration exactly minimizes over a subset (a.k.a., block) of the variables.

Remark 3.2.8 (Block Osborne as Block Coordinate Descent). Extending Obser-
vation 3.2.5, Block Osborne is equivalent to Exact Block Coordinate Descent for
minimizing Φ. The connection to coloring is equivalently explained through this
convex optimization lens: for each S`, the (exponential13 of) Φ is separable in the
variables in S`. This is why their updates are independent.

Just like the standard (non-parallelized) Osborne algorithm, the Block Osborne
algorithm has several natural options for the choice of update block:

• Random-Reshuffle Cyclic Block Osborne. Cycle through the blocks,
using an independent random permutation for the order each cycle.

• Greedy Block Osborne: Choose the block ` maximizing

1

|S`|
∑
k∈S`

(√
rk(A)−

√
ck(A)

)2

(3.11)

13Note that by monotonocity of exp(·), minimizing exp(Φ(·)) is equivalent to minimizing Φ(·).
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where A denotes the current balancing. (Ties are broken arbitrarily, e.g.,
lowest number.)

• Random Block Osborne. Sample ` uniformly from [p], independently
between iterations.

Note that if S1, . . . , Sp are singletons—e.g., when K ∈ Rn×n
>0 is strictly positive—

then these variants of Block Osborne degenerate into the corresponding variants
of the standard Osborne algorithm.

Of course, Block Osborne first requires a coloring of GK . A smaller coloring
yields better parallelization (indeed we establish a linear runtime in the number
of colors, see §3.7). However, finding the (approximately) smallest coloring is
NP-hard [90, 129, 242]. Nevertheless, in certain cases a relatively good color-
ing may be obvious or easily computable. For instance, in certain applications
the sparsity pattern of K could be structured, known a priori, and thus lever-
aged. An easily computable setting is matrices with uniformly sparse rows and
columns, i.e., matrices whose corresponding graph GK has bounded max-degree;
see Corollary 3.7.3.

� 3.3 Potential argument

Here we develop the ingredients for our potential-based analysis of Osborne’s
algorithm. They are purposely stated independently of the Osborne variant, i.e.,
how the Osborne algorithm chooses update coordinates. This enables the argument
to be applied directly to different variants in the sequel. We point the reader to
§3.1.3 for a high-level overview of the argument.

First, we recall the following standard bound on the initial potential. This
appears in, e.g., [67, 167]. For completeness, we briefly recall the simple proof.
Below, we denote the optimal value of the convex optimization problem (3.7) by
Φ∗ := minx∈Rn Φ(x).

Lemma 3.3.1 (Bound on initial potential). Φ(0)− Φ∗ 6 log κ.

Proof. It suffices to show Φ∗ > logKmin. Since K is balanceable, GK is strongly
connected (Lemma 3.2.3), thus GK contains a cycle. By an averaging argument,
this cycle contains an edge (i, j) such that x∗i−x∗j > 0. Thus Φ∗ > log(ex

∗
i−x∗jKij) >

logKmin.

Next, we exactly compute the decrease in potential from an Osborne update
on a fixed coordinate k ∈ [n]. This is a simple, direct calculation and is similar
to [167, Lemma 2.1].



62
CHAPTER 3. NEAR-LINEAR CONVERGENCE OF THE RANDOM OSBORNE ALGORITHM FOR MATRIX

BALANCING

Lemma 3.3.2 (Potential decrease from Osborne update). Consider any x ∈ Rn

and update coordinate k ∈ [n]. Let x′ denote the output of an Osborne update on
x w.r.t. coordinate k, A := diag(ex)K diag(e−x) denote the scaling corresponding
to x, and P := A/(

∑
ij Aij) its normalization. Then

Φ(x)− Φ(x′) = − log

(
1−

(√
rk(P )−

√
ck(P )

)2
)
. (3.12)

Proof. Let A′ := diag(ex
′
)K diag(e−x

′
) denote the scaling corresponding to the

next iterate x′. Then eΦ(x)−eΦ(x′) = (rk(A)+ck(A))−(rk(A
′)+ck(A

′)) = (rk(A)+
ck(A)) − 2

√
rk(A)

√
ck(A) = (

√
rk(A) −

√
ck(A))2 = (

√
rk(P ) −

√
ck(P ))2eΦ(x).

Dividing by eΦ(x) and re-arranging proves (3.12).

In the sequel, we lower bound the per-iteration progress in (3.12) by (
√
rk(P )−√

ck(P ))2 using the elementary inequality − log(1−z) > z. Analyzing this further
requires knowledge of how k is chosen, i.e., the Osborne variant. However, for
both Greedy Osborne and Random Osborne, this progress is at least the average

1

n

n∑
k=1

(
√
rk(P )−

√
ck(P ))2 =

2

n
H2
(
r(P ), c(P )

)
. (3.13)

(For Random Osborne, this statement requires an expectation; see §3.5.) The
rest of this section establishes the main ingredient in the potential argument:
Proposition 3.3.3 lower bounds this Hellinger imbalance, and thereby lower bounds
the per-iteration progress. Note that Proposition 3.3.3 is stated for “nontrivial
balancings”, i.e., x ∈ Rn satisfying Φ(x) 6 Φ(0). This automatically holds for
any iterate of the Osborne algorithm—regardless of the variant—since the first
iterate is initialized to 0, and since the potential is monotonically non-increasing
by Lemma 3.3.2.

Proposition 3.3.3 (Lower bound on Hellinger imbalance). Consider any x ∈ Rn.
Let A := diag(ex)K diag(e−x) denote the corresponding scaling, and let P :=
A/
∑

ij Aij denote its normalization. If Φ(x) 6 Φ(0) and A is not ε-balanced,
then

H2
(
r(P ), c(P )

)
>

1

8

(
Φ(x)− Φ∗

d log κ
∨ ε
)2

. (3.14)

To prove Proposition 3.3.3, we collect several helpful lemmas. The first is a
standard inequality in statistics which lower bounds the Hellinger distance between
two probability distributions by their `1 distance (or equivalently, up to a factor of
2, their total variation distance) [78]. A short, simple proof via Cauchy-Schwarz
is provided for completeness.
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Lemma 3.3.4 (Hellinger versus `1 inequality). If µ, ν ∈ ∆n, then

H(µ, ν) >
1

2
√

2
‖µ− ν‖1. (3.15)

Proof. By Cauchy-Schwarz, ‖µ − ν‖2
1 = (

∑
k |µk − νk|)2 = (

∑
k |
√
µk −

√
νk| ·

|√µk +
√
νk|)2 6 (

∑
k(
√
µk −

√
νk)

2) · (∑k(
√
µk +

√
νk)

2) = 2H2(µ, ν) · (∑k(µk +
νk + 2

√
µkνk)). By the AM-GM inequality and the assumption µ, ν ∈ ∆n, the

latter sum is at most
∑

k(µk + νk + 2
√
µkνk) 6 2

∑
k(µk + νk) = 4.

Next, we recall the following standard bound on the variation norm of nontriv-
ial balancings. This bound is often stated only for optimal balancings (e.g., [67,
Lemma 4.24])—however, the proof extends essentially without modifications; de-
tails are provided briefly for completeness.

Lemma 3.3.5 (Variation norm of nontrivial balancings). If x ∈ Rn satisfies
Φ(x) 6 Φ(0), then ‖x‖var 6 d log κ.

Proof. Consider any u, v ∈ [n]. By definition of d, there exists a path in GK

from u to v of length at most d. For each edge (i, j) on the path, we have
exi−xjKij 6 Φ(x) 6 Φ(0), and thus xi − xj 6 log κ. Summing this inequality
along the edges of the path and telescoping yields xu − xv 6 d log κ. Since this
holds for any u, v, we conclude ‖x‖var = maxu xu −minv xv 6 d log κ.

From Lemma 3.3.5, we deduce the following bound.

Corollary 3.3.6 (`∞ distance of nontrivial balancings to minimizers). If x ∈ Rn

satisfies Φ(x) 6 Φ(0), then there exists a minimizer x∗ of Φ such that ‖x−x∗‖∞ 6
d log κ.

Proof. By definition, Φ is invariant under translations of 1. Choose any minimizer
x∗ and translate it by a multiple of 1 so that maxi(x − x∗)i = −minj(x − x∗)j.
Then ‖x − x∗‖∞ = (maxi(xi − x∗i ) − minj(xj − x∗j))/2 6 ((maxi xi − minj xj) +
(maxi x

∗
i −minj x

∗
j))/2 = (‖x‖var + ‖x∗‖var)/2. By Lemma 3.3.5, this is at most

d log κ.

We are now ready to prove Proposition 3.3.3.

Proposition 3.3.3. Since P is normalized, its marginals r(P ) and c(P ) are both
probability distributions in ∆n. Thus by Lemma 3.3.4,

H2
(
r(P ), c(P )

)
>

1

8
‖r(P )− c(P )‖2

1. (3.16)
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The claim now follows by lower bounding ‖r(P )−c(P )‖1 in two different ways. The
first is ‖r(P )− c(P )‖1 > ε, which holds since A is not ε-balanced by assumption.
The second is

‖r(P )− c(P )‖1 >
Φ(x)− Φ(x∗)

d log κ
, (3.17)

which we show presently. By convexity of Φ (Lemma 3.2.4) and then Hölder’s
inequality,

Φ(x)− Φ(x∗) 6 〈∇Φ(x), x− x∗〉 6 ‖∇Φ(x)‖1‖x− x∗‖∞ (3.18)

for any minimizer x∗ of Φ. Now by Corollary 3.3.6, there exists a minimizer x∗

such that ‖x−x∗‖∞ 6 d log κ; and by (3.8), the gradient is ∇Φ(x) = r(P )− c(P ).
Re-arranging (3.18) therefore establishes (3.17).

� 3.4 Greedy Osborne converges quickly

Here we show an improved runtime bound for Greedy Osborne that, for well-
connected sparsity patterns, scales (near) linearly in both the total number of
entries n2 and the inverse accuracy ε−1. See §3.1.2 for further discussion of the
result, and §3.1.3.1 for a proof sketch.

Theorem 3.4.1 (Convergence of Greedy Osborne). Given a balanceable matrix
K ∈ Rn×n

>0 and accuracy ε > 0, Greedy Osborne solves ABAL(K, ε) in O(n
2

ε
(1
ε
∧

d) log κ) arithmetic operations.

The key lemma is that each iteration of Greedy Osborne improves the potential
significantly.

Lemma 3.4.2 (Potential decrease of Greedy Osborne). Consider any x ∈ Rn for
which the corresponding scaling A := diag(ex)K diag(e−x) is not ε-balanced. If x′

is the next iterate obtained from a Greedy Osborne update, then

Φ(x)− Φ(x′) >
1

4n

(
Φ(x)− Φ∗

d log κ
∨ ε
)2

.

Proof. Using in order Lemma 3.3.2, the inequality − log(1− z) > z which holds
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for any z ∈ R, the definition of Greedy Osborne, and then Proposition 3.3.3,

Φ(x)− Φ(x′) = − log(1−
(√

rk(P )−
√
ck(P ))2

)
(3.19)

>
(√

rk(P )−
√
ck(P )

)2

(3.20)

>
1

n

n∑
`=1

(√
r`(P )−

√
c`(P )

)2

(3.21)

>
1

4n

(
Φ(x)− Φ∗

d log κ
∨ ε
)2

. (3.22)

Theorem 3.4.1. Let x(0) = 0, x(1), x(2), . . . denote the iterates, and let τ be the
first iteration for which diag(ex)K diag(e−x) is ε-balanced. Since the number
of arithmetic operations per iteration is amortized to O(n) by Remark 3.2.7, it
suffices to show that the number of iterations τ is at most O(n ε−1(ε−1 ∧d) log κ).
Now by Lemma 3.4.2, for each t ∈ {0, 1, . . . , τ − 1} we have

Φ(x(t))− Φ(x(t+1)) >
1

4n

(
Φ(x(t))− Φ∗

d log κ
∨ ε
)2

. (3.23)

Case 1: ε−1 6 d. By the second bound in (3.23), the potential decreases by
at least ε2 /4n in each iteration. Since the potential is initially at most log κ
by Lemma 3.3.1 and is always nonnegative by definition, the total number of
iterations is at most

τ 6
log κ

ε2 /4n
=

4n log κ

ε2
. (3.24)

Case 2: ε−1 > d. For shorthand, denote α := ε d log κ. Let τ1 be the first
iteration for which the potential Φ(x(t))−Φ∗ 6 α, and let τ2 := τ − τ1 denote the
number of remaining iterations. By an identical argument as in case 1,

τ2 6
α

ε2 /4n
=

4nd log κ

ε
. (3.25)

To bound τ1, partition this phase further as follows. Let φ0 := log κ and φi :=
φi−1/2 for i = 1, 2, . . . until φN 6 α. Let τ1,i be the number of iterations starting
from when the potential is first no greater than φi−1 and ending when it no greater
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than φi. In the i-th subphase, the potential drops by at least ( φi
d log κ

)2/4n per

iteration by (3.23). Thus

τ1,i 6
φi−1 − φi

( φi
d log κ

)2/4n
=

4nd2 log2 κ

φi
. (3.26)

Since
∑N

i=1
1
φi

= 1
φN

∑N−1
j=0 2−j 6 2

φN
6 4

α
, thus

τ1 =
N∑
i=1

τ1,i 6
16nd2 log κ2

α
=

16nd log κ

ε
. (3.27)

By (3.25) and (3.27), the total number of iterations is at most τ = τ1 + τ2 6
20nd ε−1 log κ.

� 3.5 Random Osborne converges quickly

Here we show that Random Osborne has runtime that is (i) near-linear in the
input sparsity m; and (ii) also linear in the inverse accuracy ε−1 for well-connected
sparsity patterns. See §3.1.2 for further discussion of the result, and §3.1.3.2 for
a proof sketch.

Theorem 3.5.1 (Convergence of Random Osborne). Given a balanceable matrix
K ∈ Rn×n

>0 and accuracy ε > 0, Random Osborne solves ABAL(K, ε) in T arithmetic
operations, where

• (Expectation guarantee.) E[T ] = O(m
ε

(1
ε
∧ d) log κ).

• (H.p. guarantee.) There exists a universal constant c > 0 such that for all
δ > 0,

P
(
T 6 c

(
m
ε

(1
ε
∧ d) log κ log 1

δ

))
> 1− δ.

As described in the proof overview in §3.1.3.1, the core argument is nearly
identical to the analysis of Greedy Osborne in §3.4. Below, we detail the additional
probabilistic nuances and describe how to overcome them. Remaining details for
the proof of Theorem 3.5.1 are deferred to §3.10.2.

� 3.5.1 Bounding the number of iterations

Analogous to the proof of Greedy Osborne (c.f. Lemma 3.4.2), the key lemma is
that each iteration significantly decreases the potential. The statement and proof
are nearly identical. The only difference in the statement of the lemma is that for
Random Osborne, this improvement is in expectation.
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Lemma 3.5.2 (Potential decrease of Random Osborne). Consider any x ∈ Rn

for which the corresponding scaling A := diag(ex)K diag(e−x) is not ε-balanced.
If x′ is the next iterate obtained from a Random Osborne update, then

E [Φ(x)− Φ(x′)] >
1

4n

(
Φ(x)− Φ∗

d log κ
∨ ε
)2

,

where the expectation is over the algorithm’s uniform random choice of update
coordinate from [n].

Proof. The proof is identical to the proof for Greedy Osborne (c.f. Lemma 3.4.2),
with only two minor differences. The first is that (3.19) and (3.20) are in expec-
tation. The second is that (3.21) holds with equality by definition of the Random
Osborne algorithm.

Lemma 3.3.1 shows that the potential is initially bounded, and Lemma 3.5.2
shows that each iteration significantly decreases the potential in expectation. In
the analysis of Greedy Osborne, this potential drop is deterministic, and so we
immediately concluded that the number of iterations is at most the initial potential
divided by the per-iteration decrease (see (3.24) in §3.4). Lemma 3.5.3 below
shows that essentially the same bound holds in our stochastic setting. Indeed, the
expectation bound is exactly this quantity (plus one), and the h.p. bound is the
same up to a small constant.

Lemma 3.5.3 (Per-iteration expected improvement implies few iterations). Let
A > a and h > 0. Let {Yt}t∈N0 be a stochastic process adapted to a filtration
{Ft}t∈N0 such that Y0 6 A a.s., each difference Yt−1−Yt is bounded within [0, 2(A−
a)] a.s., and

E [Yt − Yt+1 | Ft, Yt > a] > h (3.28)

for all t ∈ N0. Then the stopping time τ := min{t ∈ N0 : Yt 6 a} satisfies

• (Expectation bound.) E[τ ] 6 A−a
h

+ 1.

• (H.p. bound.) For all δ ∈ (0, 1/e), it holds that P(τ 6 6(A−a)
h

log 1
δ
) > 1− δ.

The expectation bound in Lemma 3.5.3 is proved using Doob’s Optional Stop-
ping Theorem, and the h.p. bound using Chernoff bounds; details are deferred to
§3.10.1.

Remark 3.5.4 (Sub-exponential concentration). Lemma 3.5.3 shows that the
upper tail of τ decays at a sub-exponential rate. This concentration cannot be im-
proved to a sub-Gaussian rate: indeed, consider Xt i.i.d. Bernoulli with parameter
h ∈ (0, 1), Yt = 1 −∑t

i=1 Xi, A = 1, and a = 0. Then P(τ 6 N) = 1 − P(X1 =
· · · = XN = 0) = 1− (1− h)N which is ≈ 1− δ when N ≈ 1

h
log 1

δ
.



68
CHAPTER 3. NEAR-LINEAR CONVERGENCE OF THE RANDOM OSBORNE ALGORITHM FOR MATRIX

BALANCING

� 3.5.2 Bounding the final runtime

The key reason that Random Osborne is faster than Greedy Osborne (other than
bit complexity) is that its per-iteration runtime is faster for sparse matrices: it
is O(m/n) by Observation 3.1.3 rather than O(n). In the deterministic setting,
the final runtime is at most the product of the per-iteration runtime and the
number of iterations (c.f. §3.4). However, obtaining a final runtime bound from
a per-iteration runtime and an iteration-complexity bound requires additional
tools in the stochastic setting. A similar h.p. bound follows from a standard
Chernoff bound. But proving an expectation bound is more nuanced. The natural
approach is Wald’s equation, which states the the sum of a random number τ
of i.i.d. random variables Z1, . . . , Zτ equals E τ EZ1, so long as τ is independent
from Z1, . . . , Zτ [81, Theorem 4.1.5]. However, in our setting the per-iteration
runtimes and the number of iterations are not independent. Nevertheless, this
dependence is weak enough for the identity to still hold. Formally, we require
the following minor technical modifications of the per-iteration runtime bound in
Observation 3.1.3 and Wald’s equation.

Lemma 3.5.5 (Per-iteration runtime of Random Osborne, irrespective of history).
Let Ft−1 denote the sigma-algebra generated by the first t− 1 iterates of Random
Osborne. Conditional on Ft−1, the t-th iteration requires O(m/n) arithmetic
operations in expectation.

Lemma 3.5.6 (Minor modification of Wald’s equation). Let Z1, Z2, . . . be i.i.d.
nonnegative integrable r.v.’s. Let τ be an integrable N-valued r.v. satisfying
E[Zt|τ > t] = E[Z1] for each t ∈ N. Then E[

∑τ
t=1 Zt] = E τ EZ1.

The proof of Lemma 3.5.5 is nearly identical to the proof of Observation 3.1.3,
and is thus omitted. The proof of Lemma 3.5.6 is a minor modification of the
proof of the standard Wald’s equation in [81]; details in §3.10.1.

� 3.6 Random-Reshuffle Cyclic Osborne converges quickly

Here we show a runtime bound for Random-Reshuffle Cyclic Osborne. See §3.1.2
for further discussion, and §3.1.3.3 for a proof sketch.

Theorem 3.6.1 (Convergence of Random-Reshuffle Cyclic Osborne). Given a
balanceable matrix K ∈ Rn×n

>0 and accuracy ε > 0, Random-Reshuffle Cyclic
Osborne solves ABAL(K, ε) in T arithmetic operations, where

• (Expectation guarantee.) E[T ] = O(mn
ε

(1
ε
∧ d) log κ).
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• (H.p. guarantee.) There exists a universal constant c > 0 such that for all
δ > 0,

P
(
T 6 c

(
mn
ε

(1
ε
∧ d) log κ log 1

δ

))
> 1− δ.

A straightforward coupling argument with Random Osborne shows the follow-
ing per-cycle potential decrease bound for Random-Reshuffle Cyclic Osborne.

Lemma 3.6.2 (Potential decrease of Random-Reshuffle Cyclic Osborne). Con-
sider any x ∈ Rn for which the corresponding scaling A := diag(ex)K diag(e−x)
is not ε-balanced. Let x′ be the iterate obtained from x after a cycle of Random-
Reshuffle Cyclic Osborne. Then

E [Φ(x)− Φ(x′)] >
1

4n

(
Φ(x)− Φ∗

d log κ
∨ ε
)2

,

where the expectation is over the algorithm’s random choice of update coordinates.

Proof. By monotonicity of Φ w.r.t. Osborne updates (Lemma 3.3.2), the expected
decrease in Φ from all n updates in a cycle is at least that from the first update
in the cycle. This first update index is uniformly distributed from [n], thus is
equivalent to an iteration of Random Osborne. We conclude by applying the
per-iteration decrease bound for Random Osborne in Lemma 3.5.2.

The runtime bound for Random-Reshuffle Cyclic Osborne (Theorem 3.6.1)
given the expected per-cycle potential decrease (Lemma 3.6.2) then follows by an
identical argument as the runtime bound for Random Osborne (Theorem 3.5.1)
given that algorithm’s expected per-iteration potential decrease (Lemma 3.5.2).
The straightforward details are omitted for brevity.

� 3.7 Parallelized variants of Osborne converge quickly

Here we show fast runtime bounds for parallelized variants of Osborne’s algorithm
when given a coloring of GK (see §3.2.5). See §3.1.2 for a discussion of these
results, and §3.1.3.4 for a proof sketch.

Theorem 3.7.1 (Convergence of Block Osborne variants). Consider balancing a
balanceable matrix K ∈ Rn×n

>0 to accuracy ε > 0 given a coloring of GK of size p.

• Greedy Block Osborne solves ABAL(K, ε) in O(p
ε
(1
ε
∧ d) log κ) rounds and

O(mp
ε

(1
ε
∧ d) log κ) total work.

• Random Block Osborne solves ABAL(K, ε) in O(p
ε
(1
ε
∧ d) log κ) rounds and

O(m
ε

(1
ε
∧ d) log κ) total work, in expectation and w.h.p.
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• Random-Reshuffle Cyclic Block Osborne solves ABAL(K, ε) in O(p
2

ε
(1
ε
∧d) log κ)

rounds and O(mp
ε

(1
ε
∧ d) log κ) total work, in expectation and w.h.p.

Note that the h.p. bounds in Theorem 3.7.1 have exponentially decaying tails,
just as for the non-parallelized variants (c.f., Theorems 3.5.1 and 3.6.1; see also
Remark 3.5.4).

The proof of Theorem 3.7.1 is nearly identical to the analysis of the analogous
non-parallelized variants in §3.4, §3.5, and §3.6 above. For brevity, we only describe
the differences. First, we show the rounds bounds. For Greedy and Random Block
Osborne, the only difference is that the per-iteration potential decrease is now
n/p times larger than in Lemmas 3.4.2 and 3.5.2, respectively. Below we show
this modification for Greedy Block Osborne; an identical argument applies for
Random Block Osborne after taking an expectation (the inequality (3.29) then
becomes an equality).

Lemma 3.7.2 (Potential decrease of Greedy Block Osborne). Consider any x ∈
Rn for which the corresponding scaling A := diag(ex)K diag(e−x) is not ε-balanced.
If x′ is the next iterate obtained from a Greedy Block Osborne update, then

Φ(x)− Φ(x′) >
1

4p

(
Φ(x)− Φ∗

d log κ
∨ ε
)2

.

Proof. Let S` be the chosen block. Using in order Lemma 3.3.2, the inequality
− log(1− z) > z, the definition of Greedy Block Osborne, re-arranging, and then
Proposition 3.3.3,

Φ(x)− Φ(x′) = −
∑
k∈S`

log(1−
(√

rk(P )−
√
ck(P ))2

)
>
∑
k∈S`

(√
rk(P )−

√
ck(P )

)2

>
1

p

p∑
`=1

∑
k∈S`

(√
r`(P )−

√
c`(P )

)2

(3.29)

=
1

p

n∑
k=1

(√
rk(P )−

√
ck(P )

)2

>
1

4p

(
Φ(x)− Φ∗

d log κ
∨ ε
)2

.
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With this n/p times larger per-iteration potential decrease, the number of
rounds required by Greedy and Random Block Osborne is then n/p times smaller
than the number of Osborne updates required by their non-parallelized coun-
terparts, establishing the desired rounds bounds in Theorem 3.7.1. The rounds
bound for Random-Reshuffle Cyclic Block Osborne is then p times that of Ran-
dom Block Osborne by an identical coupling argument as for their non-parallelized
counterparts (see §3.6).

Next, we describe the total-work bounds in Theorem 3.7.1. For Random-Shuffle
Cyclic Block Osborne, every p rounds is a full cycle and therefore requires Θ(m)
work. For Greedy and Random Block Osborne, each round takes work proportional
to the number of nonzero entries in the updated block. For Random Block Osborne,
this is Θ(m/p) on average by an identical argument to Observation 3.1.3. For
Greedy Block Osborne, this could be up to O(m) in the worst case. (Although
this is of course significantly improvable if the blocks have balanced sizes.)

Finally, we note that combining Theorem 3.7.1 with the extensive literature on
parallelized algorithms for coloring bounded-degree graphs yields a fast parallelized
algorithm for balancing ∆-uniformly sparse matrices, i.e., matrices K for which
GK has max degree14 ∆.

Corollary 3.7.3 (Parallelized Osborne for uniformly sparse matrices). There is
a parallelized algorithm that, given any ∆-uniformly sparse matrix K ∈ Rn×n

>0 ,
computes an ε-approximate balancing in O(∆

ε
(1
ε
∧ d) log κ) rounds and O(m

ε
(1
ε
∧

d) log κ) total work, both in expectation and w.h.p.

Proof. The algorithm of [31] computes a ∆ + 1 coloring in O(∆) + 1
2

log∗ n rounds,
where log∗ is the iterated logarithm. Run Random Block Osborne with this
coloring, and apply Theorem 3.7.1.

We remark that a coloring of size ∆ + 1 can be alternatively computed by a
simple greedy algorithm in O(m) linear time. Although sequential, this simpler
algorithm may be more practical.

� 3.8 Numerical precision

So far we have assumed exact arithmetic for simplicity of exposition; here we
address numerical precision issues. Note that Osborne iterates can have variation
norm up to O(n log κ); see [126, §3] and Lemma 3.3.5. For such iterates, opera-
tions on the current balancing diag(ex)K diag(e−x)—namely, computing row and

14This is the degree in the undirected graph where (i, j) is an edge if either (i, j) or (j, i) is
an edge in GK .
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column sums for an Osborne update—näıvely require arithmetic operations on
O(n log κ)-bit numbers. Here, we show that there is an implementation that uses
numbers with only logarithmically few bits and still achieves the same runtime
bounds.15

Below, we assume for simplicity that each input entry Kij is represented using
O(log Kmax

Kmin
+log n

ε
) bits. (Or O(log log Kmax

Kmin
+log n

ε
) bits if input on the logarithmic

scale logKij, for (i, j) ∈ supp(K), see Remark 3.8.2.) This assumption is made
essentially without loss of generality since after a possible rescaling and truncation
of entries to ± εKmin/n—which does not change the problem of approximately
balancing K to O(ε) accuracy by Lemma 3.8.4—all inputs are represented using
this many bits.

Theorem 3.8.1 (Osborne variants with low bit-complexity). There is an imple-
mentation of Random Osborne (respectively, Random-Reshuffle Cyclic Osborne,
Random Block Osborne, and Random-Reshuffle Cyclic Block Osborne) that uses
arithmetic operations over O(log n

ε
+ log Kmax

Kmin
)-bit numbers and achieves the same

runtime bounds as in Theorem 3.5.1 (respectively, Theorem 3.6.1, 3.7.1, and
again 3.7.1).

Moreover, if the matrix K is given as input through the logarithms of its entries
{logKij}(i,j)∈supp(K), this bit-complexity is improvable to O(log n

ε
+ log log Kmax

Kmin
).

This result may be of independent interest since the aforementioned bit-
complexity issues of Osborne’s algorithm are well-known to cause numerical pre-
cision issues in practice and have been difficult to analyze theoretically. We note
that [167, §5] shows similar bit complexity O(log(nκ/ ε)) for an Osborne variant
they propose; however, that variant has runtime scaling in n2 rather than m (see
footnote 6). Moreover, our analysis is relatively simple and extends to the related
Sinkhorn’s algorithm for Matrix Scaling (see §3.10.4).

Before proving Theorem 3.8.1, we make several remarks.

Remark 3.8.2 (Log-domain input). Theorem 3.8.1 gives an improved bit-complexity
if K is input through the logarithms of its entries. This is useful in an application
such as Min-Mean-Cycle where the input is a weighted adjacency matrix W , and
the matrix K to balance is the entrywise exponential of (a constant times) W [18,
§5].

Remark 3.8.3 (Greedy Osborne requires large bit-complexity). All known im-
plementations of Greedy Osborne require bit-complexity at least Ω̃(n) [167]. The

15Note that Theorem 3.8.1 outputs only the balancing vector x ∈ Rn, not the approximately
balanced matrix A = diag(ex)K diag(e−x). If applications require A, this can be computed
to polynomially small entrywise additive error using only logarithmically many bits; this is
sufficient, e.g., for the application of approximating Min-Mean-Cycle [18, §5.3].
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obstacle is the computation (3.10) of the next update coordinate, which requires
computing the difference of two log-sum-exp’s. It can be shown that computing
this difference to a constant multiplicative error suffices. However, this still re-
quires at least computing the sign of the difference, which importantly, precludes
dropping small summands in each log-sum-exp—a key trick used for computing an
individual log-sum-exp to additive error with low bit-complexity (Lemma 3.8.7).

We now turn to the proof of Theorem 3.8.1. For brevity, we establish this
only for Random Osborne; the proofs for the other variants are nearly identical.
Our implementation of Random Osborne makes three minor modifications to
the exact-arithmetic implementation in Algorithm 3.1. We emphasize that these
modifications are in line with standard implementations of Osborne’s algorithm
in practice, see Remark 3.2.6.

1. In a pre-processing step, compute {logKij}(i,j)∈supp(K) to additive accuracy
γ = Θ(ε /n).

2. Truncate each Osborne iterate x(t) entrywise to additive accuracy τ = Θ(ε2 /n).

3. Compute Osborne updates to additive accuracy τ by using log-sum-exp com-
putation tricks (Lemma 3.8.7) and using Kij only through the truncated
values logKij computed in step 1.

Step 1 is performed only when K is not already input on the logarithmic scale,
and is responsible for the O(log(Kmax/Kmin)) bit-complexity. To argue about
these modifications, we collect several helpful observations, the proofs of which
are simple and deferred to §3.10.3 for brevity.

Lemma 3.8.4 (Approximately balancing an approximate matrix suffices). Let
K, K̃ ∈ Rn×n

>0 such that supp(K) = supp(K̃) and the ratio Kij/K̃ij of nonzero
entries is bounded in [1 − γ, 1 + γ] for some γ ∈ (0, 1/3). If x is an ε-balancing
of K, then x is an (ε+6nγ)-balancing of K̃.

Lemma 3.8.5 (Stability of log-sum-exp). The function z 7→ log(
∑n

i=1 e
zi) is

1-Lipschitz with respect to the `∞ norm on Rn.

Lemma 3.8.6 (Stability of potential function). Let K ∈ Rn×n
>0 . Then Φ(x) :=

log(
∑

ij e
xi−xjKij) is 2-Lipschitz with respect to the `∞ norm on Rn.

Lemma 3.8.7 (Computing log-sum-exp with low bit-complexity). Let z1, . . . , zn ∈
R and τ > 0 be given as input, each represented using b bits. Then log(

∑n
i=1 e

zi)
can computed to ±τ in O(n) operations on O(b+ log(n

τ
))-bit numbers.
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Theorem 3.8.1. Error and runtime analysis.

1. Let K̃ be the matrix whose ij-th entry is the exponential of the truncated
logKij for (i, j) ∈ supp(K), and 0 otherwise. The effect of step (1) is to
balance K̃ rather than K. But by Lemma 3.8.4, this suffices since an O(ε)
balancing of K̃ is an O(ε+nγ) = O(ε) balancing of K.

2,3. The combined effect is that: given the previous Osborne iterate x(t−1), the
next iterate x(t) differs from the value it would have in the exact-arithmetic
implementation by O(τ) in `∞ norm. By Lemma 3.8.6, this changes Φ(x(t))
by at most O(τ). By appropriately choosing the constant in the definition of
τ = Θ(ε2 /n), this decreases each iteration’s expected progress (Lemma 3.5.2)
by at most a factor of 1/2. The proof of Theorem 3.5.1 then proceeds
otherwise unchanged, resulting in a final runtime at most 2 times larger.

Bit-complexity analysis.

1. Consider (i, j) ∈ supp(K). Since logKij ∈ [logKmin, logKmax] and are stored
to additive accuracy γ = Θ(ε /n), the bit-complexity for storing logKij is

O

(
log

logKmax − logKmin

γ

)
= O

(
log

n

ε
+ log log

Kmax

Kmin

)
.

2. Since the coordinates of each Osborne iterate are truncated to additive accu-
racy τ = Θ(ε2 /n) and have modulus at most d log κ by Lemma 3.3.5, they
require bit-complexity

O

(
log

(d log κ)− (−d log κ)

τ

)
= O

(
log

n

ε
+ log log

Kmax

Kmin

)
.

3. By Lemma 3.8.7, the Osborne update requires bit-complexity O(log n
τ
) =

O(log n
ε
).

� 3.9 Discussion

We conclude with several open questions:

1. Can one establish matching runtime lower bounds for the variants of Os-
borne’s algorithm? The only existing lower bound is [167, Theorem 6.1], and
there is a large gap between this and the current upper bounds.
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2. Does any variant of Cyclic Osborne run in near-linear time? The best known
runtime bound for Round-Robin Cyclic Osborne scales as roughly mn2 [167],
and the runtime bound we show for Random-Reshuffle Cyclic Osborne scales
as roughly mn (Theorem 3.6.1).

3. Is there a provable gap between the (worst-case) performance of Random
Osborne, Random-Reshuffle Cyclic Osborne, and Round-Robin Cyclic Os-
borne? The existence of such gaps in the more general context of Coordinate
Descent for convex optimization is an active area of research with recent
breakthroughs [139, 212, 213].

4. Empirically, Osborne’s algorithm often significantly outperforms its worst-
case bounds. Is it possible to prove faster average-case runtimes for “typical”
matrices arising in practice? (This is the analog to the third open question
in [198, §6] for Max-Balancing.)

� 3.10 Deferred details

� 3.10.1 Probabilistic helper lemmas

Several times we make use of the following standard (martingale) version of
multiplicative Chernoff bounds, see, e.g., [154, §4].

Lemma 3.10.1 (Multiplicative Chernoff Bounds). Let X1, . . . Xn be supported in
[0, 1], be adapted to some filtration F0 = {∅,Ω},F1, . . . ,Fn, and satisfy E[Xi|Fi−1] =
p for each i ∈ [n]. Denote X :=

∑n
i=1Xi and µ := EX. Then

• (Lower tail.) For any ∆ ∈ (0, 1), P (X 6 (1−∆)µ) 6 e−∆2µ/2.

• (Upper tail.) For any ∆ > 1, P (X > (1 + ∆)µ) 6 e−∆µ/3.

Lemma 3.5.3. Expectation bound. Define Zt := Yt + ht. Then Zτ
t := Zt∧τ is a

stopped supermartingale with respect to Ft. Thus by Doob’s Optional Stopping
Theorem [81] (which may be invoked by a.s. boundedness),

A > EZ0 > EZτ−1 = EYτ−1 + h(E τ − 1) > a+ h(E τ − 1)

Re-arranging yields E[τ ] 6 A−a
h

+ 1, as desired.
High probability bound. For shorthand, denote B := 2(A − a) and N :=
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d3B/h log 1
δ
e. By definition of τ , telescoping, and then the bound on Y0,

P (τ > N) = P (YN > a)

= P

(
N∑
t=1

(Yt−1 − Yt) < Y0 − a
)

6 P

(
N∑
t=1

(Yt−1 − Yt) < A− a
)

(3.30)

To bound (3.30), define the process Xt := (Yt−1−Yt)/B. Each Xt is a.s. bounded
within [0, 1] by the bounded-difference assumption on Yt. Thus by an application of
the lower-tail Chernoff bound in Lemma 3.10.1 (combined with a simple stochastic
domination argument since E[Xt|Ft−1] > h/B rather than exactly equal), and
then the choice of N , we conclude that

P

(
N∑
t=1

(Yt−1 − Yt) < A− a
)

= P

(
N∑
t=1

Xt <
A− a
B

)

6 exp

(
−
(

1− A− a
Nh

)2
Nh

2B

)
6 δ. (3.31)

Lemma 3.5.6. Observe that

E

[
τ∑
t=1

Zt

]
=
∞∑
T=1

E

[
τ∑
t=1

Zt1τ=T

]
=
∞∑
T=1

T∑
t=1

E [Zt1τ=T ]

=
∞∑
t=1

∞∑
T=t

E [Zt1τ=T ] =
∞∑
t=1

E [Zt1τ>t] ,

where the third equality above is because the assumption Zi > 0 allows us to invoke
Fubini’s Theorem. Now since E [Zt1τ>t] = E [Zt|τ > t]P(τ > t) = E[Zt]P(τ > t)
by assumption, we conclude that E[

∑τ
t=1 Zt] = E[Z1](

∑∞
t=1 P(τ > t)) = E[Z1]E[τ ].

� 3.10.2 Proof of Theorem 3.5.1

Let x(0) = 0, x(1), x(2), . . . denote the iterates, and {Ft := σ(x1, . . . , xt)}t de-
note the corresponding filtration. Define the stopping time τ := min{t ∈ N0 :
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diag(ex)K diag(e−x) is ε -balanced}. By Lemma 3.5.2,

E
[
Φ(x(t))− Φ(x(t+1)) | Ft, t 6 τ

]
>

1

4n

(
Φ(x(t))− Φ∗

d log κ
∨ ε
)2

. (3.32)

Case 1: ε−1 6 d. Here, we establish the O(mε−2 log κ) runtime bound both
in expectation and w.h.p. To this end, let Tt denote the runtime of iteration
t, where (solely for analysis purposes) we consider also t > τ if the algorithm
had continued after convergence. Define Yt to be Φ(x(t)) if t 6 τ , and otherwise
Φ(x(t))− (t− τ) ε2 /4n if t > τ . By (3.32), we have

E [Yt − Yt+1 | Ft, Yt > 0] >
ε2

4n
. (3.33)

For both expected and h.p. bounds below, we apply Lemma 3.5.3 to the process
Yt with A = log κ (by Lemma 3.3.1), a = 0, and h = ε2 /4n (by (3.33)).

Expectation bound. The expectation bound in Lemma 3.5.3 implies E[τ ] 6
4n ε−2 log κ+ 1. Since each iteration has expected runtime E[Tt|Ft−1] = O(m/n)
by Lemma 3.5.5, Lemma 3.5.6 ensures that the total expected runtime is ET =
E[
∑τ

t=1 Tt] = E τ ET1 = O(mε−2 log κ).
H.p. bound. For shortand, denote U := 24n ε−2 log κ log 2

δ
. The h.p. bound

in Lemma 3.3.1 implies that P(τ > U) 6 δ/2. By Lemma 3.5.5, there is some
constant c > 0 such that E[Tt] = cm/n. Since the Tt are independent, a Chernoff
bound (Lemma 3.10.1) implies that P(

∑U
t=1 Tt 6 2cUm/n) 6 δ/2. Therefore,

a union bound implies that with probability at least 1 − δ, the total runtime
T =

∑τ
t=1 Tτ is at most 2cUm/n = 48cm ε−2 log κ log 2

δ
.

Case 2: ε−1 > d. Here, we establish the O(mdε−1 log κ) runtime bound in
expectation and w.h.p. Define α, τ1, τ2, τ1,i, and φi as in the analysis of Greedy
Osborne (see §3.4).

Expectation bound. To bound E τ2, define Yt and apply Lemma 3.5.3 as in
case 1 above (except now with A = ε d log κ) to establish that

E τ2 6
ε d log κ

ε2 /4n
+ 1 =

4nd log κ

ε
+ 1. (3.34)

Next, we bound E τ1. Consider subphase τ1,i for i ∈ [N ]. By an application
of Lemma 3.5.3 on the process Φ(x(t−τ1,i−1)) where A = φi−1, a = φi, and h =

φ2
i /(4nd

2 log2 κ) from (3.32), E τ1,i 6
4nd2 log2 κ

φi
+ 1. Thus E τ1 =

∑N
i=1 E τ1,i 6

4nd2 log2 κ(
∑N

i=1
1
φi

) +N . Since
∑N

i=1
1
φi
6 4

ε d log κ
,

E τ1 6
16nd log κ

ε
+ log2

⌈
1

ε d

⌉
. (3.35)
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Combining (3.34) and (3.35) establishes that E τ = E τ1 + E τ2 6 21nd ε−1 log κ.
By the O(m/n) per-iteration expected runtime bound in Lemma 3.5.5 and the
variant of Wald’s equation in Lemma 3.5.6, the total expected runtime is therefore
at most ET 6 O(m/n) · E τ = O(mdε−1 log κ).

H.p. bound. By Lemma 3.5.3, P(τ2 > 24nd ε−1 log κ log 4
δ
) 6 δ/4. To bound

the first phase, define pi := δ/2N−i+3 for each i ∈ [N ]. By Lemma 3.5.3, P(τ1,i >

(24nd2 log2 κ log 1/pi)/φi) 6 pi. Note that
∑N

i=1
log 1/pi
φi

= 1
φN

∑N−1
j=0 2−j(log 8/δ +

j log 2) 6 1
φN

∑∞
j=0 2−j(log 8/δ + j log 2) = 2 log 8/δ+2 log 2

φN
6 6 log 8/δ

ε d log κ
. Thus by a

union bound, with probability at most
∑N

i=1 pi 6 δ/4, the first phase has length

at most τ1 =
∑N

i=1 τ1,i 6 144nd ε−1 log κ log 8
δ
. We conclude by a further union

bound that, with probability at least 1− δ/2, the total number of iterations is at
most τ = τ1 + τ2 6 168nd ε−1 log κ log 8

δ
. The proof is complete by an identical

Chernoff bound argument as in case 1 above.

� 3.10.3 Proofs for §3.8

Lemma 3.8.4. Let A := diag(ex)K diag(e−x) denote the corresponding scaling of
K, and P := A/

∑
ij Aij denote its normalization. Similarly for Ã and P̃ . Note

that each nonzero entry P̃ij approximates Pij to a multiplicative factor within
[(1− γ)/(1 + γ), (1 + γ)/(1− γ)] ⊂ [1− 3γ, 1 + 3γ], where the last step used the
assumption that γ < 1/3. Thus each row marginal rk(P̃ ) approximates rk(P ) to
the same multiplicative factor, and similarly for the column marginals. Since P and
P̃ are normalized, this implies the additive approximations |rk(P )− rk(P̃ )| 6 3γ,
and similarly for the columns. Thus by the triangle inequality, ‖r(P )− c(P )‖1 6
‖r(P̃ )− c(P̃ )‖1 + 6nγ.

Lemma 3.8.5. Let x, y ∈ Rn. Since mini(ai/bi) 6 (
∑n

i=1 ai)/(
∑n

i=1 bi) 6 maxi(ai/bi)
for any a, b ∈ Rn

>0,

log
n∑
i=1

exi− log
n∑
i=1

eyi = log

∑n
i=1 e

xi∑n
i=1 e

yi
6 log max

i
exi−yi = max

i
xi− yi 6 ‖x− y‖∞,

and similarly log
∑n

i=1 e
xi − log

∑n
i=1 e

yi > log mini e
xi−yi = mini xi − yi > −‖x−

y‖∞. We conclude that | log
∑n

i=1 e
xi − log

∑n
i=1 e

yi | 6 ‖x− y‖∞.

Lemma 3.8.6. Let x, y ∈ Rn. Clearly |(xi − xj)− (yi − yj)| 6 2‖x− y‖∞ for any
i, j ∈ [n]. Thus by Lemma 3.8.5, |Φ(x)−Φ(y)| = | log(

∑
(i,j)∈supp(K) e

xi−xj+logKij)−
log(

∑
(i,j)∈supp(K) e

yi−yj+logKij)| 6 2‖x− y‖∞.

Lemma 3.8.7. Since log
∑n

i=1 e
zi = maxj zj+log

∑n
i=1 e

zi−(maxj zj), we may assume
without loss of generality after translation that each zi 6 0 and at least one zi = 0.



Sec. 3.10. Deferred details 79

Since we need only approximate log
∑n

i=1 e
zi to ±τ accuracy, we can truncate

each zi to additive accuracy ±O(τ) by Lemma 3.8.5, and also drop all zi below
− log n

O(τ)
. To summarize, in order to compute log

∑n
i=1 e

zi to ±τ , it suffices to

compute log
∑k

i=1 e
z̃i to ±O(τ) where k 6 n, each z̃i ∈ [− log n

O(τ)
, 0], and each z̃i

is represented by a number with at most O(log( log(n/τ)
τ

)) = O(log 1
τ

+ log log n)

bits. Now to compute log
∑k

i=1 e
z̃i to ±O(τ), we can tolerate computing each ez̃i

to multiplicative accuracy (1±O(τ)). Thus since ez̃i > O(τ/n), we can tolerate
computing each ez̃i to additive accuracy ±O(τ 2/n). Since ez̃i ∈ [0, 1], it therefore
suffices to compute ez̃i using O(log 1

τ2/n
) = O(log n

τ
) bits of precision.

� 3.10.4 Connections to Matrix Scaling and Sinkhorn’s algorithm

Here, we continue the discussion in Remark 3.1.6 by briefly mentioning two further
connections between Osborne’s algorithm for Matrix Balancing and Sinkhorn’s
algorithm for Matrix Scaling.

Parallelizability. In contrast to Osborne’s algorithm for Matrix Balancing,
Sinkhorn’s algorithm for Matrix Scaling is so-called “embarassingly paralleliz-
able”. We briefly explain this in terms of the connection between parallelizability
and graph coloring (see §3.2.5). For the Matrix Scaling problem on K ∈ Rm×n

>0 ,
the associated graph has vertex set L ∪R where |L| = m and |R| = n, and edge
set {(i, j) : i ∈ [m], j ∈ [n], Kij 6= 0}. This graph is bipartite and thus trivially
2-colorable, which is why Sinkhorn’s algorithm can safely update all coordinates
in L or R in parallel.

Bit-complexity. In Theorem 3.8.1, we showed that many variants of Osborne’s
algorithm can be implemented over numbers with logarithmically few bits, and
still achieve the same runtime bounds. By a nearly identical argument, it can be
shown that the analogous result applies to Sinkhorn’s algorithm. This saves a sim-
ilar factor of up to roughly O(n) in the bit-complexity for poorly connected inputs.
Moreover, this modification is also helpful for well-connected inputs, in particular
for the application of Optimal Transport, where the matrix K to scale is dense
yet has exponentially large entries which require bit-complexity O(L(log n)/ ε) in
the notation of the discussion after Theorem 2.2.1. This modification reduces the
bit-complexity to only logarithmic size O(log(Ln/ ε)).





Chapter 4

Approximating Min-Mean-Cycle for
low-diameter graphs in near-optimal

time and memory

We revisit Min-Mean-Cycle, the classical problem of finding a cycle in a weighted
directed graph with minimum mean weight. Despite an extensive algorithmic
literature, previous work failed to achieve a near-linear runtime in the number of
edges m. We propose an algorithm with near-linear runtime Õ(m(Wmax/ ε)

2) for
computing an ε additive approximation on graphs with polylogarithmic diameter
and weights of magnitude at most Wmax. In particular, this is the first algorithm
whose runtime scales in the number of vertices n as Õ(n2) for the complete
graph. Moreover—unconditionally on the diameter—the algorithm uses only O(n)
memory beyond reading the input, making it “memory-optimal”. Our approach
is based on solving a linear programming relaxation using entropic regularization,
which reduces Min-Mean-Cycle to a Matrix Balancing problem—á la the popular
reduction of Optimal Transport to Matrix Scaling. We round the fractional
linear program solution using a variant of the classical Cycle-Cancelling algorithm
that is sped up to near-linear runtime at the expense of being approximate, and
implemented in a memory-optimal manner. The algorithm is simple to implement
and is competitive with the state-of-the-art methods in practice.

� 4.1 Introduction

Let G = (V,E,w) be a weighted directed graph (digraph) with vertices V , directed
edges E ⊆ V × V , and edge weights w : E → R. The mean weight of a cycle σ
is the arithmetic mean of the weights of the cycle’s constituent edges, denoted
w̄(σ) := 1

|σ|
∑

e∈σ w(e). The Min-Mean-Cycle problem (MMC for short) is to find

81
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a cycle of minimum mean weight. The corresponding value is denoted

µ(G) := min
cycle σ in G

w̄(σ). (MMC)

Over the past half century, MMC has received significant attention due to its
numerous fundamental applications in periodic optimization, algorithm design,
and max-plus algebra. Applications in periodic optimization include deterministic
Markov Decision Processes and mean-payoff games [243], financial arbitrage [69],
cyclic scheduling problems [131], and performance analysis of digital systems [76],
among many others. In algorithm design, MMC provides a tractable option for
the bottleneck step in the network simplex algorithm. This has led to the use
of MMC in algorithms for several graph theory problems [5, 169]—including, no-
tably, a strongly polynomial algorithm for the Minimum Cost Circulation problem,
which includes Maximum Flow as a special case [96]. In max-plus algebra, which
commonly arises in operations research and control theory problems, MMC char-
acterizes the fundamental spectral theoretic quantities [30, 103]. More recently,
MMC has also arisen in control theory since it captures the growth rate of switched
linear dynamical systems with rank-one updates [4, 15].

These myriad applications have motivated a long line of algorithmic work with
the goal of solving MMC efficiently. Remarkably, MMC is solvable in polynomial
time [130], despite the fact that many seemingly similar optimization problems
over cycles are not. Indeed, in sharp contrast, the problem of finding the cycle
with minimum total weight

∑
e∈σ w(e) is NP-complete since it can encode the

Hamiltonian Cycle problem [196, §8.6b].
Algorithmic advancements over the past half century have led to many efficient

algorithms for MMC; details in the prior work section §4.1.3 below. However,
previous work falls short of a near-linear runtime in the input sparsity m := |E|.
For instance, even in the “simple” case where the edge weights are in {−1, 0, 1}, the
best known runtimes are O(m

√
n log n) from [165], m11/8+o(1) implicit from [26],

and O(nωpolylogn) implicit from [193, 240], where n := |V | is the number of
vertices, and ω ≈ 2.37 is the current matrix multiplication exponent [231]. These
runtimes are incomparable in the sense that which is fastest depends on the graph
sparsity (i.e., the ratio of m to n). Nevertheless, in all parameter settings, these
runtimes are far from linear in m. An important algorithmic barrier is that any
faster runtime—let alone a linear runtime—for solving a natural LP relaxation
of MMC would constitute a major breakthrough in algorithmic graph theory, as
it would imply faster algorithms for many well-studied problems (e.g., Shortest
Paths with negative weights [196, §8.2]).

A primary motivation of this chapter is the observation that this complex-
ity barrier is only for exactly computing (this LP relaxation of) MMC. Indeed,
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our main result is that for graphs with polylogarithmic diameter, MMC can be
approximated in near-linear1 time.

� 4.1.1 Contributions

Henceforth, G is assumed strongly connected; this is without loss of generality for
MMC after a trivial O(m) pre-processing step; see §4.2. We denote the unweighted
diameter of G by d. The notation Õ(·) suppresses polylogarithmic factors in the
number of vertices n, the inverse accuracy ε−1, and the maximum modulus edge
weight wmax.

We give the first approximation algorithm for MMC that, for graphs with
polylogarithmic diameter, has near-linear runtime in the input sparsity m. In
particular, this is the first near-linear time algorithm for the important special
cases of complete graphs, expander graphs, and random graphs. (Note also that
if the diameter is larger than polylogarithmic, this runtime can still be much
faster than the state-of-the-art, depending on the parameter regime.) Moreover,
unconditionally on the diameter, this new algorithm requires only O(n) additional
memory beyond reading the input2, which means it is so-called “memory-optimal”
in the sense that its memory usage is of the same order as the (maximum possible)
output size.

Theorem 4.1.1 (Informal version of Theorem 4.6.2). There is a randomized
algorithm (AMMC, see Algorithm 4.4) that given a weighted digraph G = (V,E,w)
and an accuracy ε > 0, finds a cycle σ in G satisfying w̄(σ) 6 µ(G) + ε using
O(n) memory beyond reading the input and O(md2(wmax

ε
)2 log n) time, both in

expectation and with exponentially high probability.

This algorithm AMMC is based on approximately solving an entropically regu-
larized version of an LP relaxation of MMC, followed by rounding the obtained
fractional LP solution using a fast, approximate version of the classical Cycle-
Cancelling algorithm; details in the overview section §4.1.2. The entropic regular-
ization approach has two key benefits. First, it effectively reduces the optimization
problem to Matrix Balancing—a well-studied problem in scientific computing for
which near-linear time algorithms were recently developed [9, 17, 67, 167] (see
Chapter 3). At a high-level, this parallels the popular entropic-regularization re-
duction of Optimal Transport to Matrix Scaling [73, 232] (see Chapter 2). Second,

1Throughout, we say a runtime is near-linear if it is O(m), up to polylogarithmic factors in
n and polynomial factors in the inverse accuracy ε−1 and the maximum modulus edge weight
wmax.

2Storing the input graph takes Θ(m) memory. To design an algorithm with o(m) memory, we
assume G is input implicitly through two oracles: one for finding an adjacent edge of a vertex,
and one for querying the weight of an edge; details in §4.6.1.2.
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it enables a compact O(n)-size implicit representation of the (näıvely O(m)-size)
fractional solution to the LP relaxation.

Discussion:

Practicality. AMMC is practical and simple to implement. This is in contrast
to the aforementioned state-of-the-art theoretical algorithms, which rely on
(currently) impractical subroutines such as Fast Matrix Multiplication or fast
Laplacian solvers, and/or have large constants in their runtimes which can
be prohibitive in practice; see the experimental surveys [58, 75, 76, 94, 116].
Indeed, there is currently a large discrepancy between the state-of-the-art
MMC algorithms in theory and in practice: the aforementioned empirical
surveys point out that the algorithms with best empirical performance have
worst-case runtimes no better than Ω(mn). In §4.7, we provide preliminary
numerical simulations demonstrating that in practice, AMMC can compute high-
quality solutions in essentially O(m) linear runtime and for larger problem
sizes than the state-of-the-art algorithms implemented in the popular, heavily-
optimized C++ software package LEMON [79].

Multiplicative approximation. If all edge weights are positive, then the additive
approximation of AMMC also yields a multiplicative approximation. (If the edge
weights are not all positive, then it is impossible to compute any multiplicative
approximation in near-linear time, barring a major breakthrough in algorith-
mic graph theory, namely faster algorithms for the classical Negative Cycle De-
tection problem [59, §1.2].) Specifically, if all edge weights lie in [wmin, wmax]
for wmin > 0, then we can find a cycle σ satisfying w̄(σ) 6 (1 + ε)µ(G) in
O(md2( wmax

εwmin
)2 log n) time since µ(G) > wmin.

Weighted vs unweighted diameter. For simplicity, our runtime is written in terms
of the unweighted diameter d. However, wmaxd can be replaced by the
weighted diameter of the graph with weights w(e) − wmin which are trans-
lated to be all nonnegative.3 This yields tighter bounds since this weighted
diameter is at most d times the weight range.

Implications. Our improved approximation algorithm for MMC immediately im-
plies similarly improved algorithms for several related problems. For instance,

3This weighted diameter is a natural quantity since it is invariant under the simultaneous
translation of all edge weights—a transformation which does not change the complexity of
(additively approximating) MMC. To get such bounds, the only change to our algorithms is to
compute Single Source Shortest Paths using these translated weights (rather than unit weights),
which can be done in near-linear time since they are nonnegative.
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the Min-GeoMean-Cycle problem—in which weights are strictly positive, and
we seek a cycle σ minimizing (

∏
e∈σ w(e))1/|σ|—can be multiplicatively approx-

imated by using our algorithms to additively approximate MMC with weights
w̃(e) := logw(e). Another immediate implication is the first near-linear time
algorithm (again assuming moderate connectedness) for approximating fun-
damental quantities in max-plus spectral theory. Specifically, let A be an
n×n matrix with entries in Rmax = R∪{−∞}. It is known that the max-plus
eigenvalues and the cycle-time vector of A are characterizeable in terms of
the Min-Mean-Cycles of the strongly connected components of the associated
digraph G = ({1, . . . , n}, {(i, j) : Aij 6= −∞}), see, e.g., [30, 103]. Thus, after
topologically sorting the components of G in linear time, we can compute
both the max-plus spectrum and the cycle-time vector of A to `∞ error ε
in Õ(md2(wmax

ε
)2) time, where wmax := maxij:Aij 6=−∞ |Aij| and d denotes the

diameter of G.

� 4.1.2 Approach

In contrast to previous combinatorial approaches for MMC, we tackle this discrete
problem via continuous optimization techniques. At a high level, we follow a
standard template for approximation algorithms that consists of two steps: ap-
proximately solve a linear programming (LP) relaxation; then round the fractional
solution to a vertex without worsening the LP cost by much. While this high-level
template is standard, implementing it efficiently for MMC poses several obstacles.
In particular, both steps require new specialized algorithms since out-of-the-box
LP solvers and rounding algorithms are too slow for our desired runtime. More-
over, our goal of designing a memory-optimal algorithm restricts memory usage
to being sublinear in the graph size, thereby precluding many natural approaches.

Our starting point is the classical LP relaxation of MMC

min
F∈FE

∑
e∈E

F (e)w(e), (MMC-P)

where above the decision set FE is the polytope consisting of circulations on G
that are normalized to have unit total flow. Details on this LP are in the prelimi-
naries section §4.2.

Step 1: optimization. This is the main step of the algorithm—both conceptually
and technically. In it, we find a near-optimal solution for (MMC-P). We do this
by employing entropic regularization, a celebrated technique for regularizing op-
timization problems over probability distributions. This is motivated by viewing
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the normalized circulations in FE as probability distributions on the edges of G
(see Remark 4.2.1). The key insight is that entropically regularizing (MMC-P)
results in a convex optimization problem that corresponds to an associated Matrix
Balancing problem. This effectively reduces approximating (MMC-P) to a prob-
lem for which near-linear time algorithms were recently developed [9, 17, 67, 167].
In particular, we employ a randomized4 version of Osborne’s algorithm for Matrix
Balancing which is practical and provably runs in near-linear time, as shown in
Chapter 3. A further benefit of our reduction is that Matrix Balancing can be
performed in a memory-optimal way, yielding a fractional solution for (MMC-P)
that is compactly represented using O(n) memory despite having m nonzero en-
tries. See §4.4 for details and for natural dual interpretations of the regularization
and algorithm.

Step 2: rounding. Step 1 outputs a near-feasible circulation (since Matrix Balanc-
ing can only be performed approximately) with near-optimal objective for (MMC-P).
In this step, we compute from this a near-optimal cycle for MMC. We perform
this in two sub-steps.

First, we correct feasibility without changing much flow, thereby preserving
near-optimality. We do this by re-routing flow from vertices with flow surplus to
vertices with flow deficiency via short paths. While a näıve implementation of
this requires O(mn) time and O(nd) memory, there is a simple trick that enables
implementing this in near-linear time and in a memory-optimal way: route all
these paths through an arbitrary vertex. Details in §4.5.1.

Second, we round the resulting near-optimal circulation (a fractional point in
FE) to a cycle (a vertex of FE) while preserving the objective of (MMC-P). The
Cycle-Cancelling algorithm [196] does this by decomposing the circulation into
a convex combination of cycles, and then outputting the best cycle. However, it
has a prohibitive O(mn) runtime. Since we can tolerate ε error, a Ford-Fulkerson-
esque argument enables us to speed up this algorithm to near-linear time by simply
running it on a quantization of the circulation. Details in §4.5.2.

� 4.1.3 Prior work

� 4.1.3.1 Exact algorithms

There is an extensive literature on MMC algorithms; Table 4.1 summarizes the
fastest known runtimes. These runtimes are incomparable in that each is best for a
certain parameter regime. The fastest algorithm for very large edge weights is the

4This is the only source of randomness in our proposed algorithm.
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O(mn) dynamic-programming algorithm of [130].5 For more moderate weights
(e.g., integers of polynomial size in n), the O(m

√
n log(nwmax)) scaling-based

algorithm of [165] is faster. Faster runtimes for certain parameter regimes are
implicit from recent algorithmic developments for Single Source Shortest Paths
(SSSP). The connection is that SSSP algorithms can detect negative cycles,
and MMC on an integer-weighted graph is reducible to detecting negative cy-
cles on O(log(nwmax)) graphs with modified edge weights [138]. This results in
an O(nωwmax log(nwmax)) runtime which is faster for dense graphs with small
weights [193, 240], and an m11/8+o(1) log2wmax runtime which is faster for sparse
graphs with moderate weights [26].

Author Runtime Memory

Karp (1978) [130] O(mn) O(n2)

Orlin and Ahuja (1992) [165] Õ(m
√
n) O(n)

Sankowski (2005) [193], Yuster and Zwick (2005) [240] Õ(nω) O(n2)

Axiotis et al. (2020) [26] m11/8+o(1) O(m)

Table 4.1: Fastest runtimes for exact MMC computation. The memory reported is the
additional storage beyond reading the input (see §4.6.1.2). For simplicity, here edge
weights are in {−1, 0, 1}; see the main text for detailed dependence on wmax.

� 4.1.3.2 Approximation algorithms

Table 4.2 lists the fastest approximation algorithms for MMC. The fastest existing
approximation algorithm is the Õ(nω/δ) algorithm of [59] for approximating MMC
to a (1±δ) multiplicative factor, in the special case of nonnegative integer weights.
By taking δ = O(ε /wmax), this can be converted into an ± ε additive approximation
algorithm with runtime Õ(nωwmax/ ε). This runtime is only faster than the exact
algorithms of [193, 240] by a factor of Õ(1/ ε), which provides significant runtime
gains only when the approximation accuracy ε is quite large.

Author Runtime Memory

Chatterjee et al. (2014) [59] Õ(nω/ ε) O(n2)

This chapter (Theorem 4.6.2) Õ(md2/ ε2) O(n)

Table 4.2: Fastest runtimes for approximating MMC to ε additive accuracy. The memory
reported is the additional storage beyond reading the input (see §4.6.1.2). For simplicity,
here edge weights are in {−1, 0, 1}; see the main text for detailed dependence on wmax.

5The algorithms of [164, 238] have similar worst-case runtimes but better best-case and
empirical runtimes.
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We also mention Howard’s policy-iteration algorithm [117]. Although the
fastest known theoretical runtime for it is slower6 than other algorithms, it is
often used in practice because its empirical performance significantly outperforms
its theoretical runtime [66, 75, 76]. On the other hand, the practical runtime of
Howard’s algorithm is observed to be at least Ω(mn) rather than near-linear when
run on “difficult” inputs [75, 94], see also Figure 4.2.

Remark 4.1.2 (Alternative approach). An alternative algorithm that uses the
same rounding subroutine as AMMC, but instead uses area-convexity regularization
for the optimization subroutine, yields a slightly faster theoretical runtime of
Õ(mdwmax/ ε). The tradeoff is that unlike AMMC, this algorithm is not memory-
optimal and performs poorly in practice. For details, see the extended version of
the paper upon which this chapter is based [16].

� 4.1.4 Simultaneous work

This chapter is based on the paper [18]. After v1 of this paper [18] was posted to
arXiv, the paper [222] appeared on arXiv (and has since appeared in FOCS [223]).
That paper [222] provides a breakthrough for solving a number of graph problems
(including MMC) in near-linear time for graphs that are sufficiently dense m =
Ω̃(n1.5). We mention the tradeoffs between this MMC algorithm and ours. On
one hand, their algorithm can compute exact solutions whereas ours can only
compute approximations with moderate accuracy. On the other hand, (1) their
algorithm relies on Laplacian solvers for which implementations are currently
impractical [116]; (2) our algorithm is memory-optimal and uses O(n) memory,
compared to the Ω(m) used by theirs; and (3) our algorithm still has near-linear
runtime for sparse graphs m = o(n1.5) with small diameter.

� 4.1.5 Roadmap

§4.2 recalls preliminaries. §4.3 details the two steps in our approach—optimize
and round—which we implement efficiently in §4.4 and §4.5, respectively. §4.6
puts these pieces together to conclude our algorithm. §4.7 provides preliminary
numerical simulations.

� 4.2 Preliminaries

Throughout, we assume that G is strongly connected, i.e., that there is a directed
path from every vertex to every other. This is without loss of generality since

6Namely, O(mn3wmax/ ε) for approximating MMC to ε additive accuracy if stopped early [75,
Theorem 3.5].
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we can decompose a general graph G into its strongly connected components in
linear time [215], and then solve MMC on G by solving MMC on each component.

For simplicity, we assume each input edge weight is represented using an Õ(1)-
bit number. This is essentially without loss of generality since after translating the
weights and truncating them to ± ε additive accuracy—which does not change the
problem of additively approximating MMC—all weights are representable using
O(log(wmax/ ε)) = Õ(1)-bit numbers.

In the sequel, we make use of a simple folklore algorithm for approximating
the unweighted diameter d to within a factor of 2 in O(m) time. This algorithm,
called ADIAM, runs Breadth First Search to and from some vertex v, and returns
the sum of the maximum distance found to and from v. It is straightforward
to show that the output d̃ satisfies d 6 d̃ 6 2d. Efficiently computing better
approximations is an active research area, but this suffices for our purposes.

� 4.2.1 Notation

Throughout, we reserve G for the graph, V for its vertex set, E for its edge set,
w for its edge weights, n = |V | for its number of vertices, m = |E| for its number
of edges, and d for its unweighted diameter (i.e., the maximum over u, v ∈ V of
the shortest unweighted path from u to v). For a positive integer n, we denote
the set {1, . . . , n} by [n]. Any summation or maximum over indices i or j with
unspecified limits ranges over i, j ∈ [n].

Linear algebraic notation. Although this chapter targets graph theoretic problems,
it is often helpful—both for intuition and conciseness—to express things using
linear algebraic notation. For a weighted digraph G = (V,E,w), we write W to
denote the n × n matrix with ij-th entry w(i, j) if (i, j) ∈ E, and ∞ otherwise.
The support of a matrix A is supp(A) := {(i, j) : Aij 6= 0}. We write 0 and 1 to
denote the all-zeros and all-ones vectors, respectively, in an ambient dimension
clear from context (typically Rn). For a vector v ∈ Rn, we denote its `1 norm by
‖v‖1 :=

∑
i |vi|, its `∞ norm by ‖v‖∞ = maxi |vi|, its entrywise exponentiation by

exp[v], and its diagonalization by diag(v) ∈ Rn×n. For a matrix A, we denote the
`1 norm of its vectorization by ‖A‖1 :=

∑
ij |Aij|, and its entrywise exponentiation

by exp[A].

Flows and circulations. A flow on a digraph G = (V,E) is a function f : E →
R>0. Equivalently, in linear algebraic notation, this is a matrix F ∈ Rn×n

>0

with supp(F ) ⊆ E. The corresponding inflow, outflow, and netflow for a ver-
tex i ∈ V are respectively

∑
(j,i)∈E f(j, i),

∑
(i,j)∈E f(i, j), and

∑
(j,i)∈E f(j, i) −∑

(i,j)∈E f(i, j); or in linear algebraic notation (F T1)i, (F1)i, and (F T1 − F1)i.
A flow is balanced at a vertex if that vertex has 0 netflow. A circulation is a flow
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that is balanced at each vertex. The total netflow imbalance of a flow F is denoted
δ(F ) := ‖F1− F T1‖1. A flow or circulation is normalized if

∑
(i,j)∈E f(i, j) = 1.

Probability distributions. The set of discrete distributions on k atoms is associated
with the k-simplex ∆k := {v ∈ Rk

>0 :
∑

i vi = 1}, the set of joint distributions on
V × V with ∆n×n := {P ∈ Rn×n

>0 :
∑

ij Pij = 1}, and the set of distributions on E
with ∆E := {P ∈ ∆n×n : supp(P ) ⊆ E}.

� 4.2.2 LP relaxations of Min-Mean-Cycle

Here we recall the classical primal/dual pair of LP relaxations of MMC. Consider
a weighted digraph G = (V,E,w). Associate to each cycle σ an n × n matrix
Fσ with ij-th entry equal to 1/|σ| if (i, j) ∈ σ, and 0 otherwise. Then MMC can
be formulated as µ(G) = mincycle σ〈Fσ,W 〉, where the inner product 〈Fσ,W 〉 :=∑

(i,j)∈E(Fσ)ijWij ranges over the edges of G. The LP relaxation of this discrete
problem is

min
F∈FE

〈F,W 〉, (MMC-P)

where FE is the convex hull of {Fσ : σ cycle}. It is well-known (e.g., [6, Problem
5.47]) that

FE = {F ∈ ∆E : F1 = F T1}.

Remark 4.2.1 (Interpretations of FE). From a graph theoretic perspective, FE
is the set of normalized circulations on G; and from a probabilistic perspective,
FE is the set of joint distributions on the edge set E ⊆ V × V with identical
marginal distributions. There are also natural interpretations of the `1 distance
‖F1 − F T1‖1 of a matrix F ∈ ∆E from FE: from a graph theoretic perspective,
it is the total netflow imbalance; and from a probabilistic perspective, it is (two
times) the total variation distance between the marginals.

Throughout, we call (MMC-P) the primal LP relaxation. We refer to the dual
of (MMC-P) as the dual LP relaxation. This is the LP maxp∈Rn,λ∈R :λ6Wij+pi−pj , ∀(i,j)∈E λ,
but in the sequel it is helpful to re-write it in the following saddle-point form:

max
p∈Rn

min
(i,j)∈E

Wij + pi − pj. (MMC-D)

� 4.3 Algorithmic framework

Here we detail the algorithmic framework we use for approximating MMC. As
overviewed in §4.1.2, the framework consists of two steps: approximately solve
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the LP relaxation (MMC-P), and then round this fractional solution to a vertex
with nearly as good value for (MMC-P). While the optimization step is sufficient
for estimating the value µ(G) of MMC, the rounding step yields a feasible solution
(i.e., a cycle).

Algorithm 4.1 summarizes the accuracy required of each step. Note that
the optimization step produces a near-optimal solution that is not necessarily
feasible, but rather near-feasible in that we allow a slightly imbalanced netflow
δ(P ) = ‖P1− P T1‖1 up to some δ > 0; in the sequel, we take δ = Θ(ε /(wmaxd)).
Our rounding step accounts for this near-feasibility.

Input: Weighted digraph G = (V,E,w), accuracy ε > 0
Output: Cycle σ in G satisfying w̄(σ) 6 µ(G) + ε

\\ Optimization step: compute near-feasible, near-optimal solution P for (MMC-P)
1: Find matrix P ∈ ∆E satisfying δ(P ) 6 δ and 〈P,W 〉 6 µ(G) + ε

2

\\ Rounding step: round P to a vertex of FE with nearly as good cost for (MMC-P)

2: Find cycle σ satisfying w̄(σ) 6 〈P,W 〉+ ε
4 + ε δ(P )

4δ

Algorithm 4.1: Algorithmic framework for approximating MMC.

Observation 4.3.1 (Approximation guarantee for Algorithm 4.1). Given any
weighted digraph G and any accuracy ε > 0, Algorithm 4.1 outputs a cycle σ in
G satisfying w̄(σ) 6 µ(G) + ε.

The proof is immediate by definition of the algorithmic framework. The
obstacle is how to efficiently implement the two steps. This is shown in the
following two sections.

� 4.4 Efficient optimization of the LP relaxation

Here, we use Matrix Balancing to efficiently implement the optimization in the
framework described in §4.3. Below, §4.4.1 describes the connections between
MMC and Matrix Balancing, and §4.4.2 makes this algorithmic.

Some preliminary definitions about Matrix Balancing for this section. These
definitions as well as more background are in Chapter 3, but are recalled here
for the convenience of the reader. A matrix A ∈ Rn×n

>0 is balanced if A1 = AT1.
The Matrix Balancing problem for input K ∈ Rn×n

>0 is to find a positive diagonal
matrix D (if one exists) such that A = DKD−1 is balanced.7 K is balanceable if

7Technically, this is the problem of Matrix Balancing in the `1 norm, since the goal is to
match the `1 norm of the rows and columns of A. However, we simply call this task “Matrix
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Primal Dual

Min-Mean-Cycle min
F∈FE

〈F,W 〉 (MMC-P) max
p∈Rn

min
ij

Wij + pi − pj (MMC-D)

Matrix Balancing min
F∈FE

〈F,W 〉 − η−1H(F ) (MB-P) max
p∈Rn

sminη
ij

Wij + pi − pj (MB-D)

Table 4.3: Primal/dual LP relaxations of MMC (top), and our proposed regularizations
(bottom). The regularized problems (MB-P) and (MB-D) are dual convex programs,
with (essentially) unique solutions corresponding to balancing K = exp[−ηW ].

such a solution D exists (see Remark 4.4.4). The notion of approximate Matrix
Balancing is introduced later in §4.4.2.

� 4.4.1 Connection to Matrix Balancing

The key connection is that appropriately regularizing the LP relaxation of MMC
results in a convex optimization problem that is equivalent to an associated Matrix
Balancing problem. This regularization can be equivalently performed on either
the primal or dual LP (see Table 4.3); we describe both perspectives as they
give complementary insights. We note that while these regularized problems are
well-known to be connected to Matrix Balancing (e.g., [85, 126]), the relation of
MMC to these regularized problems and Matrix Balancing is, to our knowledge,
not previously known.

� 4.4.1.1 Primal regularization

In the primal, we employ entropic regularization: we subtract η−1 times the Shan-
non entropy H(F ) from the objective in the primal LP relaxation (MMC-P). Re-
call that the Shannon entropy of a discrete distribution p is H(p) := −∑i pi log pi,
where we adopt the standard convention that 0 log 0 = 0. Note that this regu-
larization results in a strictly convex optimization problem by strict concavity of
the entropy. This regularization is motivated by the Max-Entropy principle; in-
deed, recall from Remark 4.2.1 the interpretation of (MMC-P) as an optimization
over probability distributions. The choice of the regularization parameter η is
discussed in Remark 4.4.6 below, and is based on balancing the fact that (MB-P)
is “more convex” and thus easier to solve for small η, while its fidelity to the
original problem (MMC-P) improves for large η due to the following basic bound.

Balancing” because every instance of Matrix Balancing in this chapter is in the setting of the `1
norm.
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Lemma 4.4.1 (Entropy bound). For any probability distribution p ∈ ∆K with
support size k := |{i ∈ [K] : pi 6= 0}| 6 K, we have 0 6 H(p) 6 log k.

� 4.4.1.2 Dual regularization

In the dual, we employ softmin smoothing : we re-write the dual LP relaxation as
the max-min saddle-point problem (MMC-D), and then replace the inner min by
a smooth approximation sminη, which is defined for a parameter η > 0 by

sminη
i∈[k]

ai := −1

η
log

(
k∑
i=1

e−ηai

)
,

where we adopt the standard convention e−∞ = 0 to extend this notation to
ai ∈ R∪{+∞}. Note that this regularization results in a concave optimization
problem by concavity of the softmin function—in fact, strictly concave on the
orthogonal complement of the subspace spanned by 1. A similar discussion as for
the primal regularization applies about the choice of regularization parameter η,
except that here the fidelity of the regularized problem to the original unregularized
problem is based on the following basic bound.

Lemma 4.4.2 (Softmin approximation bound). For any a1, . . . , ak ∈ R∪{+∞}
and η > 0,

0 6 min
i∈[k]

ai − sminη
i∈[k]

ai 6
log k

η

The regularized optimization problem (MB-D) is given in Table 4.3. Expanding
the softmin and re-parameterizing x := −ηp gives the more convenient equivalent
form:

−1

η
min
x∈Rn

log

(∑
ij

exi−xjKij

)
, (MB-D’)

where K := exp[−ηW ] denotes the entrywise exponentiated matrix with entries
Kij = e−ηWij .

� 4.4.1.3 Connections and remarks

Not only are (MB-P) and (MB-D) both convex optimization problems, but also
they are convex duals8 satisfying strong duality. The optimality conditions clarify
the connection between these problems and Matrix Balancing: the (unique) solu-
tion of (MB-P) corresponds to the (unique) balancing of K modulo normalization,

8Formally, this requires equivalently re-writing (MB-D) in constrained form.
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and the solutions of (MB-D’) (unique up to translation by 1) correspond to the
diagonal balancing matrices (unique up to a constant factor). This is formally
stated as follows.

Lemma 4.4.3 (Optimality conditions for (MB-P) and (MB-D’)). Let G = (V,E,w)
be strongly connected and η > 0. Then:

(1) F ∈ FE and x ∈ Rn are optimal solutions for (MB-P) and (MB-D’), respec-
tively, if and only if F = A/

∑
ij Aij, where A = diag(ex)K diag(e−x).

(2) (MB-P) has a unique solution. The solutions to (MB-D’) are unique up to
translation by 1.

A similar result can be found in [126, Theorem 1], although the focus there is
on the dual regularized problem. For completeness, we provide a short proof here
that highlights the primal regularized problem and the convex duality.

Proof. Dualize the affine constraint F1 = F T1 in (MB-P) via the penalty pT (F1−
F T1) =

∑
(i,j)∈E Fij(pi − pj), where p ∈ Rn is the associated Lagrange multiplier.

This results in the minimax problem

min
F∈∆E

max
p∈Rn

∑
(i,j)∈E

Fij(Wij + pi − pj + η−1 logFij) (4.1)

By Sion’s Minimax Theorem [204], this equals the maximin problem

max
p∈Rn

min
F∈∆E

∑
(i,j)∈E

Fij(Wij + pi − pj + η−1 logFij) (4.2)

The inner minimization problem can now be solved explicitly. A standard Lagrange
multiplier calculation shows that at optimality, F is the matrix with ij-th entry
equal to

Fij = ce−η(Wij+pi−pj) (BAL-OPT)

where c = 1/(
∑

(i,j)∈E e
−η(Wij+pi−pj)) is the normalizing constant. (Note that if

(i, j) /∈ E, then Wij = ∞, so Fij = e−ηWij = 0.) Plugging (BAL-OPT) into (4.2)
and simplifying yields

max
p∈Rn
−η−1 log

 ∑
(i,j)∈E

e−η(Wij+pi−pj)

 , (4.3)
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Figure 4.1: Effect of entropic regularization on the sparsity of the optimal solution F η

of (MB-P). Plotted here is F η for varying regularization parameter η, where edge (i, j)
is drawn with width proportional to F ηij , and dropped if it has sufficiently small mass.

which is precisely (MB-D). This establishes strong duality. Item (1) then follows
from the optimality condition established above in (BAL-OPT).

For item (2), strict concavity of entropy implies that (MB-P) has a unique
optimal solution. This combined with the optimality condition in item (1) implies
that diag(ex)K diag(e−x) is invariant among optimal solutions x of (MB-D’). Thus
if x and y are both solutions, then xi − xj = yi − yj for all edges (i, j) ∈ E. It
follows that in each strongly connected component of G, the difference xi − yi is
constant over all vertices i. Since G is assumed strongly connected, x and y are
equal up to an additive shift of 1.

The strongly connected assumption in Lemma 4.4.3 is important for balance-
ability:

Remark 4.4.4 (Balanceability for MMC). K ∈ Rn×n
>0 is balanceable if and only if

K is irreducible—i.e., the graph GK = ([n], supp(K)) is strongly connected [166].
Thus, in our MMC application, K = exp[−ηW ] is balanceable since G = GK is
strongly connnected (see §4.2). Furthermore, balanceability is necessary and suffi-
cient for uniqueness (modulo translation) of the solutions to the dual regularized
problem (MB-D’), essentially because balanceability can be shown to be equiva-
lent to strict concavity of the dual regularized problem (MB-D’) on the orthogonal
complement of the subspace spanned by 1.

We conclude this discussion with two remarks about the regularization param-
eter η.

Remark 4.4.5 (Effect of regularizing MMC). The solution F η of (MB-P) is
readily characterized in the limit as the regularization dominates (η → 0) or
vanishes (η →∞): limη→0 F

η is the max-entropy element of FE, and limη→∞ F
η
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is the max-entropy solution among optimal solutions for (MMC-P).9 For every
finite η, the solution F η is dense in that F η

ij > 0 for every edge (i, j). However, as
η increases (i.e., the regularization decreases), F η concentrates on edges belonging
to Min-Mean-Cycle(s); see Figure 4.1 for an illustration.

Remark 4.4.6 (Tradeoff for regularizing MMC). There is a natural algorithmic
tradeoff for choosing η: roughly, more regularization makes K = exp[−ηW ] easier
to balance, while less regularization ensures fidelity of the regularized problems to
the original LPs. Therefore, we take η as small as possible such that solving the
regularized problems yields an O(ε) optimal solution for the original LPs (and thus
MMC). A simple argument—either bounding the primal entropy regularization by
η−1 logm using Lemma 4.4.1, or bounding the dual softmin approximation error
by η−1 logm using Lemma 4.4.2—shows that η = O(ε−1 logm) suffices.

� 4.4.2 Optimization via Matrix Balancing

We now make the connections in §4.4.1 algorithmic by reducing the optimization
step in the algorithmic framework described in §4.3, to Matrix Balancing. Al-
though Matrix Balancing is difficult to perform exactly, we show that performing
it approximately suffices.

Definition 4.4.7 (Approximate Matrix Balancing). A nonnegative matrix A is
δ-balanced if

‖A1− AT1‖1∑
ij Aij

6 δ. (4.4)

The approximate Matrix Balancing problem for K ∈ Rn×n
>0 and δ > 0 is to find

a positive diagonal matrix D such that A := DKD−1 is δ-balanced and satisfies∑
ij Aij 6

∑
ijKij.

10

We now state the main result of this section: a reduction from the opti-
mization step in the algorithmic framework described in §4.3, to approximately
balancing the matrix K = exp[−ηW ] to accuracy δ = Θ(ε /(wmaxd)), where
η = Θ((logm)/ ε). The upshot is that this allows us to leverage known near-linear
time algorithms for approximate Matrix Balancing.

9This is in analog to entropic Optimal Transport [178, Proposition 4.1], and can be proved
similarly.

10The second condition
∑

ij Aij 6
∑

ij Kij is only for technical purposes (it ensures condition-
ing bounds, see Lemma 4.4.11) and is a mild requirement since all natural balancing algorithms
satisfy it. Indeed, balancing K is equivalent to minimizing

∑
ij Aij (Lemma 4.4.3), and

∑
ij Kij

is the value of
∑

ij Aij without any balancing.
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Theorem 4.4.8 (Efficient optimization via Matrix Balancing). Let G = (V,E,w)
be strongly connected, η = (2.5 logm)/ ε, and δ 6 ε /(16wmaxd). Let x ∈ Rn be
such that diag(ex) solves the δ-approximate Matrix Balancing problem on K =
exp[−ηW ], and denote A := diag(ex)K diag(e−x). Then P = A/(

∑
ij Aij) satisfies

P ∈ ∆E, δ(P ) 6 δ, and 〈P,W 〉 6 µ(G) + ε /2.

It is clear by construction that P ∈ ∆E and δ(P ) 6 δ; the near-optimality
〈P,W 〉 6 µ(G) + ε /2 is what requires proof. The intuition is as follows. Since
P is approximately balanced, the (nearly feasible) pair of primal-dual solutions
(P, x) nearly satisfies the optimality conditions in Lemma 4.4.3, and thus P is
nearly optimal for (MB-P). Since (MB-P) is pointwise close to the primal LP
relaxation (MMC-P) (since the regularization is small by Lemma 4.4.1), therefore
P is also nearly optimal for the original optimization problem (MMC-P).

To formalize this intuition we require three lemmas. First, we compute the gap
between objectives for a certain family of primal-dual “solution” pairs for (MB-P)
and (MB-D’) inspired by the optimality conditions in Lemma 4.4.3. Note that
the primal solution may not be feasible since it may not be balanced—in fact,
Lemma 4.4.9 shows that this imbalance controls this gap.

Lemma 4.4.9 (Duality gap). Let η > 0 and x ∈ Rn. Define K = exp[−ηW ],
A = diag(ex)K diag(e−x), and P = A/(

∑
ij Aij). Then (〈P,W 〉 − η−1H(P )) −

(−η−1 log
∑

ij Aij) = η−1xT (P1− P T1).

Proof. The proof is a straightforward calculation. Denote s =
∑

ij Aij. Note that

−η−1H(P ) = η−1
∑

ij Pij logPij = η−1
∑

ij Pij log(Aij/s) = η−1
∑

ij Pij logAij −
η−1 log s. Thus

〈P,W 〉 − η−1H(P ) + η−1 log s = 〈P,W 〉+ η−1
∑
ij

Pij logAij

= 〈P,W 〉+ η−1
∑
ij

Pij(xi − xj + logKij)

= η−1xT (P1− P T1).

Above, the second equality is by definition of A, and the third equality is by
definition of K and simplifying.

The second lemma shows that the dual balancing objective gives a lower bound
on MMC. This amounts to the pointwise nonnegativity of our regularizations of
the LP relaxations.

Lemma 4.4.10 (Lower bound on MMC via balancing). Consider any η > 0 and
x ∈ Rn. Let K = exp[−ηW ] and A = diag(ex)K diag(e−x). Then −η−1 log

∑
ij Aij 6

µ(G).
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Proof. Let p = ηx. By Lemma 4.4.2, −η−1 log
∑

ij Aij = sminη, (i,j)∈EWij +
pi − pj 6 min(i,j)∈EWij + pi − pj. By feasibility of p for the dual LP relax-
ation (MMC-D), this is at most µ(G).

The third lemma is a standard conditioning bound (e.g., [17, Lemma 3.5]) for
nontrivial balancings, i.e., x ∈ Rn with objective for (MB-D’) no worse than 0.

Below, let κ :=
∑

ij Kij

minij∈supp(K)Kij
.

Lemma 4.4.11 (Conditioning of nontrivial balancings). Let K ∈ Rn×n
>0 be bal-

anceable and G = ([n], supp(K)). If x ∈ Rn satisfies
∑

ij e
xi−xjKij 6

∑
ijKij,

then maxi xi −mini xi 6 d log κ.

Note that in AMMC, we have K = exp[−ηW ] and η = O((logm)/ ε), and thus

log κ 6 log
m exp(ηwmax)

exp(−ηwmax)
= logm+ 2ηwmax (4.5)

which is of size O ((wmax/ ε) logm). We are now ready to prove Theorem 4.4.8.

Proof of Theorem 4.4.8. Rearranging the inequality in Lemma 4.4.9 yields

〈P,W 〉 = −η−1 log
∑
ij

Aij + η−1H(P ) + η−1xT (P1− P T1).

We show the right hand side is at most µ(G) + ε /2. The first term is at
most −η−1 log

∑
ij Aij 6 µ(G) by Lemma 4.4.10. The second term is at most

η−1H(P ) 6 η−1 logm = 2 ε /5 by Lemma 4.4.1 and the choice of η. Finally, the
third term is at most

1

η
xT (P1− P T1) 6

1

2η
(max

i
xi −min

i
xi) ‖P1− P T1‖1 6

δd

2η
log κ 6

ε

10
,

where above the first inequality is by applying Hölder’s inequality after possibly
re-centering x (since x 7→ xT (P1 − P T1) is invariant under adding multiples of
the all-ones vector 1 to x); the second inequality is by Lemma 4.4.11 and the
construction of P by re-normalizing a δ-balanced matrix; and the final inequality
is by the conditioning bound (4.5), the choice of η, and the bound ε 6 2wmax

(which may be assumed otherwise every cycle is ε-suboptimal).

� 4.5 Efficient rounding of the LP relaxation

Here we present an efficient implementation of the rounding step in the algorithmic
framework described in §4.3.
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Theorem 4.5.1 (Efficient rounding). There is an algorithm (namely, ROUNDQCIRC
in §4.5.1 followed by ROUNDCYCLE in §4.5.2) that, given G = (V,E,w), a normal-
ized flow P ∈ ∆E with netflow imbalance δ(P ) 6 1/d, and an accuracy ε > 0,
takes O(mdwmax/ ε) time to output a cycle σ in G satisfying

w̄(σ) 6 〈P,W 〉+
ε

4
+ 4wmaxdδ(P ).

In particular, if δ(P ) 6 ε /(16wmaxd), then w̄(σ) 6 〈P,W 〉+ ε /2.

Furthermore, this algorithm can be implemented using only O(n) additional
memory. But since this modification is a minor extension, we defer it to §4.8.1
for ease of exposition.

We perform the rounding in two steps. First, ROUNDQCIRC rounds the near-
circulation P to a circulation F ∈ FE such that (i) little flow is adjusted, and
(ii) F is γ-quantized11 for an appropriately chosen scalar γ. Property (i) ensures
that the cost is approximately preserved, and property (ii) enables the efficient
implementation of the second step. Second, ROUNDCYCLE rounds F ∈ FE to a
vertex while preserving the cost. The formal guarantees are as follows.

Lemma 4.5.2 (Guarantee for ROUNDQCIRC). Given G = (V,E,w), P ∈ ∆E

satisfying δ(P ) 6 1/d, and ε > 0, ROUNDQCIRC takes O(m + nd) time to output
F ∈ FE such that F is γ-quantized for γ = Ω(ε /(mdwmax)), and

‖F − P‖1 6 4dδ(P ) +
ε

4wmax

. (4.6)

Lemma 4.5.3 (Guarantee for ROUNDCYCLE). Given G = (V,E,w) and a γ-
quantized F ∈ FE, ROUNDCYCLE takes O(m + γ−1) time to output a cycle σ
satisfying w̄(σ) 6 〈W,F 〉.

The proof of Theorem 4.5.1 is immediate from these two lemmas.

Proof of Theorem 4.5.1. The runtime follows from Lemmas 4.5.2 and 4.5.3. Let F
be the output of ROUNDQCIRC. By Lemma 4.5.3, w̄(σ) 6 〈F,W 〉 = 〈P,W 〉+ 〈F −
P,W 〉. By Hölder’s inequality and Lemma 4.5.2, 〈F − P,W 〉 6 wmax‖F − P‖1 6
4wmaxdδ(P ) + ε /4.

§4.5.1 and §4.5.2 respectively detail these subroutines ROUNDQCIRC and ROUNDCYCLE,
and prove their respective guarantees Lemmas 4.5.2 and 4.5.3.

11We say a matrix is γ-quantized if each entry is an integer multiple of γ.
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� 4.5.1 Rounding to the circulation polytope

Here we describe the algorithm ROUNDQCIRC and prove Lemma 4.5.2. Let us first
ignore quantization: given G and a normalized flow P ∈ ∆E, how to efficiently
compute a normalized circulation F ∈ FE such that the adjusted flow ‖F − P‖1

is small compared to the total netflow imbalance δ(P ) = ‖P1 − P T1‖1? Since
this does not require edge weights, we may presently think of G as unweighted.

A simple approach is: until all vertices have balanced flow, push flow from
any vertex i with negative netflow to any vertex j with positive netflow along the
shortest path in G until i or j is balanced. After a normalization at the end, this
produces an F ∈ FE satisfying12

‖F − P‖1 = O(dδ(P )). (4.7)

While this ratio ‖F − P‖1/δ(P ) is optimally small in the worst-case, the runtime
is a prohibitive Θ(mn). The bottleneck is Θ(n) shortest path computations, each
taking Θ(m) time.

A simple trick for speeding this up while maintaining (4.7) is to use cheap
estimates of the shortest paths that are of length at most 2d. Specifically, choose
any vertex v ∈ V , and route all paths used in the flow-rebalancing through v
using the shortest path to/from v. See Algorithm 4.2 for pseudocode. Note that
computing all shortest paths to/from v (line 1 of ROUNDCIRC) takes O(m) time
by running two Breadth First Searches [196, §6.2]. Note also that by maintaining
two list of vertices, one for vertices i with positive flow imbalance δi(Q) > 0 and
the other for vertices i with negative flow imbalance δi(Q) < 0, we can implement
both lines 3 and 4 of ROUNDCIRC in constant time.

Input: Digraph G = (V,E), normalized flow P ∈ ∆E

Output: Normalized circulation F ∈ FE satisfying (4.8)

1: Choose v ∈ V , compute shortest paths to and from v
2: Q← P , δ(Q)← QT1−Q1 . Initial imbalance
3: while δ(Q) 6= 0 do
4: Choose any vertices i and j with δi(Q) > 0 and δj(Q) < 0
5: δij ← min(δi(Q),−δj(Q))
6: Add δij in Q to each edge on paths i→ v → j found in line 1 . Push flow
7: δi(Q)← δi(Q)− δij , δj(Q)← δj(Q) + δij . Update imbalance

8: return F ← Q/
∑

ij Qij

Algorithm 4.2: ROUNDCIRC: efficiently rounds to FE without adjusting much flow.

12This follows from essentially the same argument as in the proof of Lemma 4.5.4.



Sec. 4.5. Efficient rounding of the LP relaxation 101

Lemma 4.5.4 (Guarantee for ROUNDCIRC). Given a strongly connected digraph
G = (V,E) and a matrix P ∈ ∆E, ROUNDCIRC takes O(m + nd) time to output
F ∈ FE satisfying

‖F − P‖1 6 2dδ(P ). (4.8)

Proof. All steps besides the while loop take O(m) time. For this loop: each
iteration takes O(d) time since flow is pushed along at most 2d edges. Also, there
are at most n iterations, since each path saturates at least one vertex. Thus the
while loop takes O(nd) time.

For correctness, clearly F ∈ FE; it remains to show the guarantee (4.8).
Consider the path from i to v to j along which we add flow in line 6. Since the
paths from i to v and from v to j are both shortest paths, each is of length at most
d. Thus the total flow added to the path i → v → j is at most 2dδij. Summing
over all paths yields

‖Q− P‖1 6 dδ(P ). (4.9)

Now since Q is entrywise bigger than F and P , and since ‖F‖1 = 1 = ‖P‖1, we
have ‖Q−F‖1 = ‖Q−P‖1 6 dδ(P ). Therefore ‖F−P‖1 6 ‖F−Q‖1+‖Q−P‖1 6
2dδ(P ).

� 4.5.1.1 Rounding to a quantized circulation

We now address the quantization required in Lemma 4.5.2: simply quantize and
re-normalize P before ROUNDCIRC. Pseudocode is in Algorithm 4.3. Note this
quantization must be performed before ROUNDCIRC since quantizing afterwards
can unbalance the circulation. Note also that we need an estimate of d for the
quantization size; this is computed using the simple algorithm ADIAM (see §4.2).
The proof of Lemma 4.5.2 (i.e., the guarantee of ROUNDQCIRC) is straightforward
from Lemma 4.5.4 (i.e., the guarantee of ROUNDCIRC), and is deferred to §4.8.2.

Input: Weighted digraph G = (V,E,w), normalized flow P ∈ ∆E , accuracy ε
Output: Quantized, normalized circulation F ∈ FE satisfying (4.6)

1: d̃← ADIAM(G), α← ε /(40md̃wmax)
2: R← αbP/αc . Round down Pij to integer multiple of α
3: P̃ ← R/

∑
ij Rij . Renormalize to have unit total flow

4: return F ← ROUNDCIRC(G, P̃ )

Algorithm 4.3: ROUNDQCIRC: efficiently rounds to quantized circulation in FE without
adjusting much flow.
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� 4.5.2 Rounding a circulation to a cycle

Here we describe the algorithm ROUNDCYCLE and prove Lemma 4.5.3. A simple
approach for rounding a normalized circulation F ∈ FE to a cycle σ satisfying
w̄(σ) 6 〈W,F 〉 is to decompose F into a convex decomposition of cycles using the
Cycle-Cancelling algorithm [196], and then output the cycle with best objective
value. However, the runtime is a prohibitive Θ(mn). The bottleneck is Θ(m)
cycle cancellations, each taking up to Θ(n) time. Intuitively, this factor of n arises
since cancelling a long cycle of length up to n takes a long time yet does not
give more “benefit” than a short cycle. We speed up this algorithm by exploiting
the quantization of F to ensure that cancelling long cycles gives a proportionally
larger benefit than short cycles.

Specifically, let ROUNDCYCLE be the following minor modification of the Cycle-
Cancelling algorithm. Initialize F̃ = F . While F̃ 6= 0, choose any vertex i that has
an outgoing edge (i, j) with nonzero flow F̃ij 6= 0. Run Depth First Search (DFS)
from i until some cycle σ is created. If w̄(σ) 6 〈F,w〉, then terminate. Otherwise,
cancel the cycle σ by subtracting f̃σ := mine∈σ F̃e from the flow F̃e on each edge
e ∈ σ. Then continue the DFS in a way that re-uses previous work—this is
crucial for near-linear runtime. Specifically, if the previous DFS created a cycle by
returning to an intermediate vertex j 6= i, then continue the DFS from j, keeping
the work done by the DFS from i to j. Otherwise, if the previous DFS created
a cycle by returning to the initial vertex i, then restart the DFS at any vertex
which has an outgoing edge with nonzero flow. Note that ROUNDCYCLE leverages
the quantization only in its runtime analysis.

Proof of Lemma 4.5.3. Correctness is immediate by linearity. For the runtime,
the key is the invariant that F̃ remains a γ-quantized circulation. That F̃ is a
circulation ensures that the DFS always finds an outgoing edge and thus always
finds a cycle since some vertex is eventually repeated. When such a cycle σ is
found, its cancellation lowers the total flow

∑
ij F̃ij by f̃σ|σ|, which is at least

γ|σ| by the invariant. Since the total flow is initially
∑

ij Fij = 1, ROUNDCYCLE

therefore terminates after cancelling cycles with at most γ−1 total edges, counting
multiplicity if an edge appears in multiple cancelled cycles. Since processing an
edge takes O(1) amortized time (again counting multiplicity), we conclude the
desired O(m+ γ−1) runtime bound.

� 4.6 Concluding the approximation algorithm

Algorithm 4.4 provides pseudocode for our proposed approximation algorithm
AMMC. It instantiates the framework in §4.3 using the approximate Matrix Balanc-
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ing reduction in Theorem 4.4.8 for the optimization, and using the algorithm in
Theorem 4.5.1 for the rounding. By Theorem 4.4.8, AMMC succesfully approximates
MMC regardless of how the balancing is performed. Since balancing is an active
area of research (e.g., [9, 17, 67, 167]), we abstract this computation into a subrou-
tine ABAL: given a balanceable K ∈ Rn×n

>0 and an accuracy δ > 0, ABAL outputs a
vector x ∈ Rn such that diag(ex) solves approximate Matrix Balancing on K to
δ accuracy. Let TABAL(K, δ) and MABAL(K, δ) respectively denote the runtime and
memory of ABAL.

Input: Weighted digraph G = ([n], E, w), accuracy ε > 0
Output: Cycle σ in G satisfying w̄(σ) 6 µ(G) + ε

\\ Optimization step: compute near-feasible, near-optimal solution P for (MMC-P)
1: d̃← ADIAM(G), δ ← ε /(16wmaxd̃) . Precision to balance
2: η ← 2.5(logm)/ ε, K ← exp[−ηW ] . Matrix to balance
3: x← ABAL(K, δ), A← diag(ex)K diag(e−x), P ← A/(

∑
ij Aij) . Balance K

\\ Rounding step: round P to a vertex of FE with nearly as good cost for (MMC-P)
4: F ← ROUNDQCIRC(G,P, ε) . Correct feasibility and quantize
5: σ ← ROUNDCYCLE(G,F ) . Round to vertex

return σ

Algorithm 4.4: AMMC: Matrix Balancing approach for approximating MMC.

Below, §4.6.1 establishes guarantees for AMMC in terms of a general subroutine
ABAL, thereby reducing approximating MMC to approximate Matrix Balancing.
In §4.6.2, we implement ABAL with concrete, state-of-the-art balancing algorithms
to conclude our proposed MMC algorithm.

� 4.6.1 Reducing MMC to matrix balancing

� 4.6.1.1 Accuracy and runtime

Theorem 4.6.1.A (Accuracy and runtime of AMMC). Given a weighted digraph
G = (V,E,w) and an accuracy ε > 0, AMMC computes a cycle σ in G satisfying
w̄(σ) 6 µ(G) + ε in time TABAL(K, δ) +O(mdwmax/ ε).

Proof. By the guarantee of ADIAM (see §4.2), d 6 d̃ 6 2d. The runtime of AMMC
follows from the runtimes of its constituent subroutines: O(m) for ADIAM, and
O(mdwmax/ ε) for rounding (Theorem 4.5.1). Correctness follows from Observa-
tion 4.3.1 since AMMC implements both the optimization step (Theorem 4.4.8) and
the rounding step (Theorem 4.5.1) to the accuracies prescribed in the algorithmic
framework described in §4.3 for δ = ε /(16wmaxd̃) 6 ε /(16wmaxd).
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� 4.6.1.2 Memory-optimality

We now describe how to implement AMMC using only O(n) additional memory.
For ease of exposition, the memory usage counts the total numbers stored. (In
§4.6.1.3, we show AMMC is implementable using Õ(1)-bit numbers.) Since storing
G requires Θ(m) memory, we assume G = (V,E,w) is input to AMMC through two
oracles:

• Edge oracle: given i ∈ V and k ∈ [n], it returns the k-th incoming and
outgoing edges from i (in any arbitrary but fixed orders). If k is larger than
the indegree or outdegree of i, the respective query returns null.

• Weight oracle: given i, j ∈ V , it returns w(i, j) if (i, j) ∈ E, and∞ otherwise.

For simplicity, we assume that queries to these oracles take O(1) time. In practice,
the edge oracle can be implemented with simple, standard adjacency lists; and
the weight oracle by e.g., hashing or re-computing weights on the fly if w(·, ·) is
an efficiently computable function.

Critically, in AMMC we do not explicitly compute the intermediate matrices K,
A, P , and F ; instead, we form implicit representations for them. To formalize
this, it is helpful to define the notion of an (T,M) matrix oracle for a matrix: this
is a data structure that uses M storage, and can return a queried entry of the
matrix in T time and O(1) additional memory.

Theorem 4.6.1.B (Memory-optimality of AMMC). There is an implementation
of AMMC that, given G through its edge and weight oracles, achieves the accuracy
guarantee in Theorem 4.6.1.A and uses TABAL(K, δ) +O(mdwmax/ ε+m log n) time
and MABAL(K, δ) +O(n) memory.

Proof. We form an (O(1), O(1)) matrix oracle for K by storing η—a query for
entry Kij is performed by querying w(i, j) and computing e−ηw(i,j). We form an
(O(1), O(n)) matrix oracle for P by storing x and sA :=

∑
ij e

xi−xjKij—a query
for entry Pij is performed by querying Kij and computing exi−xjKij/sA. This
matrix oracle for P is passed as input to the rounding algorithms, which are
implemented in the memory-efficient manner in Theorem 4.8.1.

� 4.6.1.3 Bit-complexity

Above, our analysis assumes exact arithmetic for ease of exposition; however,
numerical precision is an important issue since näıvely implementing AMMC can
require large bit-complexity—indeed, since maxi xi − minj xj can be Ω(d) [126,
§3], näıvely operating on A = diag(ex)K diag(e−x) can require Ω(d)-bit numbers.
Here, we establish that AMMC can be implemented on Õ(1)-bit numbers. (This
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analysis excludes the ABAL subroutine since we have not yet instantiated it, but the
concrete implementation used below also has logarithmic bit complexity; details
in §4.6.2.)

Theorem 4.6.1.C (Bit-complexity of AMMC). There is an implementation of
AMMC that, aside from possibly ABAL, performs all arithmetic operations over
O(log nwmax

ε
) = Õ(1)-bit numbers and achieves the same runtime bounds (in terms

of arithmetic operations), memory bounds (in terms of total numbers stored), and
accuracy guarantees as in Theorem 4.6.1.B.

This implementation essentially only modifies how AMMC computes entries of
K, A, and P on the exponential scale by using the log-sum-exp trick. Details are
deferred to §4.8.3. Briefly, this modification relies on the observation that AMMC is
robust in the sense that it outputs an O(ε)-suboptimal cycle even if these entries
are computed to low precision.

� 4.6.2 Concrete implementation

By Theorem 4.6.1, AMMC approximates MMC using any approximate balancing
subroutine ABAL. The fastest practical instantiations of ABAL are variants of
Osborne’s algorithm [166]. In particular, combining Theorem 4.6.1 with the
recent analysis of the Random Osborne algorithm in [17] yields the following near-
linear runtime for approximating MMC on graphs with polylogarithmic diameter,
both in expectation and with high probability. To emphasize the algorithm’s
practicality, below we write the single logarithmic factor in the runtime rather
than hiding it with the Õ notation.

Theorem 4.6.2 (Main result: AMMC with Random Osborne). Consider implement-
ing ABAL using the Random Osborne algorithm in [17]. Then given a weighted
digraph G through its edge and weight oracles, and an accuracy ε > 0, AMMC

computes a cycle σ in G satisfying w̄(σ) 6 µ(G) + ε using O(n) memory and T
arithmetic operations on O(log(nwmax

ε
)) = Õ(1)-bit numbers, where T satisfies

• (Expectation guarantee.) E[T ] = O(md2(wmax

ε
)2 log n).

• (High probability guarantee.) For all α ∈ (0, 1), P
(
T 6 md2(wmax

ε
)2 log n log 1

α

)
>

1− α.

Proof. The runtime and bit-complexity of Random Osborne follow from [17, The-
orem 5.1 and 8.1] combined with the conditioning bound (4.5). Random Osborne
requires only O(n) memory since K is given through its query oracle. For the rest
of AMMC, apply Theorem 4.6.1.
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Remark 4.6.3 (Numerical implementation). As described in §4.6.1.3, comput-
ing K = exp[−ηW ] runs into numerical precision issues for large η. This is
circumvented by not explicitly computing K: numerical implementations of Os-
borne’s algorithm operate on Kij only through logKij = −ηWij, and compute all
intermediate quantities via the log-sum-exp trick [17].

Remark 4.6.4 (Alternative implementation). ABAL can also be implemented using
the algorithm of [67]. This achieves comparable theoretical guarantees13, but relies
on Laplacian solvers which (currently) have no practical implementation [116].

� 4.7 Preliminary numerical simulations

Although the focus of this chapter is theoretical, here we provide preliminary
numerical simulations that investigate the practical aspects of our proposed algo-
rithm AMMC and validate our theoretical findings.

Experimental setup. We compared AMMC with state-of-the-art MMC algorithms on a
number of different input graphs (e.g., sparse, dense, random, etc.). In all cases, we
empirically observed that AMMC had close to linear runtime. Because many problem
instances (e.g., random graphs) are “easy” for most MMC algorithms [94], some
competitor algorithms ran faster than expected on some of these inputs. Hence, in
order to appreciate the differences between AMMC and the competitor algorithms,
below we benchmark on the “hardest” families of problem instances from the
comprehensive experimental survey [94]. These “hard” instances are formed by
taking a random graph (either sparse or dense), planting a Hamiltonian Cycle
and setting its weights so that it is the Minimum-Mean-Cycle, and then hiding
this optimal cycle by randomly permuting the vertices and performing “potential
perturbations”; full reproduciblity details are provided in §4.8.4. The resulting
graphs are either sparse (with m ≈ 7n edges) or dense (with m ≈ n2/2 edges),
and have a unique Minimum-Mean-Cycle that is maximally long. All experiments
are run on a standard 2018 MacBook Pro laptop.

� 4.7.1 Scalability

Figure 4.2 demonstrates that AMMC enjoys (close to) linear runtime in practice
and is competitive with the three state-of-the-art algorithms implemented in
the popular, heavily-optimized C++ LEMON library [79]. These competitors
are the algorithm of Karp [130], the algorithm of Hartmann and Orlin [112],

13Namely, Õ(md(wmax/ ε)
3) arithmetic operations over Õ(poly(wmax/ ε))-bit numbers (by

combining Theorem 4.18 and Lemma 4.24 of [67] with the bound (4.5)).
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(a) For sparse graphs with m = Θ(n) edges,
a linear runtime is O(m) = O(n).

(b) For dense graphs with m = Θ(n2) edges,
a linear runtime is O(m) = O(n2).

Figure 4.2: Scalability of our proposed algorithm AMMC vs state-of-the-art algorithms im-
plemented in the popular LEMON library [79]. AMMC computes an approximate solution
(here to roughly 3 digits of precision) whereas the others compute exact solutions. The
input instances are described in the main text. We report the average runtime (solid
line) over 10 runs, with 1 standard deviation indicated by the shading. We estimate each
algorithm’s asymptotic runtime using linear regression (dashed line). The asymptotic
runtime of AMMC on both sparse graphs (left) and dense graphs (right) is close to linear
and outperforms all competitors.

and the Howard iteration algorithm [66, 75, 76, 117]. Note that AMMC computes
approximate solutions whereas these competitors obtain exact solutions. In this
experiment, the accuracy parameter of AMMC is set so that the suboptimality is
∼10−3 (edge weights are normalized to [0, 1]). Smaller ε leads to qualitatively
similar results of near-linear runtime, although the constants of course degrade.

In Figure 4.2, we estimate the asymptotic runtime of each algorithm using
linear regression; these fits are quite accurate. Observe that AMMC has the fastest
asymptotic runtime among all competitor algorithms. Moreover, the asymptotic
runtime of AMMC on both the sparse graph inputs (Figure 4.2a) and dense graph
inputs (Figure 4.2b) is close to linear. In contrast, none of the competitor algo-
rithms exhibit near-linear runtime scalings on either input. This enables AMMC to
scale to larger instances than the competitor algorithms.

We remark that while the LEMON library is heavily-optimized, our implemen-
tation of AMMC is not. An optimized implementation of AMMC may lead to better
constants and runtimes. Indeed, as written on page 1 of the empirical survey [94],
“efficient implementations of MMC algorithms require nontrivial engineering, in-
cluding data structures, efficient incremental restart, early termination detection,
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(a) Error from the true value of MMC. (b) Error bound that AMMC can certify.

Figure 4.3: AMMC often finds significantly better approximations than our worst-case
theoretical bounds guarantee. This is demonstrated by plotting the a posteriori error
versus the a priori error estimate ε. The a posteriori error is measured via the subopti-
mality (left) and the duality gap (right). The input is the sparse graphs described in
the main text, with n = 212 vertices. See the main text for a detailed description of the
three plotted lines. We report the average performance over 50 runs, with 1 standard
deviation indicated by the shading.

and hybrid algorithms.” These are interesting directions for future research, but
out of the scope of this chapter.

We also remark that we implement AMMC with a slightly different variant of
Osborne’s algorithm than in our theoretical results: Random-Reshuffle Cyclic
Osborne (see [17] for a description). Random Osborne is used in our theoretical
analysis and provably yields near-linear runtimes (Theorem 4.6.2). Random-
Reshuffle Cyclic Osborne often enjoys slightly faster empirical convergence, but
comparable theoretical guarantees are not known.

� 4.7.2 Outperforming worst-case theoretical guarantees

Here we mention that AMMC often finds significantly better approximations than
our worst-case theoretical guarantees. A constant factor improvement is of course
explained by the fact that we have not optimized the constants in this chapter.
However, even better performance appears to occur if the Cycle-Cancelling sub-
routine ROUNDCYCLE described in §4.5.2 is not terminated early; that is, if the
fractional Matrix Balancing circulation is fully decomposed into cycles and the
best one is output. The point is that often, at least one of these cycles is sig-
nificantly better than the average—which is all that can be guaranteed in the
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worst-case by a linearity argument (c.f. §4.5.2). Note also that our near-linear
runtime bound still applies to this modified algorithm (since this is simply the
worst-case of our proved runtime bound, c.f. the proof of Lemma 4.5.3).

To investigate the practical improvement from different versions of ROUNDCYCLE,
we plot in Figure 4.3 the error of three increasingly finer estimates of µ(G) that
AMMC (implicitly) makes:

• “Before rounding” refers to the value 〈W,F 〉 of the normalized circulation F
computed by AMMC before ROUNDCYCLE (i.e., the output of ROUNDQCIRC).

• “Cancel fast” refers to the value w̄(σfast) of the cycle σfast computed by the
version of ROUNDCYCLE that terminates early.

• “Cancel full” refers to the value w̄(σfull) of the cycle σfull computed by the
version of ROUNDCYCLE that does not terminate early.

Clearly, 〈W,F 〉 > w̄(σfast) > w̄(σfull) > µ(G). Indeed, each of these three esti-
mates is an upper bound on µ(G) by feasibility for the primal LP (MMC-P). In
Figure 4.3a, we plot this primal suboptimality, a.k.a., the difference between the
estimate and µ(G). Note that this suboptimality is not computable with AMMC

since it requires the exact value of MMC. In Figure 4.3b, we plot an upper bound
on this suboptimality that AMMC can provably certify: the duality gap between
these primal estimates and the estimate of the dual LP (MMC-D) obtained by
using the approximate Matrix Balancing solution computed in step 1 of AMMC.

As Figure 4.3 shows, in practice the error of AMMC—measured either via the
true suboptimality or the certifiable duality gap—is much better than the worst-
case bounds when ROUNDCYCLE is terminated early, and moreover is even better
when ROUNDCYCLE is run to completion.

� 4.8 Deferred details

� 4.8.1 Memory optimality of the rounding algorithm

Here we describe a memory-efficient implementation of the rounding algorithm in
Theorem 4.5.1. See §4.6.1.2 for the definitions of a matrix oracle and the edge and
weight oracles of a graph. Note that in what follows, T = O(1) and M = O(n)
for AMMC; see Theorem 4.6.1.B.

Theorem 4.8.1 (Memory-efficient rounding). If G is given through its edge oracle
and weight oracle, and P is given through an (T,M) matrix oracle, then the
algorithm in Theorem 4.5.1 can be run in O(m(T + log n+ dwmax/ ε)) time and
O(M + n) memory.
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Proof. We describe how to implement the algorithms in Theorem 4.5.1 in a
memory-efficient way that does not change the outputted cycle. The subrou-
tine ADIAM can be implemented using O(n) memory since Breadth First Search
can be implemented using the edge oracle for G and O(n) memory. To perform
lines 2 and 3, ROUNDQCIRC forms an (T + O(1),M + O(1)) matrix oracle for P̃
by using O(1) additional memory to compute and store sR :=

∑
ij Rij—then an

entry P̃ij can be queried by querying Pij and computing αbPij/αc/sR.
ROUNDCIRC takes this matrix oracle for P̃ as input and forms an (T+O(log n),M+

O(n)) matrix oracle for F . Specifically, it implicitly performs line 6 by storing in
a Balanced Binary Search Tree the amount of flow, totalled over these saturating
paths, pushed along each edge. This takes O(n) additional storage since all edges
lie on the Shortest Paths trees in or out of v, which collectively contain at most
2(n− 1) edges. The matrix oracle for F also stores sQ :=

∑
ij Qij—then an entry

Fij can be queried by querying P̃ij, querying the amount of adjusted flow on edge
(i, j) in the Balanced Binary Search Tree, and re-normalizing by sQ.

In ROUNDCYCLE, we maintain for each vertex i a counter ji. This is the lowest
index with respect to the (outgoing) edge oracle of G, that corresponds to an
outgoing edge from i with nonzero flow. The DFS always takes these edges. We
query each Fij at most once: the first time we cancel a cycle with that edge. If
the edge is partially cancelled, then we store the remaining flow. (If the edge is
fully saturated, then we do not need to store anything since we will never come
back to it). By the bias of the DFS, there are always at most n partially cancelled
edges (one for each vertex), so this requires O(n) additional memory.

� 4.8.2 Proof of Lemma 4.5.2

Lemma 4.8.2 (Helper lemma for ROUNDQCIRC). Consider P , R, P̃ , and α in
ROUNDQCIRC. Then (i) ‖P̃ − P‖1 6 2αm, and (ii) δ(P̃ ) 6 2δ(P ) + 4αm.

Proof. Proof of item (i). First note that since rounding P to R changes every
entry by at most α, thus ‖R − P‖1 6 αm, and so also

∑
ij Rij > 1 − αm. By

definition of P̃ , ‖P̃ − R‖1 = 1 − ‖R‖1 6 αm. Thus by the triangle inequality,
‖P̃ − P‖1 6 ‖P̃ −R‖1 + ‖R− P‖1 6 2αm.

Proof of item (ii). Note that rounding on an edge to an integer multiple of
α increases the flow imbalance at each adjacent vertex by at most α, thereby
increasing the total imbalance by at most 2α. Thus R has imbalance at most
δ(R) 6 δ(P ) + 2αm. By definition of P̃ , we have δ(P̃ ) = δ(R)/(

∑
ij Rij) 6

(δ(P )+2αm)/(
∑

ij Rij). We therefore conclude by observing that 1/(
∑

ij Rij) 6 2,
which follows from

∑
ij Rij > 1−αm combined with the fact that α 6 1/(2m).
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Proof of Lemma 4.5.2. The runtime bound follows from the runtimes of ADIAM
(see §4.2) and ROUNDCIRC (Lemma 4.5.4). The guarantee F ∈ FE is immediate
from Lemma 4.5.4.

Next, we establish (4.6). By item (i) of Lemma 4.8.2, ‖P̃ − P‖1 6 2αm.
Moreover, by Lemma 4.5.4 and then item (ii) of Lemma 4.8.2, ‖F − P̃‖1 6
2dδ(P̃ ) 6 4dδ(P ) + 8αmd. Thus ‖F − P‖1 6 ‖F − P̃‖1 + ‖P̃ − P‖1 6 4dδ(P ) +
10αmd. By our choice of α and the bound d̃ > d (see §4.2)), the latter summand
is at most ε /(4wmax).

Finally, we establish the quantization guarantee. By construction, R is α-
quantized, and so P̃ is β-quantized for β := α/(

∑
ij Rij) > α. Since P̃ is the input

to ROUNDCIRC in ROUNDQCIRC, in ROUNDCIRCQ will be β-quantized since P̃ is. Thus
F is γ-quantized for γ := β/

∑
ij Qij. Now

∑
ij Qij =

∑
ij P̃ij +

∑
ij(Qij − P̃ij) 6

1+dδ(P̃ ) by (4.9), and this is O(1) by item (ii) of Lemma 4.8.2 and the assumption
that δ(P ) 6 1/d. Therefore γ = Ω(β) = Ω(α). We conclude by our choice of α
and the fact that d̃ 6 2d (see §4.2).

� 4.8.3 Bit complexity

Here we prove Theorem 4.6.1.C. For simplicity of exposition, we omit constants
and show how to ensure AMMC outputs an O(ε)-suboptimal cycle; the claim then
follows by re-normalizing ε.

Proof of Theorem 4.6.1.C. Modification of AMMC. The computation of A and P
is modified slightly as follows. Let α = c ε /(wmaxmd) for a sufficiently small
constant c. (i) Read and store the input weights Wij and the output x of ABAL
to ±α precision. (ii) Compute and store Yij := xi − xj + ηWij to ±α precision for
each (i, j) ∈ E. (iii) Translate Zij := Yij − y, where y := maxij Yij. (iv) Compute
Aij = eZij to ±α2 precision if Zij > logα, and set Aij = 0 otherwise. (v) Compute
entries of P = A/

∑
ij Aij to ±α precision.

Bit-complexity analysis. By definition of α, log 1
α

= O(log nwmax

ε
) = Õ(1). (i)

The bit complexity of the stored weights is thus O(log wmax

α
) = Õ(1). The bit

complexity of the stored x is O(log maxi xi−mini xi
α

) = Õ(1), since log(maxi xi −
mini xi) = O(log nwmax

ε
) = Õ(1) by Lemma 4.4.11 and (4.5). (ii), (iii) The bit

complexity of Y , y, Z is similarly Õ(1). (iv) The bit complexity of Aij isO(log 1
α

) =

Õ(1). (v) The bit complexity of Pij is O(log 1
α2 ) = Õ(1). Since P has low bit-

complexity, the rest of AMMC does by construction of the rounding algorithms.
Proof of correctness. We make use of the following lemma.

Lemma 4.8.3 (Robustness of AMMC). The following changes to AMMC affect the
mean-weight w̄(σ) of the returned cycle σ by at most ±O(ε):
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(1) The entries of P are approximated to ±α additive error and remain nonneg-
ative.

(2) The nonzero entries of P are approximated to [1±α] multiplicative error.

(3) The nonzero entries of A are approximated to [1±α] multiplicative error.

Proof. The proof of item (1) is identical to the truncation in ROUNDQCIRC in
Lemma 4.5.2. Item (2) then follows since Pij 6 1. Item (3) then follows since
P = A/(

∑
ij Aij).

By the guarantee for AMMC in exact arithmetic (Theorem 4.6.1.A), it suffices
to show that these modifications (i)-(v) affect w̄(σ) by at most ±O(ε). (i) and
(ii) change Aij by [1±O(α)] multiplicative error, which is acceptable by item (3)
of Lemma 4.8.3. (iii) rescales A, which does not alter P . (iv) First we argue
the effect of dropping all Aij < α to 0. The only affected entries of Pij are
those dropped to 0; and since (iii) ensures

∑
i′j′ Ai′j′ > maxi′j′ Ai′j′ = 1, thus

Pij = Aij/
∑

i′j′ Ai′j′ must have been at most α, so setting Pij to 0 is acceptable

by item (1) of Lemma 4.8.3. Next, we argue the truncation of Aij. The ±α2

additive precision of Aij implies [1±α] multiplicative error for the nonzero entries
of A (since they are at least α), which is acceptable by item (3) of Lemma 4.8.3.
Finally, (v) is acceptable by item (1) of Lemma 4.8.3.

� 4.8.4 Reproducibility details for the experiments

Both the sparse and dense inputs used in §4.4 are generated in a three-step
process á la the experimental survey [94]. First, the underlying graph is generated.
For the dense graphs, this is an Erdös-Renyi random graph where each edge is
included with probability 1/2 and has uniform random weights in {1, . . . , 100}.
For the sparse graphs, this is a random graph with 5n random edges and a
random Hamiltonian cycle, again all with uniform random weights in {1, . . . , 100}.
Second, we plant a Hamiltonian cycle that has weight −1 on one edge, and
weight 0 on the rest. This is the “subfamily 05” perturbation of [94]. It ensures
that graph has a unique Minimum-Mean-Cycle and moreover that this optimal
cycle is maximally long. Third, the planted Hamiltonian Cycle is hidden by
randomly permuting the vertices and performing a “potential perturbation”; that
is, adjusting w(i, j) 7→ w(i, j) + pi − pj where p ∈ Rn is a random vector with
entries drawn uniformly from {1, . . . , 200}. This potential perturbation does not
affect the Minimum Mean Cycle. Finally, all edge weights are normalized to [0, 1]
via a simple shift and scaling.
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Chapter 5

Hardness results for Multimarginal
Optimal Transport

Whereas Part I of this thesis studies optimization problems over joint probability
distributions with two constrained marginals, in Part II of this thesis we turn to the
case of many constrained marginals. In the common setting of linear optimization,
these problems are called Multimarginal Optimal Transport (MOT).

A key issue in applications of MOT is the complexity: the linear program has
exponential size in the number of marginals k and their support sizes n. A recent
line of work (including the results in the subsequent chapters) has shown that
MOT is poly(n, k)-time solvable for certain families of costs that have poly(n, k)-
size implicit representations. However, it is unclear what further families of costs
this line of algorithmic research can encompass.

The purpose of this chapter is to understand these fundamental limitations by
establishing the intractability of a number of MOT problems studied in the litera-
ture that have resisted previous algorithmic efforts. For instance, we demonstrate
that in the absence of further structure, MOT is intractable even if the objective
function decomposes into pairwise interactions between the variables, or if it de-
composes in a low-rank manner with super-constant rank. As another example,
we provide evidence that repulsive costs make MOT intractable by showing that
several such problems of interest are NP-hard to solve. All of our hardness results
hold even for approximate computation—and to the best of our knowledge, these
are the first inapproximability results for any MOT problems. Together, these
intractability results help guide the search for efficient MOT algorithms since they
establish that these commonly occuring structural properties of MOT problems
are, by themselves, insufficient for developing efficient algorithms.
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� 5.1 Introduction

Multimarginal Optimal Transport (MOT) is the problem of linear programming
over joint probability distributions with fixed marginal distributions. In this way,
MOT generalizes the classical Kantorovich formulation of Optimal Transport from
2 marginal distributions to an arbitrary number k > 2 of them.

More precisely, an MOT problem is specified by a cost tensor C in the k-
fold tensor product space (Rn)⊗k = Rn⊗ · · · ⊗ Rn, and k marginal distributions
µ1, . . . , µk in the simplex ∆n = {v ∈ Rn

>0 :
∑n

i=1 vi = 1}.1 The MOT problem is
to compute

min
P∈M(µ1,...,µk)

〈P,C〉 (MOT)

where M(µ1, . . . , µk) is the “transportation polytope” consisting of all entrywise
non-negative tensors P ∈ (Rn)⊗k satisfying the marginal constraints∑

j1,...,ji−1,ji+1,...,jk

Pj1,...,ji−1,j,ji+1,...,jk = [µi]j

for all i ∈ {1, . . . , k} and j ∈ {1, . . . , n}.
This MOT problem has recently attracted significant interest due to its many

applications in data science, applied mathematics, and the natural sciences; see
for instance [13, 32, 176, 178] and the many references within. However, a key
issue that dictates the usefulness of MOT in applications is its complexity. Indeed,
while MOT can be easily solved in nO(k) time since it is a linear program in nk

variables and nk + nk constraints, this is far from scalable.
In the literature as well as in this thesis, we are interested in “polynomial

time” algorithms, where polynomial means in the number of marginals k and their
support sizes n (as well as the scale-invariant quantity Cmax/ ε if we are considering
ε additive approximations, where Cmax denotes the maximum magnitude of the
entries of C). An obvious obstacle is that in general, one cannot even read the
input to MOT—let alone solve MOT—in poly(n, k) time since the cost tensor C
has nk entries.

Nevertheless, in nearly all applications of practical interest, the cost tensor
C has a simple structure that enables it to be input implicitly via a poly(n, k)-
sized representation. Moreover, a recent line of work has shown that in many
applications where C has such a polynomial-size implicit representation, the MOT

1For simplicity, all µi are assumed to have the same support size n. Everything in Part II
of this thesis extends in a straightforward way to non-uniform sizes ni where nk is replaced by∏k

i=1 ni, and poly(n, k) is replaced by poly(maxi ni, k).
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problem can also be solved in polynomial time. A simple-to-describe illustrative ex-
ample is cost tensors C which have constant rank and are given as input in factored
form [13]. Other examples include computing generalized Euler flows [13, 32], com-
puting low-dimensional Wasserstein barycenters [11, 55], random combinatorial
optimization [2, 111, 152, 159, 170, 229, 241], Distributionally Robust Optimiza-
tion [61, 153, 160], solving MOT problems with tree-structured costs [108], and
solving MOT problems with costs that have dynamic programming structure or
certain combinatorial structure [13]. See Chapter 6 for further details on this
algorithmic line of research.

A fundamental question is: What further families of succinctly representable
costs lead to tractable MOT problems? Previously, hardness results were only
known for exact computation and for MOT problems that either 1) have binary
variables (n = 2) and supermodular costs [2], or 2) have costs which are related
to combinatorial optimization problems, either of the form C(x) = minv∈V 〈x, v〉
or C(x) = 1[minv∈V 〈x, v〉 6 t] for a polytope V [61, 135, 170, 241].2

But what about other problems? There are a number of other MOT problems
studied in the literature for which C has a poly(n, k)-sized representation but
developing poly(n, k)-time algorithms has resisted previous efforts. As an illustra-
tive example, can MOT still be solved in poly(n, k) time if the cost C has rank
that is low but not constant, say of size poly(n, k)? The purpose of this chapter is
to understand the fundamental limitations of this rapidly growing line of research
centered around efficient MOT algorithms.

� 5.1.1 Contributions

In this chapter we establish the intractability of a number of MOT problems studied
in the literature that have resisted previous algorithmic efforts, as described below.
These intractability results help guide the search for efficient MOT algorithms
since they establish that these common “structures” of MOT problems are, by
themselves, insufficient for developing efficient algorithms. Moreover, there were
no previous results for hardness of approximate computation for MOT; we provide
the first such results.

Low-rank costs. In §5.4, we consider MOT problems with low-rank cost tensors
given in factored form. Recent algorithmic work has shown that such MOT
problems can be solved to arbitrary precision ε > 0 in poly(n, k, Cmax/ ε) time for
any fixed rank r [13]. However, this algorithm’s dependence on r is exponential,
and it is a natural question whether such MOT problems can be solved in time

2These results are from the random combinatorial optimization literature, which has studied
MOT under a different name and in a different community.
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that is also polynomial in r. We show that unless P = NP, the answer is no.
Moreover, our hardness result extends even to approximate computation. This
provides a converse to the aforementioned algorithmic result.

Pairwise-interaction costs. In §5.5, we consider MOT problems with costs C that
decompose into sums of pairwise interactions

Cj1,...,jk =
∑

16i<i′6k

gi,i′(ji, ji′) (5.1)

for some functions gi,i′ : [n] × [n] → R. This cost structure appears in many
applications; for instance in Wasserstein barycenters [22] and the MOT relaxation
of Density Functional Theory [52, 70]. Although these costs have poly(n, k)-size
implicit representations, we show that this cost structure alone is not sufficient
for solving MOT in polynomial time.

One implication of this NP-hardness result is a converse to the algorithmic
result of [13] which shows that MOT problems can be solved in poly(n, k) time
for costs C which are decomposable into local interactions of low treewidth. This
is a converse because the pairwise-interactions structure (5.1) also falls under the
framework of MOT costs that decompose into local interactions, but has high
treewidth.

Repulsive costs. In §5.6, we consider MOT problems with “repulsive costs”. In-
formally, these are costs Cj1,...,jk which encourage diversity between the indices
j1, . . . jk; we refer the reader to the nice survey [80] for a detailed discussion of such
MOT problems and their many applications. We provide evidence that repulsive
costs lead to intractable MOT problems by proving that several such MOT prob-
lems of interest are NP-hard to solve. Specifically, in §5.6.1 we show this for MOT
problems with the determinantal cost studied in [54, 80], and in §5.6.2 we show
this for the popular MOT formulation of Density Functional Theory [33, 52, 70]
with the Coulomb-Buckingham potential. Again, our hardness results extend even
to approximate computation.

� 5.1.2 Related work

Algorithms for MOT. The many applications of MOT throughout data science,
mathematics, and the sciences at large have motivated a rapidly growing literature
around developing efficient algorithms for MOT. Such algorithms are described
in detail in Chapter 6. The purpose of this chapter is to understand fundamental
limitations of this line of work.
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Complexity of MOT value vs sparse solutions. Deciding whether MOT has a solution
of sparsity exactly n is well-known to be NP-hard due to a connection with the
NP-hard problem of hypergraph matching [91, 129]. This NP-hardness holds even
in special cases such as (i) when the number of marginals k = 3 and the cost
tensor C has {0, 1}-valued entries; and (ii) the Wasserstein barycenter problem in
dimension d = 2 [46].

Nevertheless, in practice the goal is typically to find an MOT solution which is
polynomially sparse (albeit perhaps not n-sparse), and this task is not necessarily
NP-hard. Indeed, for the aforementioned MOT problems of type (i) and (ii), it
is possible to compute O(nk)-sparse solutions in polynomial time [11, 13], so
the existing NP-hardness results about computing n-sparse solutions do not give
any indication about whether it is possible to find polynomially sparse solutions.
In contrast, our results show that it is NP-hard to even compute the value of
certain structured MOT problems—which also implies NP-hardness of computing
solutions with any polynomial sparsity.

Other related work. We mention two tangentially related bodies of work in passing.
First, the transportation polytope (a.k.a., the constraint set in the MOT problem)
is an object of significant interest in discrete geometry and combinatorics, see
e.g., [77, 236] and the references within. Second, linear programming problems
over exponentially-sized joint probability distributions appear in various fields such
as game theory [174] and variational inference [226]. However, it is important to
note that the complexity of these linear programming problems is heavily affected
by the specific linear constraints, which often differ between problems in different
fields.

� 5.2 Preliminaries

Notation. For the convenience of the reader, here we collect notation used com-
monly throughout the chapter. The k-fold tensor product space Rn⊗ · · · ⊗ Rn is
denoted by (Rn)⊗k, and similarly for (Rn

>0)⊗k. The set {1, . . . , n} is denoted by
[n]. The i-th marginal of a tensor P ∈ (Rn)⊗k is the vector mi(P ) ∈ Rn with j-th
entry

∑
j1,...,ji−1,j,ji+1,...,jk

Pj1,...,ji−1,j,ji+1,...,jk , for i ∈ [k] and j ∈ [n]. In this nota-

tion, the transportation polytope in (MOT) is M(µ1, . . . , µk) = {P ∈ (Rn
>0)⊗k :

mi(P ) = µi, ∀i ∈ [k]}. For shorthand, we often denote an index (j1, . . . , jk) by
~j. For a tensor C ∈ (Rn)⊗k, we denote the maximum absolute value of its entries
by Cmax = max~j |C~j|; similarly for a matrix p ∈ Rn×k, we denote the maximum
absolute value of its entries by pmax.
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MOT dual. Since MOT is an LP in standard form, the dual LP to (MOT) is

max
q1,...,qk∈Rn

k∑
i=1

〈qi, µi〉 subject to C~j −
k∑
i=1

[qi]ji > 0, ∀~j ∈ [n]k. (MOT-D)

Bit complexity. Throughout, we assume for simplicity of exposition that all entries
of the cost C and the weights p ∈ Rnk inputted in the MINC problem have bit
complexity at most poly(n, k). This implies that the distributions µ on which
the MOTC oracle is queried in Theorems 5.3.2 and 5.3.3 also have polynomial bit
complexity. The general case is a straightforward extension.

Computational complexity. BPP is the class of problems solvable by polynomial-
time randomized algorithms with error probability that is < 1/3 (or equivalently,
any constant less than 1/2). The statement “NP 6⊂ BPP” is a standard assumption
in computational complexity and is the randomized version of P 6= NP, i.e., that
NP-hard problems do not have polynomial-time randomized algorithms.

� 5.3 Reducing MIN to MOT

Here we present a basic toolkit that our intractability results build upon. This
toolkit enables proving intractability results for MOT by instead proving in-
tractability results for MINC , defined below. This is helpful since MINC is more
directly amenable to NP-hardness and inapproximability reductions because it is
phrased as a more conventional combinatorial optimization problem; examples in
§5.4, §5.5, and §5.6.

Definition 5.3.1. For C ∈ (Rn)⊗k and p = (p1, . . . , pk) ∈ Rn×k, the problem
MINC(p) is to compute

min
(j1,...,jk)∈{1,...,n}k

Cj1,...,jk −
k∑
i=1

[pi]ji . (5.2)

In words, MINC is the feasibility oracle for the dual to the MOT LP because
p = (p1, . . . , pk) ∈ Rn×k is feasible for (MOT-D) if and only if the problem MINC(p)
has non-negative value.

In what follows, let MOTC(µ) denote the problem of computing the optimal
value of MOT for a cost tensor C ∈ (Rn)⊗k and marginals µ = (µ1, . . . , µk) ∈ (∆n)k.
In words, the following two theorems establish that for any fixed cost C, the
following discrete optimization problem MINC can be (approximately) solved in
polynomial time if MOTC can be (approximately) solved in polynomial time. The
first reduction is used for proving NP-hardness of exactly solving MOTC , and the
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second reduction is used for proving inapproximability. These two reductions are
incomparable.

Theorem 5.3.2 (Exact reduction). There is a deterministic algorithm that, given
access to an oracle solving MOTC and weights p ∈ Rn×k, solves MINC(p) in
poly(n, k) time and oracle queries.

Theorem 5.3.3 (Approximate reduction). There is a randomized algorithm that,
given ε > 0, access to an oracle solving MOTC to additive accuracy ε, and weights
p ∈ Rn×k, solves MINC(p) up to ε ·poly(n, k) additive accuracy with probability
2/3 in poly(n, k, Cmax+pmax

ε
) time and oracle queries.

The proofs of these theorems can be found in the paper [12] upon which this
chapter is based, or alternatively can be seen as special cases of the more general
results in [141]3.

We conclude this section with several remarks about these two theorems.

Remark 5.3.4 (Converse). There is no loss of generality when using Theo-
rems 5.3.2 and 5.3.3 to reduce proving the intractability of MOTC to proving
the intractability of MINC. This is because the MOTC and MINC problems are
polynomial-time equivalent—for any cost C, and for both exact and approximate
solving—because the converse of this reduction also holds (see §6.3).

Remark 5.3.5 (Value vs solution for MOT). A desirable feature of using Theo-
rems 5.3.2 and 5.3.3 to prove intractability of MOT is that the resulting intractabil-
ity applies regardless of how an MOT solution is computed and (compactly) rep-
resented4. This is because such an argument shows hardness for (approximately)
computing the optimal value of MOT.

Remark 5.3.6 (Value vs solution for MIN). Theorems 5.3.2 and 5.3.3 hold un-
changed if the MINC problem is modified to require computing the minimizing tuple
rather than the minimum value in (5.2). This is because these two problems are
polynomial-time equivalent [13, Appendix A.1].

3We are grateful to Theodor Misiakiewicz who pointed this out to us after the publication
of the paper [12].

4Indeed, the representations produced by MOT algorithms often vary: e.g., the solution is
polynomially-sparse for the Ellipsoid and Multiplicative Weights algorithms; and is fully dense
but has a polynomial-size representation which supports certain efficient operations for the
Sinkhorn algorithm. See [13] for details.
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Remark 5.3.7 (Inapproximability reductions are probabilistic). Inapproximabil-
ity reductions using Theorem 5.3.3 are probabilistic5, and thus show inapproxima-
bility under the standard complexity assumption NP 6⊂ BPP, which is informally
the stronger “randomized version” of P 6= NP.

Remark 5.3.8 (p = 0). The MINC(0) problem is to compute the minimum en-
try of the tensor C. Thus, as a special case of our reductions, it follows that if
(approximately) computing the minimum entry of C is NP-hard, then so is (approx-
imately) computing MOTC. In fact, in our applications in §5.4, §5.5, and §5.6,
we prove intractability of MINC—and thus of MOTC—by showing intractability
for this “simple” case p = 0. However, we mention that in general one cannot
restrict only to the case p = 0: In §5.7, we give a concrete example where MINC
is tractable for p = 0 but not general p.

Remark 5.3.9 (Extension to regularized MOT). An entropically regularized ver-
sion of MOT is also of interest in the literature due to its statistical and algorithmic
properties; see, e.g., [13, 32, 35, 108, 110, 162, 178], among many others. Our
results also extend to this regularized MOT problem; for details see the Appendix
of the paper [12] upon which this chapter is based.

� 5.4 Application: costs with super-constant rank

In direct analogy to the standard concept of the rank of a matrix, a rank-r
factorization of a tensor C ∈ (Rn)⊗k is a set of rk vectors {u(i,`)}i∈[k],`∈[r] ⊂ Rn

satisfying

Cj1,...,jk =
r∑
`=1

k∏
i=1

u
(i,`)
ji

, ∀(j1, . . . , jk) ∈ [n]k. (5.3)

The rank of a tensor is the minimal r for which there exists a rank-r factorization.
Note that the rank of a tensor in (Rn)⊗k can be exponentially large in k. We refer
the reader to the detailed survey [133] for background on tensor rank as well as a
historical overview.

In the context of MOT, low-rank cost tensors appear, for example, in the
Wasserstein barycenter problem and in the problem of projecting a mixture distri-
bution to the transportation polytope [13]. Recent work has given a polynomial
time algorithm for approximate MOT when the cost is a constant-rank tensor

5It is an interesting question whether the approximate reduction in Theorem 5.3.3 can be
de-randomized. This would enable showing our inapproximability results under the assumption
P 6= NP rather than NP 6⊂ BPP.
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given in factored form [13]. A natural algorithmic question is whether the de-
pendence on the rank can be improved: is there an algorithm whose runtime is
simultaneously polynomial in n, k, and the rank r? Here we show that, under
standard complexity theory assumptions, the answer is no. Our result provides a
converse to [13], and justifies the constant-rank regime studied in [13].

Proposition 5.4.1 (Hardness of MOT for low-rank costs). Assuming P 6= NP,
there is no poly(n, k, r)-time deterministic algorithm for solving MOTC for costs
C given by a rank-r factorization.

Our impossibility result further extends to approximate computation.

Proposition 5.4.2 (Hardness of approximate MOT for low-rank costs). Assuming
NP 6⊂ BPP, there is no poly(n, k, r, Cmax

ε
)-time randomized algorithm for approxi-

mating MOTC to ε additive accuracy for costs C given by a rank-r factorization.

The proof encodes the hard problem of finding a large clique in a k-partite
graph as an instance of MOTC in which C has an explicit low-rank factorization.
We define the following notation. We say a k-partite graph on nk vertices is
balanced if each of the k parts has n vertices. For a balanced k-partite graph G
on nk vertices vi,j for i ∈ [k] and j ∈ [n], let TG ∈ (Rn)⊗k denote the tensor with
(j1, . . . , jk)-th entry equal to the number of edges in the induced subgraph of G
with vertices {v1,j1 , . . . , vk,jk}.

Lemma 5.4.3 (TG is low-rank). For any balanced k-partite graph G on nk vertices,
rank(TG) 6 n2k2. Moreover, a factorization of TG with this rank is computable
from G in poly(n, k) time.

Proof. Consider an edge (vi,ji , vi′,ji′ ) between partitions i, i′ ∈ [k]. Consider the
rank-1 tensor formed by the outer product of the indicator vectors eji and eji′
on respective slices i and i′, and the all-ones vector 1n on all other slices ` ∈
[k] \ {i, i′}. This tensor takes value 1 on all tuples in [n]k with i-th coordinate ji
and i′-th coordinate ji′ , and takes value 0 elsewhere. Summing up such a rank-1
tensor for each edge of G—of which there are at most (nk)2—yields the desired
factorization.

Lemma 5.4.4 (Hardness of MIN for low-rank costs). Assuming P 6= NP, there
is no poly(n, k, r)-time deterministic algorithm for solving MINC(0) for costs C
given by a rank-r factorization. Moreover, assuming NP 6⊂ BPP, there is no
poly(n, k, r, Cmax

ε
)-time randomized algorithm for ε-approximate additive computa-

tion.
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Proof. It is a folklore6 fact that deciding whether there exists a k-clique in a
balanced k-partite graph G on nk vertices is NP-hard. This problem reduces to
computing the maximal entry in TG, which is equivalent to solving MINC(0) for
C = −TG. The first statement then follows since a low-rank factorization of −TG
can be found in poly(n, k) time by Lemma 5.4.3. For the second statement, note
that since the entries of −TG are integral, it is also NP-hard to solve MINC(0) to
additive error Cmax/10k2 6 0.1.

Proof of Proposition 5.4.1. By Theorem 5.3.2, a poly(n, k, r)-time deterministic
algorithm for MOTC on rank-r costs implies a poly(n, k, r)-time deterministic
algorithm for MINC(0) on rank-r costs. Assuming P 6= NP, this contradicts
Lemma 5.4.4.

Proof of Proposition 5.4.2. By Theorem 5.3.3, a poly(n, k, r, Cmax

ε
)-time random-

ized algorithm for MOTC on rank-r costs C implies a poly(n, k, r, Cmax

ε
)-time

randomized algorithm for MINC(0) on rank-r costs C. Assuming NP 6⊂ BPP, this
contradicts Lemma 5.4.4.

� 5.5 Application: costs with full pairwise interactions

Many studied MOT costs, such as the Wasserstein barycenter cost and Coulomb
cost, have the following structure: they decompose into a sum of pairwise interac-
tions, as

Cj1,...,jk =
∑

16i<i′6k

gi,i′(ji, ji′) (5.4)

for some functions gi,i′ : [n]× [n]→ R. This decomposability structure allows for
a polynomial-size implicit representation of the cost tensor, and has a variety of
applications due to intimate connections with probabilistic graphical models [110].
It is a natural question whether this generic structure can be exploited to obtain
polynomial-time algorithms for MOT. We show that the answer is no: there are
MOT costs that are decomposable into pairwise interactions, but are NP-hard to
solve.

Proposition 5.5.1 (Hardness of MOT for pairwise-decomposable costs). Assum-
ing P 6= NP, there is no poly(n, k)-time deterministic algorithm for solving MOTC
for costs C of the form (5.4).

6This follows from the fact that finding a k-clique in an n-vertex graph G′ is NP-hard [129].
Given G′, a balanced k-partite graph G on nk vertices can be constructed in polynomial time
by letting vertices vi,j and vi′,j′ be adjacent in G if and only if j 6= j′ and the vertices v′i and v′i′
are adjacent in G′. Under this construction, G has a k-clique if and only if G′ has a k-clique.
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Our impossibility result further extends to approximate computation.

Proposition 5.5.2 (Hardness of approximate MOT for pairwise-decomposable
costs). Assuming NP 6⊂ BPP, there is no poly(n, k, Cmax

ε
)-time randomized algo-

rithm for approximating MOTC to ε additive accuracy for costs C of the form (5.4).

Proof of Propositions 5.5.1 and 5.5.2. The proofs of Propositions 5.5.1 and 5.5.2
are the same as the proofs of Propositions 5.4.1 and 5.4.2 using the fact that
for any graph G = (V,E), the tensor −TG can be written as a sum of pairwise
interactions: (−TG)j1,...,jk =

∑
16i<i′6k−1[(vi,ji , vi′,ji′ ) ∈ E].

Propositions 5.5.1 and 5.5.2 provides converses to the result of [13]. Specifically,
[13, §4], considers MOT costs C that decompose into local interactions as Cj1,...,jk =∑

S∈S gS({ji}i∈S), and gives a polynomial-time algorithm in the case that the
graph with vertices [k] and edges {(i, i′) : i, i′ ∈ S for some S ∈ S} has constant
treewidth. Conversely, our hardness results in Propositions 5.4.1 and 5.4.2 show
that bounded treewidth is necessary for polynomial-time algorithms. This is
because costs of the form (5.4) fall under the framework of graphically structured
costs in [13, 110] with non-constant treewidth of size k − 1.

� 5.6 Application: repulsive costs

In this section, we investigate several MOT problems with repulsive costs that
are of interest in the literature. We prove intractability results that clarify why—
despite a growing literature (see, e.g., the survey [80] and the references within)—
these problems have resisted algorithmic progress.

� 5.6.1 Application to determinantal cost

A repulsive cost of interest in the MOT literature and in pure mathematics is the
determinant cost (e.g., [54, 80]). This cost is given by:

Cj1,...,jk = −| det(xj1 , . . . , xjk)|, (5.5)

where x1, . . . , xn ∈ Rk and det(xj1 , . . . , xjk) is the determinant of the k×k matrix
whose columns are xj1 , . . . , xjk . This is a repulsive cost in the sense that tuples
with “similar” vectors are penalized with higher cost, see the survey [80]. We prove
that the MOT problem with this cost is NP-hard. For convenience of notation, we
think of the marginal distributions µ1, . . . , µk as distributions in the simplex ∆n,
and write [µi]j to mean the mass of µi on xj.
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Proposition 5.6.1 (Hardness of MOT with determinant cost). Assuming P 6= NP,
there is no poly(n, k)-time algorithm that given x1, . . . , xn ∈ Rk solves MOTC for
the cost C in (5.5).

Proof. By Theorem 5.3.2, it suffices to prove that the MINC problem is NP-
hard. We show this is true even if the input weights p are identically 0: in this
case the MINC problem is to compute min~j C~j = −max~j | det(xj1 , . . . , xjk)| given

x1, . . . , xn ∈ Rk. This is NP-hard by [173].

Rather than show additive inapproximability of MOT with determinant costs,
we consider log-determinant costs since additive error on the logarithmic scale
amounts to multiplicative error on the natural scale, which is more standard in
the combinatorial-optimization literature on determinant maximization. Below,
we show inapproximability of MOT with such log-determinant costs. Note that
for technical reasons we upper-bound the cost at 0 to avoid unbounded costs for
tuples with null determinant:

Cj1,...,jk = min(0,− log | det(xj1 , . . . , xjk)|). (5.6)

Proposition 5.6.2 (Approximation hardness of MOT with log-determinant cost).
Assuming NP 6⊂ BPP, there is no poly(n, k, Cmax/ ε) time algorithm that given
x1, . . . , xn ∈ Rk approximates MOTC to ε additive accuracy for the cost C in
(5.6).

Proof. Let x1, . . . , xn ∈ Zk have poly(n, k) bits each. It is known that

min
~j∈[n]k

− log | det(xj1 , . . . , xjk)|

is NP-hard to compute within additive error 0.0001 [211, Theorem 3.2]. Since
x1, . . . , xn span Rk without loss of generality, this is equivalent to approximat-
ing minj1,...,jk Cj1,...,jk to within additive error 0.0001. But by Theorem 5.3.3,
given access to MOTC computations with additive accuracy Cmax/poly(n, k), we
can approximate MINC(0) = minj1,...,jk Cj1,...,jk to within additive error 0.0001 in
poly(n, k) randomized time since Cmax is of poly(n, k) size here. Hence, assuming
BPP 6⊂ NP, there is no poly(n, k, Cmax/ ε)-time algorithm that solves MOTC to
accuracy ε.

� 5.6.2 Application to Density Functional Theory

A popular application of MOT is to formulate a relaxation of the Density Func-
tional Theory problem (DFT) from quantum chemistry. We refer the reader to [70]
for an introduction of the MOT formulation of DFT, and sketch the simplest case
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below. In the simplest version of the MOT relaxation, we are given k distributions
corresponding to k electron clouds in space, and the objective is to couple the elec-
tron clouds in a way that minimizes the expected potential energy of the electron
configuration. Suppose the electron clouds are given as distributions µ1, . . . , µk
supported on x1, . . . , xn ∈ R3; again, for convenience of notation, we think of
µ1, . . . , µk as distributions in the simplex ∆n, and write [µi]j to mean the mass
of µi on xj. Then, the MOT relaxation of DFT is to compute a minimum-cost
coupling of µ1, . . . , µk, with cost given by the Coulomb potential

Cj1,...,jk =
∑

16i<i′6k

1

‖xji − xji′‖2

. (5.7)

This is a repulsive cost that encourages tuples (j1, . . . , jn) ∈ [n]k such that
xj1 , . . . , xjn are spread as far as possible, since the Coulomb potential decreases as
two electrons move farther apart. Despite significant algorithmic interest, provable
polynomial-time algorithms have not yet been found. We conjecture that in fact
solving MOT with the Coulomb potential is NP-hard.

Conjecture 5.6.3. Assuming P 6= NP, there is no poly(n, k)-time algorithm
solving MOTC with the Coulomb potential cost (5.7).

In this section, we make progress towards the conjecture by proving hardness
of DFT with the related Coulomb-Buckingham potential, which is similar to the
Coulomb potential, but has extra energy terms that grow as 1/r6 and exp(−Θ(r)).
The Coulomb-Buckingham potential is popular for modeling the structures of
ionic crystals [1], and is defined for two particles at distance r with charges
q1, q2 ∈ {−1,+1} as:

U(r, q1, q2) =

{
M, r = 0

Aq1q2

exp(Bq1q2r)
− Cq1q2

r6
+ q1q2

r
, r > 0

,

whereA+1, A−1, B+1, B−1, C+1, C−1 are constants determining the relative strengths
of the terms in the interaction, and M > 0 is a large constant (that should be
intuitively thought of as infinite) penalizing two ions being in the same place.
Given ions with charges qj ∈ {−1,+1} at positions xj ∈ R3, the corresponding
MOT cost is given by:

Cj1,...,jk =

{
M,

∑
i∈[k] qji 6= 0∑

16i<i′6k U(‖xji − xji′‖2, qji , qji′ ),
∑

i∈[k] qji = 0
. (5.8)
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Proposition 5.6.4 (Hardness of DFT with Coulomb-Buckingham potential).
Assuming P 6= NP, there is no poly(n, k)-time algorithm that, given positions
x1, . . . , xn ∈ R3, charges q1, . . . , qn ∈ {−1,+1}, parameters A±1, B±1, C±1,M > 0,
and marginals µ1, . . . , µk ∈ ∆n, solves MOTC with cost C given by (5.8).

Proof. For the proof, we show NP-hardness even if the inputs x1, . . . , xn ∈ R3 are
such that min16j′6j6n ‖xj − xj′‖2 > 1, A±1, B±1, C±1 6 poly(n, k), and 2k2(2 +
A+1 + A−1 + C+1 + C−1) 6 M 6 poly(n, k). In the parameter regime above, we
have Cmax = M 6 poly(n, k), so by Theorem 5.3.2 and 5.3.3, it suffices to show
that computing MINC(0) is NP-hard.

Furthermore, in the parameter regime above, MINC(0) is equal to the following:

min

1

2

∑
j∈S,j′∈S\{j}

U(‖xj − xj′‖2, qj, qj′) : S ⊂ [n], |S| = k,
∑
j∈S

qj = 0

 (5.9)

This optimization problem is NP-hard by [1, Theorem 5].

A similar hardness result also holds for approximate computation, stated next.

Proposition 5.6.5 (Approximation hardness of DFT with Coulomb-Buckingham
potential). If NP 6⊂ BPP, there is no poly(n, k, Cmax/ ε)-time algorithm computing
an ε-additive approximation to MOTC, where C is as in Proposition 5.6.4.

The proof of Proposition 5.6.5 is identical to the proof of Proposition 5.6.4
once we show that the MINC(0) problem is hard to solve approximately. While [1,
Theorem 5] only shows hardness of exactly computing MINC(0), a slightly more
careful analysis extends this hardness to approximate computation; details are
deferred to the Appendix of the paper [12] upon which this chapter is based.

� 5.7 Necessity of dual weights

This section fleshes out the details for Remark 5.3.8. Namely, in §5.4, §5.5, and
§5.6, we showed that MOTC was hard to compute for some family of costs C by
proving that MINC(0) was hard to compute. Here, we show that such arguments
do not use the full power of Theorems 5.3.2 and 5.3.3: we construct a family of cost
tensors C for which MOTC is NP-hard to compute yet MINC(0) is polynomial-time
computable.

The cost family is as follows: given a 2-SAT formula φ : {0, 1}k → {0, 1},
define

Cj1,...,jk = −φ(j1, . . . , jk). (5.10)
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Proposition 5.7.1. Given a 2-SAT formula φ, it is NP-hard to solve MOTC for
the cost (5.10). However, MINC(0) can be computed in polynomial time.

Proof. Observe that MINC(0) = minj1,...,jk Cj1,...,jk = −maxj1,...,jk φ(j1, . . . , jk) is
the satisfiability problem for φ, which can be solved in polynomial-time since φ is
a 2-SAT formula [106].

On the other hand, let p = (p1, . . . , pk) ∈ R2×k be given by p1 = p2 = · · · =
pk = (0,−1/(2k)) ∈ R2. Then MINC(p) = minj1,...,jk −φ(j1, . . . , jk)−

∑k
i=1[pi]ji =

−[maxj1,...,jk φ(j1, . . . , jk)−‖~j‖1/(2k)] solves the problem of finding the minimum
weight of a satisfying assignment to φ. This problem is NP-hard [106], hence
MINC(p) is NP-hard. Therefore MOTC is NP-hard by Theorem 5.3.2.





Chapter 6

Polynomial-time algorithms for
Multimarginal Optimal Transport

problems with structure

The previous chapter established that MOT is intractable even in a number of
commonly occuring “structured” settings. That is, under standard complexity
theoretic assumptions, there is no algorithm that runs in time which is polynomial
in the number of marginals k and their support sizes n. This chapter complements
those intractability results by developing a general theory about what structure
makes MOT solvable in poly(n, k) time.

Specifically, this chapter develops a unified algorithmic framework for solving
MOT in poly(n, k) time by characterizing the structure that different algorithms
require in terms of simple variants of the dual feasibility oracle. This framework has
several benefits. First, it enables us to show that the Sinkhorn algorithm, which
is currently the most popular MOT algorithm, requires strictly more structure
than other algorithms do to solve MOT in poly(n, k) time. Second, our framework
makes it much simpler to develop poly(n, k) time algorithms for a given MOT
problem. In particular, it is necessary and sufficient to (approximately) solve the
dual feasibility oracle—which is much more amenable to standard algorithmic
techniques.

We illustrate this ease-of-use by developing poly(n, k)-time algorithms for
three general classes of MOT cost structures: (1) graphical structure; (2) set-
optimization structure; and (3) low-rank plus sparse structure. For structure
(1), we recover the known result that Sinkhorn has poly(n, k) runtime [110, 216];
moreover, we provide the first poly(n, k) time algorithms for computing solutions
that are exact and sparse. For structures (2)-(3), we give the first poly(n, k) time
algorithms, even for approximate computation. Together, these three structures
encompass many—if not most—current applications of MOT.

131
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� 6.1 Introduction

Recall from Chapter 5 that MOT is the problem of linear programming over
joint probability distributions with fixed marginal distributions. That is, given k
marginal distributions µ1, . . . , µk in the simplex ∆n = {u ∈ Rn

>0 :
∑n

i=1 ui = 1}
and a cost tensor C in the k-fold tensor product space (Rn)⊗k = Rn⊗ · · · ⊗ Rn,
compute

min
P∈M(µ1,...,µk)

〈P,C〉 (MOT)

where M(µ1, . . . , µk) is the “transportation polytope” containing entrywise non-
negative tensors P ∈ (Rn)⊗k satisfying the marginal constraints∑

j1,...,ji−1,ji+1,...,jk

Pj1,...,ji−1,j,ji+1,...,jk = [µi]j

for all i ∈ {1, . . . , k} and j ∈ {1, . . . , n}.
This MOT problem has many applications throughout machine learning, com-

puter science, and the natural sciences since it arises in tasks that require “stitch-
ing” together aggregate measurements. For instance, applications of MOT include
inference from collective dynamics [86, 110], information fusion for Bayesian learn-
ing [208], averaging point clouds [3, 74], the n-coupling problem [191], quantile
aggregation [149, 190], matching for teams [53, 65], image processing [183, 206],
random combinatorial optimization [2, 111, 152, 159, 170, 229, 241], Distribution-
ally Robust Optimization [61, 153, 160], simulation of incompressible fluids [35, 50],
and Density Functional Theory [33, 52, 70].

However, as discussed in Chapter 5, in most applications the success of MOT
is severely limited by the lack of efficient algorithms. Indeed, in general, MOT
requires exponential time in the number of marginals k and their support sizes
n. For instance, applying a linear program solver out-of-the-box takes nΘ(k) time
because MOT is a linear program with nk variables, nk non-negativity constraints,
and nk equality constraints. Specialized algorithms in the literature such as the
Sinkhorn algorithm yield similar nΘ(k) runtimes. Such runtimes currently limit
the applicability of MOT to tiny-scale problems (e.g., n = k = 15).

Polynomial-time algorithms for MOT. This chapter develops polynomial-time algo-
rithms for MOT, where here and henceforth “polynomial” means in the number
of marginals k and their support sizes n—and possibly also Cmax/ ε for ε-additive
approximation, where Cmax is a bound on the entries of C.

At first glance, this may seem impossible for at least two “trivial” reasons.
One is that it takes exponential time to read the input cost C since it has nk



Sec. 6.1. Introduction 133

entries. We circumvent this issue by considering costs C with poly(n, k)-size
implicit representations, which encompasses essentially all MOT applications.1 A
second obvious issue is that it takes exponential time to write the output variable
P since it has nk entries. We circumvent this issue by returning solutions P with
poly(n, k)-size implicit representations, for instance sparse solutions.

But, of course, circumventing these issues of input/output size is not enough
to actually solve MOT in polynomial time. See Chapter 5 for examples of NP-hard
MOT problems with costs that have poly(n, k)-size implicit representations.

Remarkably, for several MOT problems, there are specially-tailored algorithms
that run in polynomial time—notably, for MOT problems with graphically-structured
costs of constant treewidth [108, 110, 216], variational mean-field games [34], cer-
tain random combinatorial optimization problems [2, 111, 152, 159, 170, 229, 241],
computing generalized Euler flows [32], computing low-dimensional Wasserstein
barycenters [11, 32, 55], and filtering and estimation tasks based on target track-
ing [86, 107, 108, 110, 201]. However, the number of MOT problems that are
known to be solvable in polynomial time is small, and it is unknown if these tech-
niques can be extended to the many other MOT problems arising in applications.
This motivates the central question driving this chapter:

Are there general “structural properties” that make MOT solvable in poly(n, k) time?

This chapter is conceptually divided into two parts. In the first part of the
chapter, we develop a unified algorithmic framework for MOT that characterizes
the structure required for different algorithms to solve MOT in poly(n, k) time, in
terms of simple variants of the dual feasibility oracle. This enables us to prove
that some algorithms can solve MOT problems in polynomial time whenever any
algorithm can; whereas the popular SINKHORN algorithm cannot. Moreover, this
algorithmic framework makes it significantly easier to design a poly(n, k) time
algorithm for a given MOT problem (when possible) because it now suffices to
solve the dual feasibility oracle—and this is much more amenable to standard
algorithmic techniques. In the second part of the chapter, we demonstrate the
ease-of-use of our algorithmic framework by applying it to three general classes of
MOT cost structures.

Below, we detail these two parts of the chapter in §6.1.1 and §6.1.2, respectively.

1E.g., in the MOT problems of Wasserstein barycenters, generalized Euler flows, and Density
Functional Theory, C has entries Cj1,...,jk =

∑k
i,i′=1 gi,i′(ji, ji′) and thus can be implicitly input

via the k2 functions gi,i′ : {1, . . . , n}2 → R.
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Algorithm Oracle Runtime Always applicable? Exact? Sparse? Practical?
ELLIPSOID MIN Theorem 6.4.1 Yes Yes Yes No

MWU AMIN Theorem 6.4.7 Yes No Yes Yes
SINKHORN SMIN Theorem 6.4.18 No No No Yes

Table 6.1: These MOT algorithms have polynomial runtime except for a bottleneck
“oracle”. Each oracle is a simple variant of the dual feasibility oracle for MOT. The
number of oracle computations is poly(n, k) for ELLIPSOID, and poly(n, k, Cmax/ ε) for
both MWU and SINKHORN. From a theoretical perspective, the most important aspect
of an algorithm is whether it can solve MOT in polynomial time if and only if any
algorithm can. We show that ELLIPSOID and MWU satisfy this (Theorem 6.1.1), but
SINKHORN does not (Theorem 6.1.3). From a practical perspective, SINKHORN is the
most scalable when applicable. Other important properties of an algorithm are whether
it can compute exact and/or sparse solutions.2

� 6.1.1 Contribution 1: unified algorithmic framework for MOT

In order to understand what structural properties make MOT solvable in poly-
nomial time, we first lay a more general groundwork. The purpose of this is to
understand the following fundamental questions:

Q1 What are reasonable candidate algorithms for solving structured MOT prob-
lems in polynomial time?

Q2 What structure must an MOT problem have for these algorithms to have
polynomial runtimes?

Q3 Is the structure required by a given algorithm more restrictive than the
structure required by a different algorithm (or any algorithm)?

Q4 How to check if this structure occurs for a given MOT problem?

We detail our answers to these four questions below in §6.1.1.1 to §6.1.1.4, and then
briefly discuss practical tradeoffs beyond polynomial-time solvability in §6.1.1.5;
see Table 6.1 for a summary. We expect that this general groundwork will prove
useful in future investigation of tractable MOT problems.

� 6.1.1.1 Answer to Q1: candidate poly(n, k)-time algorithms

We consider three algorithms for MOT whose exponential runtimes can be iso-
lated into a single bottleneck—and thus can be implemented in polynomial time

2Code for implementing these algorithms and reproducing all numerical simulations in this
chapter is provided at https://github.com/eboix/mot.

https://github.com/eboix/mot
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whenever that bottleneck can. These algorithms are the Ellipsoid algorithm
ELLIPSOID [102], the Multiplicative Weights Update algorithm MWU [237], and the
natural multidimensional analog of Sinkhorn’s scaling algorithm SINKHORN [32,
178]. SINKHORN is specially tailored to MOT and is currently the predominant
algorithm for it. To foreshadow our answer to Q3, the reason that we restrict
to these candidate algorithms is: we show that ELLIPSOID and MWU can solve an
MOT problem in polynomial time if and only if any algorithm can.

� 6.1.1.2 Answer to Q2: structure necessary to run candidate algorithms

These three algorithms only access the cost tensor C through polynomially many
calls of their respective bottlenecks. Thus the structure required to implement
these candidate algorithms in polynomial time is equivalent to the structure
required to implement their respective bottlenecks in polynomial time.

In §6.4, we show that the bottlenecks of these three algorithms are polynomial-
time equivalent to natural analogs of the feasibility oracle for the dual LP to MOT.
Namely, given weights p1, . . . , pk ∈ Rn, compute

min
(j1,...,jk)∈{1,...,n}k

Cj1,...,jk −
k∑
i=1

[pi]ji (6.1)

either exactly for ELLIPSOID, approximately for MWU, or with the “min” replaced
by a “softmin” for SINKHORN. We call these three tasks the MIN, AMIN, and SMIN
oracles, respectively. See Remark 6.3.4 for the interpretation of these oracles as
variants of the dual feasibility oracle.

These three oracles take nk time to implement in general. However, for a wide
range of structured cost tensors C they can be implemented in poly(n, k) time,
see §6.1.2 below. For such structured costs C, our oracle abstraction immediately
implies that the MOT problem with cost C and any input marginals µ1, . . . , µk
can be (approximately) solved in polynomial time by any of the three respective
algorithms.

Our characterization of the algorithms’ bottlenecks as variations of the dual
feasibility oracle has two key benefits—which are the answers to Q3 and Q4,
described below.

� 6.1.1.3 Answer to Q3: characterizing what MOT problems each algorithm can solve

A key benefit of our characterization of the algorithms’ bottlenecks as variations of
the dual feasibility oracles is that it enables us to establish whether the structure
required by a given MOT algorithm is more restrictive than the structure required
by a different algorithm (or by any algorithm).
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In particular, this enables us to answer the natural question: why restrict to
just the three algorithms described above? Can other algorithms solve MOT in
poly(n, k) time in situations when these algorithms cannot? Critically, the answer
is no: restricting ourselves to the ELLIPSOID and MWU algorithms is at no loss of
generality.

Theorem 6.1.1 (Informal statement of part of Theorems 6.4.1 and 6.4.7). For
any family of costs C ∈ (Rn)⊗k:

• ELLIPSOID computes an exact solution for MOT in poly(n, k) time if and
only if any algorithm can.

• MWU computes an ε-approximate solution for MOT in poly(n, k, Cmax/ ε) time
if and only if any algorithm can.

The statement for ELLIPSOID is implicit from classical results about LP [102]
combined with arguments from [11], see the previous work section §6.1.3. The
statement for MWU is new to this chapter.

The oracle abstraction helps us show Theorem 6.1.1 because it reduces this
question of what structure is needed for the algorithms to solve MOT in polyno-
mial time, to the question of what structure is needed to solve their respective
bottlenecks in polynomial time. Thus Theorem 6.1.1 is a consequence of the
following result. (The “if” part of this result is a contribution of this chapter; the
“only if” part was shown in [12].)

Theorem 6.1.2 (Informal statement of part of Theorems 6.4.1 and 6.4.7). For
any family of costs C ∈ (Rn)⊗k:

• MOT can be exactly solved in poly(n, k) time if and only if MIN can.

• MOT can be ε-approximately solved in poly(n, k, Cmax/ ε) time if and only if
AMIN can.

Interestingly, a further consequence of our unified algorithm-to-oracle abstrac-
tion is that it enables us to show that SINKHORN—which is currently the most
popular algorithm for MOT by far—requires strictly more structure to solve an
MOT problem than other algorithms require. This is in sharp contrast to the
complete generality of the other two algorithms shown in Theorem 6.1.1.

Theorem 6.1.3 (Informal statement of Theorem 6.4.19). Under standard complexity-
theoretic assumptions, there exists a family of MOT problems that can be solved
exactly in poly(n, k) time using ELLIPSOID, however it is impossible to implement
a single iteration of SINKHORN (even approximately) in poly(n, k) time.
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The reason that our unified algorithm-to-oracle abstraction helps us show
Theorem 6.1.3 is that it puts SINKHORN on equal footing with the other two
classical algorithms in terms of their reliance on variants of the dual feasibility
oracle. This reduces proving Theorem 6.1.3 to showing the following separation
between the SMIN oracle and the other two oracles.

Theorem 6.1.4 (Informal statement of Lemma 6.3.7). Under standard complexity-
theoretic assumptions, there exists a family of cost tensors C ∈ (Rn)⊗k such that
there are poly(n, k)-time algorithms for MIN and AMIN, however it is impossible
to solve SMIN (even approximately) in poly(n, k) time.

� 6.1.1.4 Answer to Q4: ease-of-use for checking if MOT is solvable in polynomial time

The second key benefit of this oracle abstraction is that it is helpful for showing
that a given MOT problem (whose cost C is input implicitly through some concise
representation) is solvable in polynomial time as it without loss of generality
reduces MOT to solving any of the three corresponding oracles in polynomial
time. The upshot is that these oracles are more directly amenable to standard
algorithmic techniques since they are phrased as more conventional combinatorial-
optimization problems. In the second part of the chapter, we illustrate this
ease-of-use via applications to three general classes of structured MOT problems;
for an overview see §6.1.2.

� 6.1.1.5 Practical algorithmic tradeoffs beyond polynomial-time solvability

From a theoretical perspective, the most important aspect of an algorithm is
whether it can solve MOT in polynomial time if and only if any algorithm can.
As we have discussed, this is true for ELLIPSOID and MWU (Theorem 6.1.1) but
not for SINKHORN (Theorem 6.1.3). Nevertheless, for a wide range of MOT cost
structures, all three oracles can be implemented in polynomial time, which means
that all three algorithms ELLIPSOID, MWU, and SINKHORN can be implemented in
polynomial time. Which algorithm is best in practice depends on the relative
importance of the following considerations for the particular application.

• Error. ELLIPSOID computes exact solutions, whereas MWU and SINKHORN only
compute low-precision solutions due to poly(1/ ε) runtime dependence.

• Solution sparsity. ELLIPSOID and MWU output solutions with polynomially
many non-zero entries (roughly nk), whereas SINKHORN outputs fully dense
solutions with nk non-zero entries (through a polynomial-size implicit repre-
sentation, see §6.4.3). Solution sparsity enables interpretability, visualization,
and efficient downstream computation—benefits which are helpful in diverse
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applications, for example ranging from computer graphics [40, 179, 206] to
facility location problems [22] to machine learning [11, 71] to ecological infer-
ence [158] to fluid dynamics (see §6.5.3), and more. Furthermore, in §6.7.4, we
show that sparse solutions for MOT (a.k.a. linear optimization over the trans-
portation polytope) enable efficiently solving certain non-linear optimization
problems over the transportation polytope.

• Practical runtime. Although all three algorithms enjoy polynomial runtime
guarantees, the polynomials are smaller for some algorithms than for others.
In particular, SINKHORN has remarkably good scalability in practice as long
the error ε is not too small and its bottleneck oracle SMIN is practically im-
plementable. By Theorems 6.1.1 and 6.1.3, MWU can solve strictly more MOT
problems in polynomial time than SINKHORN; however, it is less scalable in
practice when both MWU and SINKHORN can be implemented. ELLIPSOID is not
practical and is used solely as a proof of concept that problems are tractable
to solve exactly; in practice, we use Column Generation (see, e.g., [37, §6.1])
rather than ELLIPSOID as it has better empirical performance, yet still has
the same bottleneck oracle MIN, see §6.4.1.3. Column Generation is not as
practically scalable as SINKHORN in n and k but has the benefit of computing
exact, sparse solutions.

To summarize: which algorithm is best in practice depends on the application.
For example, Column Generation produces the qualitatively best solutions for the
fluid dynamics application in §6.5.3, SINKHORN is the most scalable for the risk
estimation application in §6.7.3, and MWU is the most scalable for the network relia-
bility application in §6.6.3 (for that application there is no known implementation
of SINKHORN that is practically efficient).

� 6.1.2 Contribution 2: applications to general classes of structured MOT
problems

In the second part of the chapter, we illustrate the algorithmic framework devel-
oped in the first part of the chapter by applying it to three general classes of MOT
cost structures:

1. Graphical structure (in §6.5).

2. Set-optimization structure (in §6.6).

3. Low-rank plus sparse structure (in §6.7).
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Specifically, if the cost C is structured in any of these three ways, then MOT can
be (approximately) solved in poly(n, k) time for any input marginals µ1, . . . , µk.

Previously, it was known how to solve MOT problems with structure (1) using
SINKHORN [110, 216], but this only computes solutions that are dense (with nk

non-zero entries) and low-precision (due to poly(1/ ε) runtime dependence). We
therefore provide the first solutions that are sparse and exact for structure (1).
For structures (2) and (3), we provide the first polynomial-time algorithms, even
for approximate computation. These three structures are incomparable: it is in
general not possible to model a problem falling under any of the three structures
in a non-trivial way using any of the others, for details see Remarks 6.6.7 and 6.7.3.
This means that the new structures (2) and (3) enable capturing a wide range of
new applications.

Below, we detail these structures individually in §6.1.2.1, §6.1.2.2, and §6.1.2.3.
See Table 6.2 for a summary.

Structure Definition Complexity measure
Polynomial-time algorithm?

Approximate Exact

Graphical (§6.5) C~j =
∑

S∈S fS(~jS) treewidth [110, 216] Corollary 6.5.6

Set-optimization (§6.6) C~j = 1[~j /∈ S] optimization over S Corollary 6.6.9 Corollary 6.6.9

Low-rank + sparse (§6.7) C = R + S rank of R, sparsity of S Corollary 6.7.5 Unknown

Table 6.2: In the second part of the chapter, we illustrate the ease-of-use of our algorith-
mic framework by applying it to three general classes of MOT cost structures. These
structures encompass many—if not most—current applications of MOT.

� 6.1.2.1 Graphical structure

In §6.5, we apply our algorithmic framework to MOT problems with graphical
structure, a broad class of MOT problems that have been previously studied [108,
110, 216]. Briefly, an MOT problem has graphical structure if its cost tensor C
decomposes as

Cj1,...,jk =
∑
S∈S

fS(~jS),

where fS(~jS) are arbitrary “local interactions” that depend only on tuples ~jS :=
{ji}i∈S of the k variables.

In order to derive efficient algorithms, it is necessary to restrict how local
the interactions are because otherwise MOT is NP-hard (even if all interaction
sets S ∈ S have size 2) [12]. We measure the locality of the interactions via the
standard complexity measure of the “treewidth” of the associated graphical model.
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See §6.5.1 for formal definitions. While the runtimes of our algorithms (and all
previous algorithms) depend exponentially on the treewidth, we emphasize that
the treewidth is a very small constant (either 1 or 2) in all current applications of
MOT falling under this framework; see the related work section.

We show that for MOT cost tensors that have graphical structure of constant
treewidth, all three oracles can be implemented in poly(n, k) time. We accomplish
this by leveraging the known connection between graphically structured MOT and
graphical models shown in [110]. In particular, the MIN, AMIN, and SMIN oracles
are respectively equivalent to the mode, approximate mode, and log-partition
function of an associated graphical model. Thus we can implement all oracles in
poly(n, k) time by simply applying classical algorithms from the graphical models
community [134, 227].

Theorem 6.1.5 (Informal statement of Theorem 6.5.5). Let C ∈ (Rn)⊗k have
graphical structure of constant treewidth. Then the MIN, AMIN, and SMIN oracles
can be computed in poly(n, k) time.

It is an immediate corollary of Theorem 6.1.5 and our algorithms-to-oracles re-
duction described in §6.1.1 that one can implement ELLIPSOID, MWU, and SINKHORN

in polynomial time. Below, we record the theoretical guarantee of ELLIPSOID since
it is the best of the three algorithms as it computes exact, sparse solutions.

Theorem 6.1.6 (Informal statement of Corollary 6.5.6). Let C ∈ (Rn)⊗k have
graphical structure of constant treewidth. Then an exact, sparse solution for MOT
can be computed in poly(n, k) time.

Previously, it was known how to solve such MOT problems [110, 216] using
SINKHORN, but this only computes a solution that is fully dense (with nk non-zero
entries) and low-precision (due to poly(1/ ε) runtime dependence). Details in the
Related Work section. Our result improves over this state-of-the-art algorithm by
producing solutions that are exact and sparse in poly(n, k) time.

In §6.5.3, we demonstrate the benefit of Theorem 6.1.6 on the application of
computing generalized Euler flows, which was historically the motivation of MOT
and has received significant attention, e.g., [32, 35, 47, 48, 49, 50]. While there
is a specially-tailored version of the SINKHORN algorithm for this problem that
runs in polynomial time [32, 35], it produces solutions that are approximate and
fully dense. Our algorithm produces exact, sparse solutions which lead to sharp
visualizations rather than blurry ones (see Figure 6.4).
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� 6.1.2.2 Set-optimization structure

In §6.6, we apply our algorithmic framework to MOT problems whose cost tensors
C take value 0 or 1 in each entry. That, is costs C of the form

Cj1,...,jk = 1[(j1, . . . , jk) /∈ S],

for some subset S ⊆ [n]k. Such MOT problems arise naturally in applications
where one seeks to minimize the probability that some event S occurs, given
marginal probabilities on each variable ji, see Example 6.6.1.

In order to derive efficient algorithms, it is necessary to restrict the (otherwise
arbitrary) set S. We parametrize the complexity of such MOT problems via the
complexity of finding the minimum-weight object in S. This opens the door to
combinatorial applications of MOT because finding the minimum-weight object
in S is well-known to be polynomial-time solvable for many “combinatorially-
structured” sets S of interest—e.g., the set S of cuts in a graph, or the set S of
independent sets in a matroid.

We show that for MOT cost tensors with this structure, all three oracles can
be implemented efficiently.

Theorem 6.1.7 (Informal statement of Theorem 6.6.8). Let C ∈ (Rn)⊗k have set-
optimization structure. Then the MIN, AMIN, and SMIN oracles can be computed
in poly(n, k) time.

It is an immediate corollary of Theorem 6.1.7 and our algorithms-to-oracles re-
duction described in §6.1.1 that one can implement ELLIPSOID, MWU, and SINKHORN

in polynomial time. Below, we record the theoretical guarantee for ELLIPSOID

since it is the best of these three algorithms as it computes exact, sparse solutions.

Theorem 6.1.8 (Informal statement of Corollary 6.6.9). Let C ∈ (Rn)⊗k have set-
optimization structure. Then an exact, sparse solution for MOT can be computed
in poly(n, k) time.

This is the first polynomial-time algorithm for this class of MOT problems.
We note that a more restrictive class of MOT problems was studied in [241] under
the additional restriction that S is upwards-closed.

In §6.6.3, we show how this general class of set-optimization structure cap-
tures, for example, the classical application of computing the extremal reliability
of a network with stochastic edge failures. Network reliability is a fundamen-
tal topic in network science and engineering [28, 29, 95] which is often studied
in an average-case setting where each edge fails independently with some given
probability [128, 156, 181, 221]. The application investigated here is a robust
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notion of network reliability in which edge failures may be maximally correlated
(e.g., by an adversary) or minimally correlated (e.g., by a network maintainer)
subject to a marginal constraint on each edge’s failure probability, a setting
that dates back to the 1980s [229, 241]. We show how to express both the
minimally and maximally correlated network reliability problems as MOT prob-
lems with set-optimization structure, recovering as a special case of our general
framework the known polynomial-time algorithms in [229, 241] as well as more
practical polynomial-time algorithms that scale to input sizes that are an order-
of-magnitude larger.

� 6.1.2.3 Low-rank and sparse structure

In §6.7, we apply our algorithmic framework to MOT problems whose cost tensors
C decompose as

C = R + S,

where R is a constant-rank tensor, and S is a polynomially-sparse tensor. We
assume that R is represented in factored form, and that S is represented through
its non-zero entries, which overall yields a poly(n, k)-size representation of C.

We show that for MOT cost tensors with low-rank plus sparse structure, the
AMIN and SMIN oracles can be implemented in polynomial time.3 This may be
of independent interest because, by taking all oracle inputs pi = 0 in (6.1), this
generalizes the previously open problem of approximately computing the smallest
entry of a constant-rank tensor with nk entries in poly(n, k) time.

Theorem 6.1.9 (Informal statement of Theorem 6.7.4). Let C ∈ (Rn)⊗k have
low-rank plus sparse structure. Then the AMIN and SMIN oracles can be computed
in poly(n, k, Cmax/ ε) time.

It is an immediate corollary of Theorem 6.1.9 and our algorithms-to-oracles
reduction described in §6.1.1 that one can implement MWU and SINKHORN in poly-
nomial time. Of these two algorithms, MWU computes sparse solutions, yielding
the following theorem.

Theorem 6.1.10 (Informal statement of Corollary 6.7.5). Let C ∈ (Rn)⊗k have
low-rank plus sparse structure. Then a sparse, ε-approximate solution for MOT
can be computed in poly(n, k, Cmax/ ε) time.

3It is an interesting open question if the MIN oracle can similarly be implemented in poly(n, k)
time. This would enable implementing ELLIPSOID in poly(n, k) time by our algorithms-to-oracles
reduction, and thus would enable computing exact solutions for this class of MOT problems (cf.,
Theorem 6.1.10).
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This is the first polynomial-time result for this class of MOT problems. We
note that the runtime of our MOT algorithm depends exponentially on the rank
r of R, hence why we take r to be constant. Nevertheless, such a restriction on
the rank is unavoidable since unless P = NP, there does not exist an algorithm
with runtime that is jointly polynomial in n, k, and the rank r [12].

We demonstrate this polynomial-time algorithm concretely on two applications.
First, in §6.7.3 we consider the risk estimation problem of computing an investor’s
expected profit in the worst-case over all future prices that are consistent with
given marginal distributions. We show that this is equivalent to an MOT problem
with a low-rank tensor and thereby provide the first efficient algorithm for it.

Second, in §6.7.4, we consider the fundamental problem of projecting a joint
distribution Q onto the transportation polytope. We provide the first polynomial-
time algorithm for solving this when Q decomposes into a constant-rank and sparse
component, which models mixtures of product distributions with polynomially
many corruptions. This application illustrates the versatility of our algorithmic
results beyond polynomial-time solvability of MOT, since this projection problem
is a quadratic optimization over the transportation polytope rather than linear
optimization (a.k.a. MOT). In order to achieve this, we develop a simple quadratic-
to-linear reduction tailored to this problem that crucially exploits the sparsity of
the MOT solutions enabled by the MWU algorithm.

� 6.1.3 Related work

MOT algorithms fall into two categories. One category consists of general-purpose
algorithms that do not depend on the specific MOT cost. For example, this
includes running an LP solver out-of-the-box, or running the Sinkhorn algorithm
where in each iteration one sums over all nk entries of the cost tensor to implement
the marginalization bottleneck [89, 144, 220]. These approaches are robust in the
sense that they do not need to be changed based on the specific MOT problem.
However, they are impractical beyond tiny input sizes (e.g., n = k = 15) because
their runtimes scale as nΩ(k).

The second category consists of algorithms that are much more scalable but
require extra structure of the MOT problem. Specifically, these are algorithms
that somehow exploit the structure of the relevant cost tensor C in order to
(approximately) solve an MOT problem in poly(n, k) time [2, 11, 32, 34, 35, 55,
61, 86, 107, 108, 110, 111, 152, 153, 159, 160, 162, 170, 201, 216, 229, 241]. Such
a poly(n, k) runtime is far more tractable—but it is not well understood for which
MOT problems such a runtime is possible. The purpose of this chapter is to clarify
this question.

To contextualize our answer to this question with the rapidly growing literature
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requires further splitting this second category of algorithms.

Sinkhorn algorithm. Currently, the predominant approach in the second category is
to solve an entropically regularized version of MOT with the Sinkhorn algorithm,
a.k.a. Iterative Proportional Fitting or Iterative Bregman Projections or RAS
algorithm or Iterative Scaling algorithm, see e.g., [33, 34, 35, 108, 110, 162, 216].
Recent work has shown that a polynomial number of iterations of this algorithm
suffices [89, 144, 220]. However, the bottleneck is that each iteration requires nk

operations in general because it requires marginalizing a tensor with nk entries.
The critical question is therefore: what structure of an MOT problem enables
implementing this marginalization bottleneck in polynomial time.

This chapter makes two contributions to this question. First, we identify new
broad classes of MOT problems for which this bottleneck can be implemented
in polynomial time, and thus SINKHORN can be implemented in polynomial time
(see §6.1.2). Second, we propose other algorithms that require strictly less struc-
ture than SINKHORN does in order to solve an MOT problem in polynomial time
(Theorem 6.4.19).

Ellipsoid algorithm. The Ellipsoid algorithm is among the most classical algorithms
for implicit LP [101, 102, 132], however it has taken a back seat to the SINKHORN

algorithm in the vast majority of the MOT literature.
In §6.4.1, we make explicit the fact that the variant of ELLIPSOID from [11]

can solve MOT exactly in poly(n, k) time if and only if any algorithm can (Theo-
rem 6.4.1). This is implicit from combining several known results [11, 12, 102]. In
the process of making this result explicit, we exploit the special structure of the
MOT LP to significantly simplify the reduction from the dual violation oracle to
the dual feasibility oracle. The previously known reduction is highly impractical
as it requires an indirect “back-and-forth” use of the Ellipsoid algorithm [102,
page 107]. In contrast, our reduction is direct and simple; this is critical for
implementing our practical alternative to ELLIPSOID, namely COLGEN, with the
dual feasibility oracle.

Multiplicative Weights Update algorithm. This algorithm, first introduced by [237],
has been studied in the context of Optimal Transport when k = 2 [39, 182], in
which case implicit LP is not necessary for a polynomial runtime. MWU lends itself
to implicit LP [237], but is notably absent from the MOT literature.

In §6.4.2, we show that MWU can be applied to MOT in polynomial time if and
only if the approximate dual feasibility oracle can be solved in polynomial time.
To do this, we show that in the special case of MOT, the well-known “softmax-
derivative” bottleneck of MWU is polynomial-time equivalent to the approximate
dual feasibility oracle. Since it is known that the approximate dual feasibility



Sec. 6.1. Introduction 145

oracle is polynomial-time reducible to approximate MOT (Theorem 5.3.3), we
therefore establish that MWU can solve MOT approximately in polynomial time if
and only if any algorithm can (Theorem 6.4.7).

� 6.1.3.1 Graphically structured MOT problems with constant treewidth

We isolate here graphically structured costs with constant treewidth because
this framework encompasses all MOT problems that were previously known to
be tractable in polynomial time [110, 216], with the exceptions of the fixed-
dimensional Wasserstein barycenter problem and MOT problems related to com-
binatorial optimization—both of which are described below in §6.1.3.2. This
family of costs with treewidth 1 (a.k.a. “tree-structured costs” [108]) includes
applications in economics such as variational mean-field games [34], interpolating
histograms on trees [7], matching for teams [55, 162]; as well as encompasses
applications in filtering and estimation for collective dynamics such as target
tracking [86, 107, 108, 110, 201] and Wasserstein barycenters in the case of fixed
support [32, 55, 86, 162]. With treewidth 2, this family of costs also includes
dynamic multi-commodity flow problems [109], as well as the application of com-
puting generalized Euler flows in fluid dynamics [32, 35, 162], which was historically
the original motivation of MOT [47, 48, 49, 50].

Previous polynomial-time algorithms for graphically structured MOT compute approximate,

dense solutions. Implementing SINKHORN for graphically structured MOT problems
by using belief propagation to efficiently implement the marginalization bottleneck
was first proposed twenty years ago in [216]. There have been recent advancements
in understanding connections of this algorithm to the Schrödinger bridge problem
in the case of trees [108], as well as developing more practically efficient single-loop
variations [110].

All of these works prove theoretical runtime guarantees only in the case of
tree structure (i.e., treewidth 1). However, this graphical model perspective
for efficiently implementing SINKHORN readily extends to any constant treewidth:
simply implement the marginalization bottleneck using junction trees. This, com-
bined with the iteration complexity of SINKHORN which is known to be polyno-
mial [89, 144, 220], immediately yields an overall polynomial runtime. This is
why we cite [110, 216] throughout this chapter regarding the fact that SINKHORN
can be implemented in polynomial time for graphical structure with any constant
treewidth.

While the use of SINKHORN for graphically structured MOT is mathematically
elegant and can be impressively scalable in practice, it has two drawbacks. The
first drawback of this algorithm is that it computes (implicit representations of)
solutions that are fully dense with nk non-zero entries. Indeed, it is well-known
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that SINKHORN finds the unique optimal solution to the entropically regularized
MOT problem minP∈M(µ1,...,µk)〈P,C〉 − η−1H(P ), and that this solution is fully
dense [178]. For example, in the simple case of cost C = 0, uniform marginals
µi, and any strictly positive regularization parameter η > 0, this solution P has
value 1/nk in each entry.

The second drawback of this algorithm is that it only computes solutions that
are low-precision due to poly(1/ ε) runtime dependence on the accuracy ε. This
is because the number of SINKHORN iterations is known to scale polynomially in
the entropic regularization parameter η even in the matrix case k = 2 [145, §1.2],
and it is known that η = Ω(ε−1 k log n) is necessary for the converged solution of
SINKHORN to be an ε-approximate solution to the (unregularized) original MOT
problem [144].

Improved algorithms for graphically structured MOT problems. The contribution of
this chapter to the study of graphically structured MOT problems is that we give
the first poly(n, k) time algorithms that can compute solutions which are exact
and sparse (Corollary 6.5.6). Our framework also directly recovers all known
results about SINKHORN for graphically structured MOT problems—namely that
it can be implemented in polynomial time for trees [108, 216] and for constant
treewidth [110, 216].

� 6.1.3.2 Tractable MOT problems beyond graphically structured costs

The two new classes of MOT problems that we identify in this chapter—namely,
set-optimization structure and low-rank plus sparse structure—are incomparable
to each other as well as to graphical structure. Details in Remarks 6.6.7 and 6.7.3.
This lets us handle a wide range of new MOT problems that could not be handled
before.

There are two other classes of MOT problems studied in the literature which
do not fall under the three structures studied in this chapter. We elaborate on
both below.

Remark 6.1.11 (Low-dimensional Wasserstein barycenter). This MOT problem
has cost Cj1,...,jk =

∑k
i,i′=1 ‖xi,ji − xi′,ji′‖2 where xi,j ∈ Rd denotes the j-th atom

in the distribution µi. Clearly this cost is not a graphically structured cost of
constant treewidth—indeed, representing it through the lens of graphical structure
requires the complete graph of interactions, which means a maximal treewidth of
k − 1.4 Nevertheless, in Chapter 7 we show that this MOT problem can be solved

4We remark that the related but different problem of fixed-support Wasserstein barycenters
has graphical structure with treewidth 1 [32, 55, 86, 162]. However, the fixed-support Wasserstein
barycenter problem is different from the Wasserstein barycenter problem: it only approximates
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in poly(n, k) time by exploiting the low-dimensional geometric structure of the
points {xi,j} that implicitly define the cost.

Remark 6.1.12 (Random combinatorial optimization). MOT problems also ap-
pear in the random combinatorial optimization literature since the 1970s, see
e.g., [111, 152, 159, 229, 241], although under a different name and in a dif-
ferent community. These papers consider MOT problems with costs of the form
C(x) = minv∈V 〈x, v〉 for polytopes V ⊆ {0, 1}k given through a list of their extreme
points. Applications include PERT (Program Evaluation and Review Technique),
extremal network reliability, and scheduling. Recently, applications to Distribu-
tionally Robust Optimization were investigated in [61, 153, 160] which considered
general polytopes V ⊂ Rk, as well as in [170] which considered MOT costs of the
related form C(x) = 1[minv∈V 〈x, v〉 > t], and in [2] which considers other combi-
natorial costs C such as sub/supermodular functions. These papers show that these
random combinatorial optimization problems are in general intractable, and give
sufficient conditions on when they can be solved in polynomial time. In general,
these families of MOT problems are different from the three structures studied
in this chapter, although some MOT applications fall under multiple umbrellas
(e.g., extremal network reliability). It is an interesting question to understand to
what extent these structures can be reconciled (as well as the algorithms, which
sometimes use extended formulations in these papers).

� 6.1.4 Organization

In §6.2 we recall preliminaries about MOT and establish notation. The first
part of the chapter then establishes our unified algorithmic framework for MOT.
Specifically, in §6.3 we define and compare three variants of the dual feasibility
oracle; and in §6.4 we characterize the structure that MOT algorithms require for
polynomial-time implementation in terms of these three oracles. For an overview
of these results, see §6.1.1. The second part of the chapter applies this algorithmic
framework to three general classes of MOT cost structures: graphical structure
(§6.5), set-optimization structure (§6.6), and low-rank plus sparse structure (§6.7).
For an overview of these results, see §6.1.2. These three application sections are
independent of each other and can be read separately. We conclude in §6.8.

the latter to ε accuracy if the fixed support is restricted to an O(ε)-net which requires n = 1/ εΩ(d)

discretization size for the barycenter’s support, and thus (i) even in constant dimension, does not
lead to high-precision algorithms due to poly(1/ ε) runtime; and (ii) scales exponentially in the
dimension d. See Chapter 7 for further details about the complexity of Wasserstein barycenters.
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� 6.2 Preliminaries

General notation. The set {1, . . . , n} is denoted by [n]. For shorthand, we write
poly(t1, . . . , tm) to denote a function that grows at most polynomially fast in those
parameters. Throughout, we assume for simplicity of exposition that all entries of
the input C and µ1, . . . , µk have bit complexity at most poly(n, k), and same with
the components defining C in structured settings. As such, throughout runtimes
refer to the number of arithmetic operations. The set R∪{−∞} is denoted by R̄,
and note that the value −∞ can be represented efficiently by adding a single flag
bit. We use the standard O(·) and Ω(·) notation, and use Õ(·) and Ω̃(·) to denote
that polylogarithmic factors may be omitted.

Tensor notation. The k-fold tensor product space Rn⊗ · · · ⊗ Rn is denoted by
(Rn)⊗k, and similarly for (Rn

>0)⊗k. Let P ∈ (Rn)⊗k. Its i-th marginal, i ∈ [k], is de-
noted bymi(P ) ∈ Rn and has entries [mi(P )]j :=

∑
j1,...,ji−1,ji+1,...,jk

Pj1,...,ji−1,j,ji+1,...,jk .

For shorthand, we often denote an index (j1, . . . , jk) by ~j. The sum of P ’s entries
is denoted by m(P ) =

∑
~j P~j. The maximum absolute value of P ’s entries is

denoted by ‖P‖max := max~j |P~j|, or simply Pmax for short. For ~j ∈ [n]k, we write

δ~j to denote the tensor with value 1 at entry ~j, and 0 elswewhere. The operations
� and ⊗ respectively denote the entrywise product and the Kronecker product.
The notation ⊗ki=1di is shorthand for d1 ⊗ · · · ⊗ dk. A non-standard notation we
use throughout is that f [P ] denotes a function f : R→ R (typically exp, log, or
a polynomial) applied entrywise to a tensor P .

� 6.2.1 Multimarginal Optimal Transport

The transportation polytope between measures µ1, . . . , µk ∈ ∆n is

M(µ1, . . . , µk) :=
{
P ∈ (Rn

>0)⊗k : mi(P ) = µi, ∀i ∈ [k]
}
. (6.2)

For a fixed cost C ∈ (Rn)⊗k, the MOTC problem is to solve the following linear
program, given input measures µ = (µ1, . . . , µk) ∈ (∆n)k:

min
P∈M(µ1,...,µk)

〈P,C〉. (MOT)

In the k = 2 matrix case, (MOT) is the Kantorovich formulation of OT [224]. Its
dual LP is

max
p1,...,pk∈Rn

k∑
i=1

〈pi, µi〉 subject to Cj1,...,jk −
k∑
i=1

[pi]ji > 0, ∀(j1, . . . , jk) ∈ [n]k.

(MOT-D)
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A basic, folklore fact about MOT is that it always has a sparse optimal solution
(e.g., [22, Lemma 3]). This follows from elementary facts about standard-form LP.

Lemma 6.2.1 (Sparse solutions for MOT). For any cost C ∈ (Rn)⊗k and any
marginals µ1, . . . , µk ∈ ∆n, there exists an optimal solution P to MOTC(µ) that
has at most nk − k + 1 non-zero entries.

Definition 6.2.2 (ε-approximate MOT solution). P is an ε-approximate solution
to MOTC(µ) if P is feasible (i.e., P ∈ M(µ1, . . . , µk)) and 〈C,P 〉 is at most ε
more than the optimal value.

� 6.2.2 Regularization

We introduce two standard regularization operators. First is the Shannon entropy
H(P ) := −∑~j P~j logP~j of a tensor P ∈ (Rn

>0)⊗k with entries summing to m(P ) =
1. We adopt the standard notational convention that 0 log 0 = 0. Second is the
softmin operator, which is defined for parameter η > 0 as

sminη
i∈[m]

ai := −1

η
log

(
m∑
i=1

e−ηai

)
. (6.3)

This softmin operator naturally extends to ai ∈ R∪{∞} by adopting the standard
notational conventions that e−∞ = 0 and log 0 = −∞.

We make use of the following folklore fact, which bounds the error between
the min and smin operators based on the regularization and the number of points.
For completeness, we provide a short proof.

Lemma 6.2.3 (Softmin approximation bound). For any a1, . . . , am ∈ R∪{∞}
and η > 0,

min
i∈[m]

ai > sminη
i∈[m]

ai > min
i∈[m]

ai −
logm

η
.

The entropically regularized MOT problem (RMOT for short) is the convex
optimization problem

min
P∈M(µ1,...,µk)

〈P,C〉 − η−1H(P ). (RMOT)

This is the natural multidimensional analog of entropically regularized OT, which
has a rich literature in statistics [142] and transportation theory [232], and has
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recently attracted significant interest in machine learning [73, 178]. The convex
dual of (RMOT) is the convex optimization problem

max
p1,...,pk∈Rn

k∑
i=1

〈pi, µi〉+ sminη
~j∈[n]k

(
C~j −

k∑
i=1

[pi]ji

)
. (RMOT-D)

In contrast to MOT, there is no analog of Lemma 6.2.1 for RMOT: the unique
optimal solution to RMOT is dense. Further, this solution may not even be
“approximately” sparse. For example, when C = 0, all µi are uniform, and η > 0
is any positive number, the solution is fully dense with all entries equal to 1/nk.

We define P to be an ε-approximate RMOT solution in the analogous way as in
Definition 6.2.2. A basic, folklore fact about RMOT is that if the regularization η
is sufficiently large, then RMOT and MOT are equivalent in terms of approximate
solutions.

Lemma 6.2.4 (MOT and RMOT are close for large regularization η). Let P ∈
M(µ1, . . . , µk), ε > 0, and η > ε−1 k log n. If P is an ε-approximate solution to
(RMOT), then P is also a (2 ε)-approximate solution to (MOT); and vice versa.

Proof. Since a discrete distribution supported on nk atoms has entropy at most
k log n [72], the objectives of (MOT) and (RMOT) differ pointwise by at most
η−1k log n 6 ε. Since (MOT) and (RMOT) also have the same feasible sets, their
optimal values therefore differ by at most ε.

� 6.3 Oracles

Here we define the three oracle variants described in the introduction and discuss
their relations. In the below definitions, let C ∈ (Rn)⊗k be a cost tensor.

Definition 6.3.1 (MIN oracle). For weights p = (p1, . . . , pk) ∈ Rn×k, MINC(p)
returns

min
~j∈[n]k

C~j −
k∑
i=1

[pi]ji .

Definition 6.3.2 (AMIN oracle). For weights p = (p1, . . . , pk) ∈ Rn×k and accu-
racy ε > 0, AMINC(p, ε) returns MINC(p) up to additive error ε.

Definition 6.3.3 (SMIN oracle). For weights p = (p1, . . . , pk) ∈ R̄n×k and regu-
larization parameter η > 0, SMINC(p, η) returns

sminη
~j∈[n]k

C~j −
k∑
i=1

[pi]ji .
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An algorithm is said to “solve” or “implement” MINC if given input p, it
outputs MINC(p). Similarly for AMINC and SMINC . Note that the weights p that
are input to SMIN have values inside R̄ = R∪{−∞}; this simplifies the notation
in the treatment of the SINKHORN algorithm below and does not increase the
bit-complexity by more than 1 bit by adding a flag for the value −∞.

Remark 6.3.4 (Interpretation as variants of the dual feasibility oracle). These
three oracles can be viewed as variants of the feasibility oracle for (MOT-D). For
MINC(p), this relationship is exact: p ∈ Rn×k is feasible for (MOT-D) if and
only if MINC(p) is non-negative. For AMINC and SMINC, this relationship is
approximate, with the approximation depending on how small ε is and how large
η is, respectively.

Since these oracles form the respective bottlenecks of all algorithms from
the MOT and implicit linear programming literatures (see the overview in the
introduction §6.1.1), an important question is: if one oracle can be implemented
in poly(n, k) time, does this imply that the other can be too?

Two reductions are straightforward: the AMIN oracle can be implemented
in poly(n, k) time whenever either the MIN oracle or the SMIN oracle can be
implemented in poly(n, k) time. We record these simple observations in remarks
for easy recall.

Remark 6.3.5 (MIN implies AMIN). For any accuracy ε > 0, the MINC(p) oracle
provides a valid answer to the AMINC(p, ε) oracle by definition.

Remark 6.3.6 (SMIN implies AMIN). For any p ∈ Rn×k and regularization
η > ε−1 k log n, the SMINC(p, η) oracle provides a valid answer to the AMINC(p, ε)
oracle due to the approximation property of the smin operator (Lemma 6.2.3).

In the remainder of this section, we show a separation between the SMIN oracle
and both the MIN and AMIN oracles by exhibiting a family of cost tensors C for
which there exist polynomial-time algorithms for MIN and AMIN, however there is
no polynomial-time algorithm for SMIN. The non-existence of a polynomial-time
algorithm of course requires a complexity theoretic assumption; our result holds
under #BIS-hardness—which is a by-now standard complexity theory assumption
introduced in [82], and in words is the statement that there does not exist a
polynomial-time algorithm for counting the number of independent sets in a
bipartite graph.

Lemma 6.3.7 (Restrictiveness of the SMIN oracle). There exists a family of costs
C ∈ (Rn)⊗k for which MINC and AMINC can be solved in poly(n, k) time, however
SMINC is #BIS-hard.
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Proof. In order to prove hardness for general n, it suffices to exhibit such a family
of cost tensors when n = 2. Since n = 2, it is convenient to abuse notation slightly
by indexing a cost tensor C ∈ (Rn)⊗k by ~j ∈ {−1, 1}k rather than by ~j ∈ {1, 2}k.
The family we exhibit is {C(A, b) : A ∈ Rk×k

>0 , b ∈ Rk}, where the cost tensors
C(A, b) are parameterized by a non-negative square matrix A and a vector b, and
have entries of the form

C~j(A, b) := −〈~j, A~j〉 − 〈b,~j〉, ~j ∈ {±1}k.

Polynomial-time algorithm for MIN and AMIN. We show that given a matrix

A ∈ Rk×k
>0 , vector b ∈ Rk, and weights p ∈ R2×k, it is possible to compute MINC(p)

on the cost tensor C(A, b) in poly(k) time. Clearly this also implies a poly(k)
time algorithm for AMINC(p, ε) for any ε > 0, see Remark 6.3.5.

To this end, we first re-write the MINC(p) problem on C(A, b) in a more
convenient form that enables us to “ignore” the weights p. Recall that MINC(p)
is the problem of

MINC(p) = min
~j∈{±1}k

−〈~j, A~j〉 − 〈b,~j〉 −
k∑
i=1

[pi]ji .

Note that the linear part of the cost is equal to

〈b,~j〉+
k∑
i=1

[pi]ji = 〈`,~j〉+ d, (6.4)

where ` ∈ Rk is the vector with entries `i = bi + 1
2
((pi)1 − (pi)−1), and d is the

scalar d = 1
2

∑k
i=1([pi]1 + [pi]−1). Thus, since d is clearly computable in O(k) time,

the MINC problem is equivalent to solving

min
~j∈{±1}k

−〈~j, A~j〉 − 〈`,~j〉, (6.5)

when given as input a non-negative matrix A ∈ Rk×k
>0 and a vector ` ∈ Rk.

To show that this task is solvable in poly(k) time, note that the objective
in (6.5) is a submodular function because it is a quadratic whose Hessian −A
has non-positive off-diagonal terms [27, Proposition 6.3]. Therefore (6.5) is a
submodular optimization problem, and thus can be solved in poly(k) time using
classical algorithms from combinatorial optimization [102, Chapter 10.2].

SMIN oracle is #BIS-hard. On the other hand, by using the definition of the
SMIN oracle, the re-parameterization (6.4), and then the definition of the softmin
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operator, the value of SMINC(p, η) is

sminη
~j∈{±1}k

−〈~j, A~j〉 − 〈b,~j〉 −
k∑
i=1

[pi]ji = sminη
~j∈{±1}k

−〈~j, A~j〉 − 〈`,~j〉 − d = − logZ

η
− d,

where Z =
∑

~j∈{±1}k Q(~j) is the partition function of the ferromagnetic Ising
model with inconsistent external fields given by

Q(~j) = exp
(
η〈~j, A~j〉+ η〈`,~j〉

)
.

Because it is #BIS hard to compute the partition function Z of a ferromagnetic
Ising model with inconsistent external fields [97], it is #BIS hard to compute the
value −η−1 logZ − d of the oracle SMINC(p, η).

Remark 6.3.8 (The restrictiveness of SMIN extends to approximate computation).
The separation between the oracles shown in Lemma 6.3.7 further extends to
approximate computation of the SMIN oracle under the assumption that #BIS
is hard to approximate, since under this assumption it is hard to approximate
the partition function of a ferromagnetic Ising model with inconsistent external
fields [97].

� 6.4 Algorithms to oracles

In this section, we consider three algorithms for MOT. Each is iterative and
requires only polynomially many iterations. The key issue for each algorithm is
the per-iteration runtime, which is in general exponential (roughly nk). We isolate
the respective bottlenecks of these three algorithms into the three variants of the
dual feasibility oracle defined in §6.3. See §6.1.1 and Table 6.1 for a high-level
overview of this section’s results.

� 6.4.1 The Ellipsoid algorithm and the MIN oracle

Among the most classical algorithms for implicit LP is the Ellipsoid algorithm [101,
102, 132]. However it has taken a back seat to the SINKHORN algorithm in the vast
majority of the MOT literature. The very recent paper [11], which focuses on the
specific MOT application of computing low-dimensional Wasserstein barycenters,
develops a variant of the classical Ellipsoid algorithm specialized to MOT; hence-
forth this is called ELLIPSOID, see §6.4.1.1 for a description of this algorithm. The
objective of this section is to analyze ELLIPSOID in the context of general MOT
problems in order to prove the following.
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Theorem 6.4.1. For any family of cost tensors C ∈ (Rn)⊗k, the following are
equivalent:

(i) ELLIPSOID takes poly(n, k) time to solve the MOTC problem. (Moreover, it
outputs a vertex solution represented as a sparse tensor with at most nk−k+1
non-zeros.)

(ii) There exists a poly(n, k) time algorithm that solves the MOTC problem.

(iii) There exists a poly(n, k) time algorithm that solves the MINC problem.

Interpretation of results. In words, the equivalence “(i) ⇐⇒ (ii)” establishes that
ELLIPSOID can solve any MOT problem in polynomial time that any other al-
gorithm can. Thus from a theoretical perspective, this chapter’s restriction to
ELLIPSOID is at no loss of generality for developing polynomial-time algorithms
that exactly solve MOT. In words, the equivalence “(ii) ⇐⇒ (iii)” establishes
that the MOT and MIN problems are polynomial-time equivalent. Thus we may
investigate when MOT is tractable by instead investigating the more amenable
question of when MIN is tractable (see §6.1.1.4) at no loss of generality.

As stated in the Related Work section, Theorem 6.4.1 is implicit from com-
bining several known results [11, 12, 102]. Our contribution here is to make this
result explicit, since this allows us to unify algorithms from the implicit LP lit-
erature with the SINKHORN algorithm. We also significantly simplify part of the
implication “(iii) =⇒ (i)”, which is crucial for making an algorithm that relies on
the MIN oracle practical—namely, the Column Generation algorithm discussed
below.

Organization of §6.4.1. In §6.4.1.1, we recall this ELLIPSOID algorithm and how it
depends on the violation oracle for (MOT-D). In §6.4.1.2, we give a significantly
simpler proof that the violation and feasibility oracles are polynomial-time equiv-
alent in the case of (MOT-D), and use this to prove Theorem 6.4.1. In §6.4.1.3,
we describe a practical implementation that replaces the ELLIPSOID outer loop
with Column Generation.

� 6.4.1.1 Algorithm

A key component of the proof of Theorem 6.4.1 is the ELLIPSOID algorithm
introduced in [11] for MOT, which we describe below. In order to present this,
we first define a variant of the MIN oracle that returns a minimizing tuple rather
than the minimizing value.

Definition 6.4.2 (Violation oracle for (MOT-D)). Given weights p = (p1, . . . , pk) ∈
Rn×k, ARGMINC returns the minimizing solution ~j and value of min~j∈[n]k C~j −∑k

i=1[pi]ji.



Sec. 6.4. Algorithms to oracles 155

ARGMINC can be viewed as a violation oracle5 for the decision set to (MOT-D).
This is because, given p = (p1, . . . , pk) ∈ Rn×k, the tuple ~j output by ARGMINC(p)
either provides a violated constraint if C~j −

∑k
i=1[pi]ji < 0, or otherwise certifies

p is feasible. In [11] it is proved that MOT can be solved with polynomially many
calls to the ARGMINC oracle.

Theorem 6.4.3 (ELLIPSOID guarantee; Proposition 12 of [11]). Algorithm 6.1
finds an optimal vertex solution for MOTC(µ) using poly(n, k) calls to the ARGMINC
oracle and poly(n, k) additional time. The solution is returned as a sparse tensor
with at most nk − k + 1 non-zero entries.

Input: Cost C ∈ (Rn)⊗k, marginals µ1, . . . , µk ∈ ∆n

Output: Vertex solution to MOTC(µ)

\\ Solve dual
1: Solve (MOT-D) using the Ellipsoid algorithm, with ARGMINC as the violation oracle.

Let S denote the set of tuples returned by all calls to ARGMINC .

\\ Solve primal
2: Solve (6.6) using the Ellipsoid algorithm.

Algorithm 6.1: ELLIPSOID: specialization of the classical Ellipsoid algorithm to MOT

Sketch of algorithm. Full details and a proof are in [11]. We give a brief overview
here for the convenience of the reader. First, recall from the implicit LP literature
that the classical Ellipsoid algorithm can be implemented in polynomial time for
an LP with arbitrarily many constraints so long as it has polynomially many
variables and the violation oracle for its decision set is solvable in polynomial
time [102]. This does not directly apply to the LP (MOT) because that LP has
nk variables. However, it can apply to the dual LP (MOT-D) because that LP
only has nk variables.

This suggests a natural two-step algorithm for MOT. First, compute an
optimal dual solution by directly applying the Ellipsoid algorithm to (MOT-D).
Second, use this dual solution to construct a sparse primal solution. Although
this dual-to-primal conversion does not extend to arbitrary LP [37, Exercise 4.17],
the paper [11] provides a solution by exploiting the standard-form structure of

5Recall that a violation oracle for a polytope K = {x : 〈ai, x〉 6 bi,∀i ∈ [N ]} is an algorithm
that given a point p, either asserts p is in K, or otherwise outputs the index i of a violated
constraint 〈ai, p〉 > bi.
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MOT. The procedure is to solve

min
P∈M(µ1,...,µk)

s.t. P~j=0, ∀~j /∈S

〈C,P 〉 (6.6)

which is the MOT problem restricted to sparsity pattern S, where S is the set
of tuples ~j returned by the violation oracle during the execution of step one of
Algorithm 6.1. This second step takes poly(n, k) time using a standard LP solver,
because running the Ellipsoid algorithm in the first step only calls the violation
oracle poly(n, k) times, and thus S has poly(n, k) size, and therefore the LP (6.6)
has poly(n, k) variables and constraints. In [11] it is proved that this produces a
primal vertex solution to the original MOT problem.

� 6.4.1.2 Equivalence of bottleneck to MIN

Although Theorem 6.4.3 shows that ELLIPSOID can solve MOT in poly(n, k) time
using the ARGMIN oracle, this is not sufficient to prove the implication “(iii) =⇒
(i)” in Theorem 6.4.1. In order to prove that implication requires showing the
polynomial-time equivalence between MIN and ARGMIN.

Lemma 6.4.4 (Equivalence of MIN and ARGMIN). Each of the oracles MINC
and ARGMINC can be implemented using poly(n, k) calls of the other oracle and
poly(n, k) additional time.

This equivalence follows from classical results about the equivalence of violation
and feasibility oracles [239]. However, the known proof of that general result
requires an involved and indirect argument based on “back-and-forth” applications
of the Ellipsoid algorithm [102, §4.3]. Here we exploit the special structure of MOT
to give a direct and elementary proof. This is essential to practical implementations
(see §6.4.1.3).

Proof. It is obvious how the MINC oracle can be implemented via a single call of the
ARGMINC oracle; we now show the converse. Specifically, given p1, . . . , pk ∈ Rn, we
show how to compute a solution ~j = (j1, . . . , jk) ∈ [n]k for ARGMINC([p1, . . . , pk])
using nk calls to the MINC oracle and polynomial additional time. We use the first
n calls to compute the first index j1 of the solution, the next n calls to compute
the next index j2, and so on.

Formally, for s ∈ [k], let us say that (j∗1 , . . . , j
∗
s ) ∈ [n]s is a “partial solution”

of size s if there exists a solution j ∈ [n]k for ARGMINC([p1, . . . , pk]) that satisfies
ji = j∗i for all i ∈ [s]. Then it suffices to show that for every s ∈ [k], it is possible to
compute a partial solution (j∗1 , . . . , j

∗
s ) of size s from a partial solution (j∗1 , . . . , j

∗
s−1)

of size s− 1 using n calls to the MINC oracle and polynomial additional time.
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The simple but key observation enabling this is the following. Below, for i ∈ [k]
and j ∈ [n], define qi,j to be the vector in Rn with value [pi]j on entry j, and
value −M on all other entries. In words, the following observation states that if
the constant M is sufficiently large, then for any indices j′i, replacing the vectors
pi with the vectors qi,j′i in a MIN oracle query effectively performs a MIN oracle
query on the original input p1, . . . , pk except that now the minimization is only
over ~j ∈ [n]k satisfying ji = j′i.

Observation 6.4.5. Set M := 2Cmax + 2
∑k

i=1 ‖pi‖max + 1. Then for any s ∈ [k]
and any (j′1, . . . , j

′
s) ∈ [n]s,

MINC([q1,j′1
, . . . , qs,j′s , ps+1, . . . , pk]) = min

~j∈[n]k

s.t. j1=j′1,...,js=j′s

C~j −
k∑
i=1

[pi]ji .

Proof. By definition of the MIN oracle,

MINC([q1,j′1
, . . . , qs,j′s , ps+1, . . . , pk]) = min

~j∈[n]k
C~j −

s∑
i=1

[qi,j′i ]ji −
k∑

i=s+1

[pi]ji

It suffices to prove that every minimizing tuple ~j ∈ [n]k for the right hand side
satisfies ji = j′i for all i ∈ [s]. Suppose not for sake of contradiction. Then there
exists a minimizing tuple ~j ∈ [n]k for which j` 6= j′` for some ` ∈ [s]. But then
[q`,j′` ]j` = −M , so the objective value of ~j is at least

C~j −
s∑
i=1

[qi,j′i ]ji −
k∑

i=s+1

[pi]ji >M − Cmax −
k∑
i=1

‖pi‖max = Cmax +
k∑
i=1

‖pi‖max + 1.

But this is strictly larger (by at least 1) than the value of any tuple with prefix
(j′1, . . . , j

′
s), contradicting the optimality of ~j.

Thus, given a partial solution (j∗1 , . . . , j
∗
s−1) of length s − 1, we construct a

partial solution (j∗1 , . . . , j
∗
s ) of length s by setting j∗s to be a minimizer of

min
j′s∈[n]

MINC([q1,j∗1
, . . . , qs−1,j∗s−1

, qs,j′s , ps+1, . . . , pk]). (6.7)
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The runtime bound is clear; it remains to show correctness. To this end, note that

min
~j∈[n]k

s.t. j1=j∗1 ,...,js=j∗s

C~j −
k∑
i=1

[pi]ji = MINC([q1,j∗1
, . . . , qs,j∗s , ps+1, . . . , pk])

= min
j′s∈[n]

MINC([q1,j∗1
, . . . , qs−1,j∗s−1

, qs,j′s , ps+1, . . . , pk])

= min
j′s∈[n]

min
~j∈[n]k

s.t. j1=j∗1 ,...,js−1=j∗s−1,js=j′s

C~j −
k∑
i=1

[pi]ji

= min
~j∈[n]k

s.t. j1=j∗1 ,...,js−1=j∗s−1

C~j −
k∑
i=1

[pi]ji

= MINC([p1, . . . , pk]),

where above the first and third steps are by Observation 6.4.5, the second step is
by construction of j∗s , the fourth step is by simplifying, and the final step is by
definition of (j∗1 , . . . , j

∗
s−1) being a partial solution of size s− 1. We conclude that

(j∗1 , . . . , j
∗
s ) is a partial solution of size s, as desired.

We can now conclude the proof of the main result of §6.4.1.

Proof of Theorem 6.4.1. The implication “(i) =⇒ (ii)” is trivial, and the implica-
tion “(ii) =⇒ (iii)” is shown in [12]. It therefore suffices to show the implication
“(iii) =⇒ (i)”. This follows from combining the fact that ELLIPSOID solves
MOTC in polynomial time given an efficient implementation of ARGMINC (Theo-
rem 6.4.3), with the fact that the MINC and ARGMINC oracles are polynomial-time
equivalent (Lemma 6.4.4).

� 6.4.1.3 Practical implementation via Column Generation

Although ELLIPSOID enjoys powerful theoretical runtime guarantees, it is slow
in practice because the classical Ellipsoid algorithm is. Nevertheless, whenever
ELLIPSOID is applicable (i.e., whenever the MINC oracle can be efficiently im-
plemented), we can use an alternative practical algorithm, namely the delayed
Column Generation method COLGEN, to compute exact, sparse solutions to MOT.

For completeness, we briefly recall the idea behind COLGEN; for further details
see the standard textbook [37, §6.1]. COLGEN runs the Simplex method, keeping
only basic variables in the tableau. Each time that COLGEN needs to find a
Simplex variable on which to pivot, it solves the “pricing problem” of finding a
variable with negative reduced cost. This is the key subroutine in COLGEN. In the
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present context of the MOT LP, this pricing problem is equivalent to a call to
the ARGMIN violation oracle (see [37, Definition 3.2] for the definition of reduced
costs). By the polynomial-time equivalence of the ARGMIN and MIN oracles
shown in Lemma 6.4.4, this bottleneck subroutine in COLGEN can be computed in
polynomial time whenever the MIN oracle can. For easy recall, we summarize this
discussion as follows.

Theorem 6.4.6 (Standard guarantee for COLGEN; §6.1 of [37]). For any T > 0,
one can implement T iterations of COLGEN in poly(n, k, T ) time and calls to the
MINC oracle. When COLGEN terminates, it returns an optimal vertex solution,
which is given as a sparse tensor with at most nk − k + 1 non-zero entries.

Note that COLGEN does not have a theoretical guarantee stating that it ter-
minates after a polynomial number of iterations. But it often performs well in
practice and terminates after a small number of iterations, leading to much better
empirical performance than ELLIPSOID.

� 6.4.2 The Multiplicative Weights Update algorithm and the AMIN oracle

The second classical algorithm for solving implicitly-structured LPs that we study
in the context of MOT is the Multiplicative Weights Update algorithm MWU [237].
The objective of this section is to prove the following guarantees for its specializa-
tion to MOT.

Theorem 6.4.7. For any family of cost tensors C ∈ (Rn)⊗k, the following are
equivalent:

(i) For any ε > 0, MWU takes poly(n, k, Cmax/ ε) time to solve the MOTC prob-
lem ε-approximately. (Moreover, it outputs a sparse solution with at most
poly(n, k, Cmax/ ε) non-zero entries.)

(ii) There exists a poly(n, k, Cmax/ ε)-time algorithm that solves the MOTC prob-
lem ε-approximately for any ε > 0.

(iii) There exists a poly(n, k, Cmax/ ε)-time algorithm that solves the AMINC prob-
lem ε-approximately for any ε > 0.

Interpretation of results. Similarly to the analogous Theorem 6.4.1 for ELLIPSOID,
the equivalence “(i) ⇐⇒ (ii)” establishes that MWU can approximately solve any
MOT problem in polynomial time that any other algorithm can. Thus, from a the-
oretical perspective, restricting to MWU for approximately solving MOT problems
is at no loss of generality. In words, the equivalence “(ii) ⇐⇒ (iii)” establishes
that approximating MOT and approximating MIN are polynomial-time equivalent.
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Thus we may investigate when MOT is tractable to approximate by instead inves-
tigating the more amenable question of when MIN is tractable (see §6.1.1.4) at no
loss of generality.

Theorem 6.4.7 is new to this work. In particular, equivalences between prob-
lems with polynomially small error do not fall under the purview of classical LP
theory, which deals with exponentially small error [102]. Our use of the MWU algo-
rithm exploits a simple reduction of MOT to a mixed packing-covering LP that
has appeared in the k = 2 matrix case of Optimal Transport in [39, 182], where
implicit LP is not necessary for polynomial runtime.

Organization of §6.4.2. In §6.4.2.1 we present the specialization of Multiplicative
Weights Update to MOT, and recall how it runs in polynomial time and calls to
a certain bottleneck oracle. In §6.4.2.2, we show that this bottleneck oracle is
equivalent to the AMIN oracle, and then use this to prove Theorem 6.4.7.

� 6.4.2.1 Algorithm

Here we present the MWU algorithm, which combines the generic Multiplicative
Weights Update algorithm of [237] specialized to MOT, along with a final rounding
step that ensures feasibility of the solution.

In order to present MWU, it is convenient to assume that the cost C has entries
in the range [1, 2] ⊂ R, which is at no loss of generality by simply translating
and rescaling the cost (see §6.4.2.2), and can be done implicitly given a bound
on Cmax. This is why in the rest of this subsection, every runtime dependence
on ε is polynomial in 1/ ε for costs in the range [1, 2]; after transformation back
to [−Cmax, Cmax], this is polynomial dependence in the standard scale-invariant
quantity Cmax/ ε.

Since the cost C is assumed to have non-negative entries, for any λ ∈ [1, 2],
the polytope

K(λ) = {P ∈M(µ1, . . . , µk) : 〈C,P 〉 6 λ}

of couplings with cost at most λ is a mixed packing-covering polytope (i.e., all
variables are non-negative and all constraints have non-negative coefficients). Note
that K(λ) is non-empty if and only if MOTC(µ) has value at most λ. Thus, mod-
ulo a binary search on λ, this reduces computing the value of MOTC(µ) to the task
of detecting whether K(λ) is empty. Since K(λ) is a mixed packing-covering poly-
tope, the Multiplicative Weights Update algorithm of [237] determines whether
K(λ) is empty, and runs in polynomial time apart from one bottleneck, which we
now define.

In order to define the bottleneck, we first define a potential function. For this,
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we define the softmax analogously to the softmin as

smax(a1, . . . , at) = − smin(−a1, . . . ,−at) = log

(
t∑
i=1

eai

)
.

Here we use regularization parameter η = 1 for simplicity, since this suffices for
analyzing MWU, and thus we have dropped this index η for shorthand.

Definition 6.4.8 (Potential function for MWU). Fix a cost C ∈ (Rn)⊗k, target
marginals µ ∈ (∆n)k, and target value λ ∈ R. Define the potential function
Φ := ΦC,µ,λ : (Rn

>0)⊗k → R by

Φ(P ) = smax

(〈C,P 〉
λ

,
m1(P )

µ1

, . . . ,
mk(P )

µk

)
.

The softmax in the above expression is interpreted as a softmax over the nk + 1
values in the concatenation of vectors and scalars in its input. (This slight abuse
of notation significantly reduces notational overhead.)

Given this potential function, we now define the bottleneck operation for MWU:
find a direction ~j ∈ [n]k in which P can be increased such that the potential is
increased as little as possible.

Definition 6.4.9 (Bottleneck oracle for MWU). Given iterate P ∈ (Rn
>0)⊗k, target

marginals µ ∈ (∆n)k, target value λ ∈ R, and accuracy ε > 0, the algorithm
MWU BOTTLENECKC(P, µ, λ, ε) either:

• Outputs “null”, certifying that min~j∈[n]k
∂
∂h

Φ(P + h · δ~j) |h=0> 1, or

• Outputs ~j ∈ [n]k such that ∂
∂h

Φ(P + h · δ~j) |h=06 1 + ε.

(If min~j∈[n]k
∂
∂h

Φ(P + h · δ~j) |h=0 is within (1, 1 + ε], then either return behavior is
a valid output.)

Pseudocode for the MWU algorithm is given in Algorithm 6.2. We prove that
MWU runs in polynomial time given access to this bottleneck oracle.

Theorem 6.4.10. Let the entries of the cost C lie in the range [1, 2]. Given
λ ∈ R and accuracy parameter ε > 0, MWU either certifies that MOTC(µ) 6 λ, or
returns a poly(n, k, 1/ ε)-sparse P ∈M(µ1, . . . , µk) satisfying 〈C,P 〉 6 λ+ 8 ε.

Furthermore, the loop in Step 1 runs in Õ(nk/ ε2) iterations, and Step 2 runs
in poly(n, k, 1/ ε) time.
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Require: Accuracy ε > 0, marginals µ1, . . . , µk ∈ ∆n, target value λ > 0
Ensure: Either certifies MOTC(µ) > λ by returning “infeasible”, or returns a solution

P with 〈C,P 〉 6 λ+ 8 ε
\\ Step 1: Multiplicative Weights Update

1: P ← 0 ∈ (Rn>0)⊗k, η ← 2(log(nk + 1))/ ε
2: while m(P ) < η do . While total mass is small
3: ~j ← MWU BOTTLENECKC(P, µ, λ, ε) . Find good direction
4: if ~j =“null” then return “infeasible” . No good direction
5: else P ← P + δ~j · ε ·min(λ/C~j ,mini[µi]ji) . Increase in good direction

6: P ← P/(η(1 + ε)4) . Rescale

\\ Step 2: round to transportation polytope
7: while m(P ) < 1 do . While infeasible
8: ji ← arg maxj∈[n]([µi]j − [mi(P )]j), ∀i ∈ [k] . Find violated constraints
9: α← mini∈[k]([µi]ji − [mi(P )]ji) . Maximal mass to add

10: P ← P + α · δ~j . Add mass to saturate constraints

Algorithm 6.2: MWU: specialization of Multiplicative Weights Update [237] to MOT.
Assumes cost C satisfies C~j ∈ [1, 2] for all ~j ∈ [n]k (wlog by rescaling). Step 1 repeatedly
adds mass to P in directions that do not increase the potential much. Step 2 repeatedly
finds violated constraints and adds mass to P to saturate them.

The MWU algorithm can be used to output a O(ε)-approximate solution for
MOT time via an outer loop that performs binary search over λ; this only incurs
O(log(1/ ε))-multiplicative overhead in runtime.

Proof. We analyze Step 1 (Multiplicative Weights Update) and Step 2 (rounding)
of MWU separately.

Lemma 6.4.11 (Correctness of Step 1). Step 1 of Algorithm 6.2 runs in Õ(nk/ ε2)
iterations. It either returns (i) “infeasible”, certifying that K(λ) is empty; or (ii)
finds a poly(n, k, 1/ ε)-sparse tensor P ∈ (Rn

>0)⊗k that is approximately in K(λ),
i.e., P satisfies:

m(P ) > 1− 4 ε, 〈C,P 〉 6 λ, and mi(P ) 6 µi for all i ∈ [k]

Step 1 is the Multiplicative Weights Update algorithm of [237] applied to the
polytope K(λ), so correctness follows from the analysis of [237]. We briefly recall
the main idea behind this algorithm for the convenience of the reader. The main
idea behind the algorithm is that on each iteration, ~j ∈ [n]k is chosen so that the
increase in the potential Φ(P ) is approximately bounded by the increase in the
total mass m(P ). If this is impossible, then the bottleneck oracle returns null,
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which means K(λ) is empty. So assume otherwise. Then once the total mass has
increased to m(P ) = η+O(ε), the potential Φ(P ) must be bounded by η(1+O(ε)).
By exploiting the inequality between the max and the softmax, this means that
max(〈C,P 〉/λ,maxi∈[n],j∈[k][mi(P )]j/[µi]j) 6 Φ(P ) 6 η(1 + O(ε)) as well. Thus,
rescaling P by 1/(η(1 +O(ε))) in Line 6 satisfies m(P ) > 1−O(ε), 〈C,P 〉/λ 6 1,
and mi(P )/µi 6 1. For full details and a proof of the runtime and sparsity claims,
see the Appendix of the paper [13] upon which this chapter is based.

Lemma 6.4.12 (Correctness of Step 2). Step 2 of Algorithm 6.2 runs in poly(n, k, 1/ ε)
time and returns P ∈M(µ1, . . . , µk) satisfying 〈C,P 〉 6 λ+ 8 ε. Furthermore, P
only has poly(n, k, 1/ ε) non-zero entries.

Proof of Lemma 6.4.12. By Lemma 6.4.11, P satisfies mi(P ) 6 µi for all i ∈ [k].
Observe that this is an invariant that holds throughout the execution of Step 2.
This, along with the fact that

∑n
j=1[mi(P )]j = m(P ) is equal for all i, implies

that the indices (j1, . . . , jk) found in Line 8 satisfy [µi]ji − [mi(P )]ji > 0 for each
i ∈ [k]. Thus in particular α > 0 in Line 9. It follows that Line 10 makes at
least one more constraint satisfied (in particular the constraint “[µi]ji = [mi(P )]ji”
where i is the minimizer in Line 9). Since there are nk constraints total to be
satisfied, Step 2 terminates in at most nk iterations. Each iteration increases the
number of non-zero entries in P by at most one, thus P is poly(n, k, 1/ ε) sparse
throughout. That P is sparse also implies that each iteration can be performed
in poly(n, k, 1/ ε) time, thus Step 2 takes poly(n, k, 1/ ε) time overall.

Finally, we establish the quality guarantee on 〈C,P 〉. By Lemma 6.4.11, this
is at most λ before starting Step 2. During Step 2, the total mass added to P
is equal to 1 − m(P ). This is upper bounded by 4 ε by Lemma 6.4.11. Since
Cmax 6 2, we conclude that the value of 〈C,P 〉 is increased by at most 8 ε in Step
2.

Combining Lemmas 6.4.11 and 6.4.12 concludes the proof of Theorem 6.4.10.

� 6.4.2.2 Equivalence of bottleneck to AMIN

In order to prove Theorem 6.4.7, we show that the MWU algorithm can be imple-
mented in polynomial time and calls to the AMIN oracle. First, we prove this
fact for the ARGAMIN oracle, which differs from the AMIN oracle in that it also
returns a tuple ~j ∈ [n]k that is an approximate minimizer.

Definition 6.4.13 (Approximate violation oracle for (MOT-D)). Given weights
p = (p1, . . . , pk) ∈ Rn×k and accuracy ε > 0, ARGAMINC returns ~j ∈ [n]k that
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minimizes min~j∈[n]k C~j −
∑k

i=1[pi]ji up to additive error ε, and its value up to
additive error ε.

Lemma 6.4.14. Let the entries of the cost C lie in the range [1, 2]. The MWU

algorithm (Algorithm 6.2), can be implemented by poly(n, k, 1/ ε) time and calls
to the ARGAMINC oracle with accuracy parameter ε′ = Θ(ε2 /(nk)).

Proof. We show that on each iteration of Step 1 of Algorithm 6.2 we can emulate
the call to the MWU BOTTLENECK oracle with one call to the ARGAMIN oracle.
Recall that MWU BOTTLENECKC(P, µ, λ, ε) seeks to find ~j ∈ [n]k such that

V~j :=
∂

∂h
Φ(P + hδ~j)

∣∣∣
h=0

is at most 1 + ε, or to certify that for all ~j it is greater than 1. By explicit
computation,

V~j =
∂

∂h
log

(
exp

((
〈C,P 〉+ hC~j

)
/λ+

k∑
s=1

n∑
t=1

exp (([ms(P )]t + δt,js) /[µs]t)

))∣∣∣∣∣
h=0

=

(
C~j −

k∑
i=1

[pi]ji

)
exp(〈C,P 〉/λ)/λ

exp(〈C,P 〉/λ) +
∑k

s=1

∑n
t=1 exp([ms(P )]t/[µs]t)

, (6.8)

where the weights p = (p1, . . . , pk) ∈ Rk×n in the last line are defined as

[pi]j = − λ

exp(〈C,P 〉/λ)
· exp([mi(P )]j/[µi]j)

[µi]j
, ∀i ∈ [k], j ∈ [n].

Note that the second term in the product in (6.8) is positive and does not depend
on ~j. This suggests that in order to minimize (6.8), it suffices to compute ~j ←
ARGAMINC(p, ε′) for some accuracy parameter ε′ > 0.

The main technical difficulty with formalizing this intuitive approach is that the
weights p are not necessarily efficiently computable. Nevertheless, using poly(n, k)
extra time on each iteration, we can compute the marginals m1(P ), . . . ,mk(P ).
Since the ARGAMIN oracle returns an ε′-additive approximation of the cost, we
can also compute a running estimate c̃ of the cost such that, on iteration T ,

c̃− T ε′ 6 〈C,P 〉 6 c̃+ T ε′ .

Therefore, we define weights p̃ ∈ Rn×k, which approximate p and which can
be computed in poly(n, k) time on each iteration:

[p̃i]j = − λ

exp(c̃/λ)
· exp([mi(P )]j/[µi]j)

[µi]j
, ∀i ∈ [k], j ∈ [n].
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We also define the approximate value for any ~j ∈ [n]k:

Ṽ~j :=

(
C~j −

k∑
i=1

[p̃i]ji

)
exp(c̃/λ)/λ

exp(c̃/λ) +
∑k

s=1

∑n
t=1 exp([ms(P )]t/[µs]t)

It holds that ARGAMINC(p̃, ε′) returns a ~j ∈ [n]k that minimizes C~j −
∑k

i=1[p̃i]j
up to multiplicative error 1/(1− ε′), because the entries of the cost C are lower-
bounded by 1, and [p̃i]j 6 0 for all i ∈ [n], j ∈ [k]. In particular, ARGAMINC(p̃, ε′)
minimizes Ṽ~j up to multiplicative error 1/(1− ε′). We prove the following claim

relating V~j and Ṽ~j:

Observation 6.4.15. For any ~j ∈ [n]k, on iteration T , it holds that V~j/Ṽ~j ∈
[exp(−2T ε′ /λ), exp(2T ε′ /λ)].

By the above claim, therefore ARGAMINC(p̃, ε′) minimizes V~j up to multi-
plicative error exp(4T ε′ /λ)/(1 − ε′) 6 (1 + ε /3) if we choose ε′ = Ω(λ ε /T ).
Thus one can implement MWU BOTTLENECKC(p, µ, λ, ε) by returning the value
of ARGAMINC(p̃, ε′) if its value is estimated to be at most 1 + ε /3, and return-
ing “null“ otherwise. The bound on the accuracy ε′ = Ω̃(ε2 /(nk)) follows since
λ ∈ [1, 2] follows since λ ∈ [1, 2] and T = Õ(nk/ ε2) by Theorem 6.4.10.

Proof of Claim. We compare the expressions for V~j and Ṽ~j. Each of these is a
product of two terms. Since C~j > 0, and [p̃i]ji , [pi]ji 6 0 for all i, the ratio of the
first terms is

C~j −
∑k

i=1[p̃i]ji

C~j −
∑k

i=1[pi]ji
∈ [min

i
[p̃i]ji/[pi]ji ,max

i
[p̃i]ji/[pi]ji ] ⊂ [exp(−T ε′ /λ), exp(T ε′ /λ)],

where we have used that, for all i ∈ [k],

[p̃i]ji/[pi]ji = exp(〈C,P 〉/λ)/ exp(c̃/λ) ∈ [exp(−T ε′ /λ), exp(T ε′ /λ)].

Similarly the ratio of the second terms in the expression for V~j and Ṽ~j is also in
the range [exp(−T ε′ /λ), exp(T ε′ /λ)]. This concludes the proof of the claim.

Finally, we show that the ARGAMIN oracle can be reduced to the AMIN oracle,
which completes the proof that MWU can be run with AMIN.

Lemma 6.4.16 (Equivalence of AMIN and ARGAMIN). Each of the oracles
AMINC and ARGAMINC with accuracy parameter ε > 0 can be implemented using
poly(n, k) calls of the other oracle with accuracy parameter Θ(ε /k) and poly(n, k)
additional time.
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It is worth remarking that the equivalence that we show between AMIN and
ARGAMIN is not known to hold for the feasibility and separation oracles of general
LPs, since the known result for general LPs requires exponentially small error
in nk [102, §4.3]. However, in the case of MOT the equivalence follows from
a direct and practical reduction, similar to the proof of the equivalence of the
exact oracles (Lemma 6.4.4). The main difference is that some care is needed to
bound the propagation of the errors of the approximate oracles. For a full proof
of Lemma 6.4.16, see the Appendix of the paper [13] upon which this chapter is
based.

We conclude by proving Theorem 6.4.7.

Proof of Theorem 6.4.7. The implication “(i) =⇒ (ii)” is trivial, and the implica-
tion “(ii) =⇒ (iii)” is shown in [12]. It therefore suffices to show the implication
“(iii) =⇒ (i)”. For costs C with entries in the range [1, 2], this follows from
combining the fact that MWU can be implemented to solve MOTC in poly(n, k, 1/ ε)
time given an efficient implementation of ARGAMINC with polynomially-sized
accuracy parameter ε′ = poly(1/n, 1/k, ε) (Lemma 6.4.14), along with the fact
that the AMINC and ARGAMINC oracles are polynomially-time equivalent with
polynomial-sized accuracy parameter (Lemma 6.4.16).

The assumption that C has entries within the range [1, 2] can be removed with
no loss by translating and rescaling the original cost C ′ ← (C+3Cmax)/(2Cmax) and
running Algorithm 6.2 on C ′ with approximation parameter ε′ ← ε /(2Cmax). Each
τ ′-approximate query to the AMINC′ oracle can be simulated by a τ -approximate
query to the AMINC oracle, where τ = 2Cmaxτ

′.

Remark 6.4.17 (Practical optimizations). Our numerical implementation of MWU
has two modifications that provide practical speedups. One is maintaining a cached
list of the tuples ~j ∈ [n]k previously returned by calls to MWU BOTTLENECK.
Whenever MWU BOTTLENECK is called, we first check whether any tuple ~j in
the cache satisfies the desiderata ∂

∂h
Φ(P +h · δ~j) |h=06 1 + ε, in which case we use

this ~j to answer the oracle query. Otherwise, we answer the oracle query using
AMIN as explained above. In practice, this cache allows us to avoid many calls
to the potentially expensive AMIN bottleneck. Our second optimization is that, at
each iteration of MWU, we check whether the current iterate P can be rescaled in
order to satisfy the guarantees in Lemma 6.4.11 required from Step 1. If so, we
stop Step 1 early and use this rescaled P .

� 6.4.3 The Sinkhorn algorithm and the SMIN oracle

The Sinkhorn algorithm (SINKHORN) is specially tailored to MOT, and does not
apply to general exponential-size LP. Currently it is by far the most popular
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algorithm in the MOT literature (see §6.1.3). However, in general each iteration of
SINKHORN takes exponential time nΘ(k), and it is not well-understood when it can
be implemented in polynomial-time. The objective of this section is to show that
this bottleneck is polynomial-time equivalent to the SMIN oracle, and in doing so
put SINKHORN on equal footing with classical implicit LP algorithms in terms of
their reliance on variants of the dual feasibility oracle for MOT. Concretely, this
lets us establish the following two results.

First, SINKHORN can solve MOT in polynomial time whenever SMIN can be
solved in polynomial time.

Theorem 6.4.18. For any family of cost tensors C ∈ (Rn)⊗k and accuracy
ε > 0, SINKHORN solves MOTC to ε accuracy in poly(n, k, Cmax/ ε) time and
poly(n, k, Cmax/ ε) calls to the SMINC oracle with regularization η = (2k log n)/ ε.
(The solution is output through a polynomial-size implicit representation, see
§6.4.3.1.)

Second, we show that SINKHORN requires strictly more structure than other
algorithms do to solve an MOT problem. This is why the results about ELLIPSOID
(Theorem 6.4.1) and MWU (Theorem 6.4.7) state that those algorithms solve an
MOT problem whenever possible, whereas Theorem 6.4.18 cannot be analogously
extended to such an “if and only if” characterization.

Theorem 6.4.19. There is a family of cost tensors C ∈ (Rn)⊗k for which
ELLIPSOID solves MOTC exactly in poly(n, k) time, however it is #BIS-hard
to implement a single iteration of SINKHORN in poly(n, k) time.

Organization of §6.4.3. In §6.4.3.1, we recall this SINKHORN algorithm and how
it depends on a certain marginalization oracle. In §6.4.3.2, we show that this
marginalization oracle is polynomial-time equivalent to the SMIN oracle, and use
this to prove Theorems 6.4.18 and 6.4.19.

� 6.4.3.1 Algorithm

Here we recall SINKHORN and its known guarantees. To do this, we first define
the following oracle. While this oracle does not have an interpretation as a dual
feasibility oracle, we show below that it is polynomial-time equivalent to SMIN,
which is a specific type of approximate dual feasibility oracle (Remark 6.3.6).

Definition 6.4.20 (MARG). Given scalings d = (d1, . . . , dk) ∈ Rn×k
>0 , regulariza-

tion η > 0, and an index i ∈ [k], the marginalization oracle MARGC(d, η, i) returns
the vector mi((⊗ki′=1di′)� exp[−ηC]) ∈ Rn

>0.
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It is known that SINKHORN can solve MOT with only polynomially many calls
to this oracle [144]. The approximate solution that SINKHORN computes is a fully
dense tensor with nk non-zero entries, but it is output implicitly in O(nk) space
through “scaling vectors” and “rounding vectors”, described below.

Theorem 6.4.21 (SINKHORN guarantee, [144]). Algorithm 6.3 computes an ε-
approximate solution to MOTC(µ) using poly(n, k, Cmax/ ε) calls to the MARGC
oracle with parameter η = (2k log n)/ ε, and poly(n, k, Cmax/ ε) additional time.
The solution is of the form

P =
(
⊗ki=1di

)
� exp[−ηC] +

(
⊗ki=1vi

)
, (6.9)

and is output implicitly via the scaling vectors d1, . . . , dk ∈ Rn
>0 and rounding

vectors v1, . . . , vk ∈ Rn
>0.

Input: Cost C ∈ (Rn)⊗k, marginals µ1, . . . , µk ∈ ∆n

Output: Implicit representation of tensor (6.9) that is an ε-approximate solution
to MOTC(µ)

\\ Step 1: scale
1: d1, . . . , dk ← 1 and η ← (2k log n)/ ε . Initialize (no scaling)
2: for poly(n, k, Cmax/ ε) iterations do
3: Choose i ∈ [k] . Round-robin, greedily, or randomly
4: µ̃i ← MARGC(d, η, i) . Bottleneck: compute i-th marginal
5: di ← di � (µi/µ̃i) . Rescale i-th marginal (division is entrywise)

\\ Step 2: round to transportation polytope
6: for i = 1, . . . , k do . Rescale each marginal to be below marginal constraints
7: µ̃i ← MARGC(d, η, i) . Bottleneck: compute i-th marginal
8: di ← di �min[1, µi/µ̃i] . Rescale i-th marginal (operations are entrywise)

9: vi ← µi −MARGC(d, η, i) for each i ∈ [k] . Add back mass
10: v1 ← v1/‖v‖k−1

1 . Rescale so that (6.9) is feasible
11: return d1, . . . , dk and v1, . . . , vk . Implicit representation of solution (6.9)

Algorithm 6.3: SINKHORN: multidimensional analog of classical Sinkhorn scaling

Sketch of algorithm. Full details and a proof are in [144]. We give a brief overview
here for completeness. The main idea of SINKHORN is to solve RMOT, the en-
tropically regularized variant of MOT described in §6.2.2. On one hand, this
provides an ε-approximate solution to MOT by taking the regularization parame-
ter η = Θ(ε−1 k log n) sufficiently high (Lemma 6.2.4). On the other hand, solving
RMOT rather than MOT enables exploiting the first-order optimality conditions



Sec. 6.4. Algorithms to oracles 169

of RMOT, which imply that the unique solution to RMOT is the unique tensor in
M(µ1, . . . , µk) of the form

P ∗ = (⊗ki=1d
∗
i )�K, (6.10)

where K denotes the entrywise exponentiated tensor exp[−ηC], and d∗1, . . . , d
∗
k ∈

Rn
>0 are non-negative vectors. The SINKHORN algorithm approximately computes

this solution in two steps.
The first and main step of Algorithm 6.3 is the natural multimarginal analog

of the Sinkhorn scaling algorithm [203]. It computes an approximate solution
P = (⊗ki=1di) � K by finding d1, . . . , dk such that P is nearly feasible in the
sense that mi(P ) ≈ µi for each i ∈ [k]. Briefly, it does this via alternating
optimization: initialize di to the all-ones vector 1 ∈ Rn, and then iteratively
update one di so that the i-th marginal mi(P ) of the current scaled iterate P =
(⊗ki=1di)�K is µi. Although correcting one marginal can detrimentally affect the
others, this algorithm nevertheless converges—in fact, in a polynomial number of
iterations [144].

The second step of Algorithm 6.3 is the natural multimarginal analog of the
rounding algorithm [19, Algorithm 2]. It rounds the solution P = (⊗ki=1di)�K
found in step one to the transportation polytope M(µ1, . . . , µk). Briefly, it per-
forms this by scaling each marginal mi(P ) to be entrywise less than the desired µi,
and then adding mass back to P so that all marginals constraints are exactly satis-
fied. The former adjustment is done by adjusting the diagonal scalings d1, . . . , dk,
and the latter adjustment is done by adding a rank-1 term ⊗ki=1vi.

Critically, note that Algorithm 6.3 takes polynomial time except for possibly
the calls to the MARGC oracle. In the absence of structure in the cost tensor C,
evaluating this MARGC oracle takes exponential time because it requires comput-
ing marginals of a tensor with nk entries.

We conclude this discussion with several remarks about SINKHORN.

Remark 6.4.22 (Choice of update index in SINKHORN). In line 3 there are sev-
eral ways to choose update indices, all of which lead to the polynomial iteration
complexity we desire. Iteration-complexity bounds are shown for a greedy choice
in [89, 144]. Similar bounds can be shown for random and round-robin choices by
adapting the techniques of [17]. These latter two choices do not incur the over-
head of k MARG computations per iteration required by the greedy choice, which
is helpful in practice. Empirically, we observe that round-robin works quite well,
and we use this in our experiments.

Remark 6.4.23 (Alternative implementations of SINKHORN). For simplicity, Al-
gorithm 6.3 provides pseudocode for the “vanilla” version of SINKHORN as it per-
forms well in practice and it achieves the polynomial iteration complexity we desire.
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There are several variants in the literature, including accelerated versions and first
rounding small entries of the marginals—these variants have iteration-complexity
bounds with better polynomial dependence on ε and k, albeit sometimes at the
expense of larger polynomial factors in n [144, 220].

� 6.4.3.2 Equivalence of bottleneck to SMIN

Although Theorem 6.4.21 shows that SINKHORN solves MOT in polynomial time
using the MARG oracle, this is neither sufficient to prove the implication “(ii) =⇒
(i)” in Theorem 6.4.18, nor to prove Theorem 6.4.19. In order to prove these
results, we show that SMIN and MARG are polynomial-time equivalent.

Lemma 6.4.24 (Equivalence of MARG and SMIN). For any regularization η > 0,
each of the oracles MARGC and SMINC can be implemented using poly(n) calls of
the other oracle and poly(n, k) additional time.

Proof. Reduction from SMIN to MARG. First, we show how to compute SMINC(p, η)
using one call to the marginalization oracle and O(n) additional time. Con-
sider the entrywise exponentiated matrix d = exp[ηp] ∈ Rn×k

>0 , and let µ1 =
m1((⊗ki=1di)� exp[−ηC]) be the answer to MARGC(d, η, 1). Observe that

−η−1 log

(
n∑

j1=1

[µ1]j1

)
= −η−1 log

 n∑
j1=1

∑
j2,...,jk∈[n]

k∏
i=1

[di]jie
−ηC~j


= −η−1 log

∑
~j∈[n]k

e−η(C~j−
∑k

i=1[pi]ji )


= sminη

~j∈[n]k

(
C~j −

k∑
i=1

[pi]ji

)
,

where above the first step is by definition of µ1, the second step is by definition
of d and combining the sums, and the third step is by definition of smin. We
conclude that −η−1 log

∑n
j1=1[µ1]j1 is a valid answer to SMINC(p, η). Since this is

clearly computable from µ1 in O(n) time, this establishes the claimed reduction.
Reduction from MARG to SMIN. Next, we show that for any marginalization

index i ∈ [k] and entry ` ∈ [n], it is possible to compute the `-th entry of the
vector MARGC(d, η, i) using one call to the SMINC oracle and poly(n, k) additional
time. Define v ∈ Rn to be the vector with `-th entry equal to [di]`, and all other
entries 0. Define the matrix p = η−1 log[d1, . . . , di−1, v, di+1, . . . , dk] ∈ R̄n×k, where
recall that log 0 = −∞ (see §6.2). Let s ∈ R denote the answer to SMINC(p, η).
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Observe that

e−ηs =
∑
~j∈[n]k

e−η(C~j−
∑k

i=1[pi]ji ) =
∑

~j∈[n]k : ~ji=`

k∏
i=1

[di]jie
−ηC~j =

[
mi

(
(⊗ki=1di)� exp[−ηC]

)]
`
,

where above the first step is by definition of s, the second step is by definition
of p and v, and the third step is by definition of the marginalization notation
mi(·). We conclude that exp(−ηs) is a valid answer for the `-th entry of the vector
MARGC(d, η, i). This establishes the claimed reduction since we may repeat this
procedure n times to compute all n entries of the the vector MARGC(d, η, i).

We can now conclude the proofs of the main results of §6.4.3.

Proof of Theorem 6.4.18. This follows from the fact that SINKHORN approximates
MOTC in polynomial time given a efficient implementation of MARGC (Theo-
rem 6.4.21), combined with the fact that the MARGC and SMINC oracles are
polynomial-time equivalent (Lemma 6.4.24).

Proof of Theorem 6.4.19. Consider the family of cost tensors in Lemma 6.3.7
for which the MINC oracle admits a polynomial-time algorithm, but for which
the SMINC oracle is #BIS-hard. Then on one hand, the ELLIPSOID algorithm
solves MOTC in polynomial time by Theorem 6.4.1. And on the other hand, it
is #BIS-hard to implement a single iteration of SINKHORN because that requires
implementing the MARGC oracle, which is polynomial-time equivalent to the
SMINC oracle by Lemma 6.4.24.

� 6.5 Application: MOT problems with graphical structure

In this section, we illustrate our algorithmic framework on MOT problems with
graphical structure. Although a polynomial-time algorithm is already known for
this particular structure [110, 216], that algorithm computes solutions that are
approximate and dense; see the Related Work section for details. By combining
our algorithmic framework developed above with classical facts about graphical
models, we show that it is possible to compute solutions that are exact and sparse
in polynomial time.

The section is organized as follows. In §6.5.1, we recall the definition of
graphical structure. In §6.5.2, we show that the MIN, AMIN, and SMIN oracles
can be implemented in polynomial time for cost tensors with graphical structure;
from this it immediately follows that all of the MOT algorithms discussed in
part 1 of this chapter can be implemented in polynomial time. Finally, in §6.5.3,
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we demonstrate our results on the popular application of computing generalized
Euler flows, which was the original motivation of MOT. Numerical simulations
demonstrate how the exact, sparse solutions produced by our new algorithms
provide qualitatively better solutions than previously possible in polynomial time.

� 6.5.1 Setup

We begin by recalling preliminaries about undirected graphical models, a.k.a.,
Markov Random Fields. We recall only the relevant background; for further
details we refer the reader to the textbooks [134, 227].

In words, graphical models provide a way of encoding the independence struc-
ture of a collection of random variables in terms of a graph. The formal definition
is as follows. Below, all graphs are undirected, and the notation 2V means the
power set of V (i.e., the set of all subsets of V ).

Definition 6.5.1 (Graphical model structure). Let S ⊂ 2[k]. The graphical model
structure corresponding to S is the graph GS = (V,E) with vertices V = [k] and
edges E = {(i, j) : i, j ∈ S, for some S ∈ S}.
Definition 6.5.2 (Graphical model). Let S ⊂ 2[k]. A probability distribution P
over {Xi}i∈[k] is a graphical model with structure S if there exist functions {ψS}S∈S
and normalizing constant Z such that

P
(
{xi}i∈[k]

)
=

1

Z

∏
S∈S

ψS

(
{xi}i∈S

)
.

A standard measure of complexity for graphical models is the treewidth of the
underlying graphical model structure GS because this captures not just the stor-
age complexity, but also the algorithmic complexity of performing fundamental
tasks such as computing the mode, log-partition function, and marginal distribu-
tions [134, 227]. There are a number of equivalent definitions of treewidth [42].
Each requires defining intermediate combinatorial concepts. We recall here the
definition that is based on the concept of a junction tree because this is perhaps
the most standard definition in the graphical models community.

Definition 6.5.3 (Junction tree, treewidth). A junction tree T = (VT , ET , {Bu}u∈VT )
for a graph G = (V,E) consists of a tree (VT , ET ) and a set of bags {Bu ⊆ V }u∈VT
satisfying:

• For each variable i ∈ V , the set of nodes Ui = {u ∈ VT : i ∈ Bu} induces a
subtree of T .

• For each edge e ∈ E, there is some bag Bu containing both endpoints of e.
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The width of the junction tree is one less than the size of the largest bag, i.e., is
maxu∈VT |Bu| − 1. The treewidth of a graph is the width of its minimum-width
junction tree.

See Figures 6.1, 6.2, and 6.3 for illustrated examples.
We now formally recall the definition of graphical structure for MOT.

(a) Path graph. (b) Junction tree.

Figure 6.1: The path graph (left) has treewidth 1 because the corresponding junction
tree (right) has bags of size at most 2.

(a) Window graph with window size 2. (b) Junction tree.

Figure 6.2: The graph that has an edges between all vertices of distance at most two
when ordered sequentially (left) has treewidth 2 because the corresponding junction
tree (right) has bags of size at most 3.

(a) Cycle graph. (b) Junction tree.

Figure 6.3: The cycle graph (left) has treewidth 2 because the corresponding junction
tree (right) has bags of size at most 3.

Definition 6.5.4 (Graphical structure for MOT). An MOT cost tensor C ∈
(Rn)⊗k has graphical structure with treewidth ω if there is a graphical model struc-
ture S ⊂ 2[k] and functions {fS}S∈S such that

C~j =
∑
S∈S

fS

(
{ji}i∈S

)
, ∀~j := (j1, . . . , jk) ∈ [n]k, (6.11)

and such that the graph GS has treewidth ω.
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We make three remarks about this structure. First, note that the functions
{fS}S∈S can be arbitrary so long as the corresponding graphical model structure
has treewidth at most ω.

Second, if Definition 6.5.4 did not constrain the treewidth ω, then every tensor
C would trivially have graphical structure with maximal treewidth ω = k − 1
(take S to be the singleton containing [k], GS to be the complete graph, and f[k]

to be C). Just like all previous algorithms, our algorithms have runtimes that
depend exponentially (only) on the treewidth of GS . This is optimal in the sense
that unless P = NP, there is no algorithm with jointly polynomial runtime in the
input size and treewidth [12]. We also point out that in all current applications
of graphically structured MOT, the treewidth is either 1 or 2, see §6.1.3.

Third, as in all previous work on graphically structured MOT, we make the
natural assumptions that the cost C is input implicitly through the functions
{fS}S∈S , and that each function fS can be evaluated in polynomial time, since
otherwise graphical structure is useless for designing polynomial-time algorithms.
In all applications in the literature, these two basic assumptions are always satisfied.
Note also that if the treewidth of the graphical structure is constant, then there is
a linear-time algorithm to compute the treewidth and a corresponding minimum-
width junction tree [41].

� 6.5.2 Polynomial-time algorithms

By our oracle reductions in §6.4, in order to design polynomial-time algorithms for
MOT with graphical structure, it suffices to design polynomial-time algorithms for
the MIN, AMIN, or SMIN oracles. This follows directly from classical algorithmic
results in the graphical models literature [134].

Theorem 6.5.5 (Polynomial-time algorithms for the MIN, AMIN, and SMIN
oracles for costs with graphical structure). Let C ∈ (Rn)⊗k be a cost tensor that
has graphical structure with constant treewidth ω (see Definition 6.5.4). Then the
MINC, AMINC, and SMINC oracles can be computed in poly(n, k) time.

Input: Cost C with graphical structure, matrix p ∈ Rn×k
Output: Solution to MINC(p)

\\ Use the classical max-product algorithm [134, §13.3]
1: ~j ← mode of the graphical model P in (6.12)
2: return C~j −

∑k
i=1[pi]ji

Algorithm 6.4: Polynomial-time algorithm for MIN for graphically structured costs
(Theorem 6.5.5).
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Input: Cost C with graphical structure, matrix p ∈ R̄n×k, regularization η > 0
Output: Solution to SMINC(p, η)

\\ Use the classical sum-product algorithm [134, §10.2]
1: Z ← partition function of the graphical model P in (6.12)
2: return −η−1 logZ

Algorithm 6.5: Polynomial-time algorithm for SMIN for graphically structured costs
(Theorem 6.5.5).

Proof. Consider input p for the oracles. Let P denote the probability distribution
on [n]k given by

P (~j) =
1

Z
exp

(
−η
(
C~j −

k∑
i=1

[pi]ji

))
, ∀~j ∈ [n]k, (6.12)

where Z =
∑

~j∈[n][k] exp(−η(C~j −
∑k

i=1[pi]ji)) ensures P is normalized. Observe

that the MINC oracle amounts6 to computing the mode of the distribution P
because MINC(p) = C~j−

∑k
i=1[pi]ji , where ~j ∈ [n]k is a maximizer of P~j. Also, the

SMINC oracle amounts to computing the partition function Z because SMINC(p) =
−η−1 logZ. Thus it suffices to compute the mode and partition function of
P in polynomial time. (The AMINC oracle follows from the MINC oracle by
Remark 6.3.5).

To this end, observe that by assumption on C, there is a graphical model
structure S ∈ 2[k] and functions {fS}S∈S such that the corresponding graph GS
has treewidth ω and the distribution P factors as

P (~j) = exp

(
−η
(∑
S∈S

fS ({ji}i∈S)−
k∑
i=1

[pi]ji

))
.

It follows that P is a graphical model with respect to the same graphical model
structure S because the “vertex potentials” exp(η[pi]ji) do not affect the underlying
graphical model structure. Thus P is a graphical model with constant treewidth
ω, so we may compute the mode and partition function of P in poly(n, k) time
using, respectively, the classical max-product and sum-product algorithms [134,
Chapters 13.3 and 10.2]. For convenience, pseudocode summarizing this discussion
is provided in Algorithms 6.4 and 6.5.

An immediate consequence of Theorem 6.5.5 combined with our oracle reduc-
tions is that all candidate MOT algorithms in §6.4 can be efficiently implemented

6In fact, for the purpose of computing MINC , the distribution P (~j) can be defined using any
η > 0.
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for MOT problems with graphical structure. From a theoretical perspective,
ELLIPSOID gives the best guarantee since it produces an exact, sparse solution.

Corollary 6.5.6 (Polynomial-time algorithms for MOT problems with graphical
structure). Let C ∈ (Rn)⊗k be a cost tensor that has graphical structure with
constant treewidth ω (see Definition 6.5.4). Then:

• The ELLIPSOID algorithm in §6.4.1 computes an exact solution to MOTC in
poly(n, k) time.

• The MWU algorithm in §6.4.2 computes an ε-approximate solution to MOTC
in poly(n, k, Cmax/ ε) time.

• The SINKHORN algorithm in §6.4.3 computes an ε-approximate solution to
MOTC in poly(n, k, Cmax/ ε) time.

• The COLGEN algorithm in §6.4.1.3 can be run for T iterations in poly(n, k, T )
time.

Moreover, ELLIPSOID, MWU, and COLGEN output a polynomially sparse tensor,
whereas SINKHORN outputs a fully dense tensor through the implicit representation
described in §6.4.3.1.

Proof. Follows immediately from combining the polynomial-time implementations
of the oracles in Theorem 6.5.5 with the polynomial-time algorithm-to-oracle
reductions in Theorems 6.4.1, 6.4.7, 6.4.18, and 6.4.6, respectively.

� 6.5.3 Application vignette: fluid dynamics

In this section, we numerically demonstrate our new results for graphically struc-
tured MOT—namely the ability to compute exact, sparse solutions in polynomial
time (Corollary 6.5.6). We illustrate this on the problem of computing general-
ized Euler flows—an MOT application which has received significant interest and
which was historically the motivation of MOT, see e.g., [32, 33, 47, 48, 49, 50].
This MOT problem is already known to be tractable via a popular, specially-
tailored modification of SINKHORN [32]—which can be interpreted as implementing
SINKHORN using graphical structure [110, 216]. However, that algorithm is based
on SINKHORN and thus unavoidably produces solutions that are low-precision (due
to poly(1/ ε) runtime dependence), fully dense (with nk non-zero entries), and have
well-documented numerical precision issues. We offer the first polynomial-time
algorithm for computing exact and/or sparse solutions.

We briefly recall the premise of this MOT problem; for further background
see [32, 50]. An incompressible fluid (e.g., water) is modeled by n particles
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which are uniformly distributed in space (due to incompressibility) at all times
t ∈ {1, . . . , k + 1}. We observe each particle’s location at initial time t = 1 and
final time t = k+ 1. The task is to infer the particles’ locations at all intermediate
times t ∈ {2, . . . , k}, and this is modeled by an MOT problem as follows.

Specifically, the locations of the fluid particles are discretized to points {xj}j∈[n] ⊂
Rd, and σ is a known permutation on this set that encodes the relation between
each initial location xj at time t = 1 and final location σ(xj) at time t = k + 1.
The total movement of a particle that takes the trajectory xj1 , xj2 , . . . , xjk , σ(xj1)
is given by

Cj1,...,jk = ‖σ(xj1)− xjk‖2 +
k−1∑
t=1

‖xjt+1 − xjt‖2, (6.13)

By the principle of least action, the generalized Euler flow problem of inferring
the most likely trajectories of the fluid particles is given by the solution to the
MOT problem with this cost C and uniform marginals µt = 1n/n ∈ ∆n which
impose the constraint that the fluid is incompressible.

Corollary 6.5.7 (Exact, sparse solutions for generalized Euler flows). The MOT
problem with cost (6.13) can be solved in d · poly(n, k) time. The solution is
returned as a sparse tensor with at most nk − k + 1 non-zeros.

Proof. This cost tensor C can be expressed in graphical form C~j =
∑

S∈S fS({ji})
where S consists of the sets {1, 2}, . . . , {k − 1, k} of adjacent time points as well
as the set {1, k}. Moreover, each function fS : [n]2 → R can be computed in
O(dn2) time since this simply requires computing ‖xj−xj′‖2 for n2 pairs of points
xj, xj′ ∈ Rd. Once this graphical representation is computed, Corollary 6.5.6
implies a poly(n, k) time algorithm for this MOT problem because the graphical
model structure S is a cycle graph and thus has treewidth 2 (cf., Figure 6.3).

Figure 6.4 illustrates how the exact, sparse solutions found by our new al-
gorithm provide visually sharper estimates than the popular modification of
SINKHORN in [32], which blurs the trajectories. The latter is the state-of-the-
art algorithm in the literature and in particular is the only previously known
non-heuristic algorithm that has polynomial-time guarantees. Note that this algo-
rithm is identical to implementing SINKHORN by exploiting the graphical structure
to perform exact marginalization efficiently [110, 216].

The numerical simulation is on a standard benchmark problem used in the
literature (see e.g., [32, Figure 9] and [50, Figure 2]) in which the particle at initial
location x ∈ [0, 1] moves to final location σ(x) = x+ 1

2
(mod 1). This is run with

7All experiments in this chapter are run on a standard-issue Apple MacBook Pro 2020 laptop
with an M1 Chip.
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Figure 6.4: Transport maps computed by the fast implementation of SINKHORN [32] (left)
and our COLGEN implementation (right) on a standard fluid dynamics benchmark problem
in dimension d = 1 [50]. The pairwise transport maps between successive timesteps are
plotted with opacity proportional to the mass. The SINKHORN algorithm is run at the
highest precision (i.e., smallest regularization) before serious numerical precision issues
(NaNs). It returns a dense, approximate solution in 2.25 seconds.7 COLGEN returns an
exact, sparse solution in 9.52 seconds. Furthermore, in this particular problem instance,
the COLGEN method returns a Monge solution, i.e., the sparsity is n so that the particles
never split in the computed trajectories.

k = 6 and marginals µ1 = · · · = µk uniformly supported on n = 51 positions in
[0, 1]. For numerics on other standard benchmark instances, see the Appendix
of the paper [13] upon which this chapter is based. Note that this amounts to
solving an MOT LP with nk = 516 ≈ 1.8× 1010 variables, which is infeasible for
standard LP solvers. Our algorithm is the first to compute exact solutions for
problem instances of this scale.

Two important remarks. First, since this MOT problem is a discretization of
the underlying PDE, an exact solution is of course not necessary; however, there is
an important—even qualitative—difference between low-precision solutions (com-
putable with poly(1/ ε) runtime) and high-precision solutions (computable with
polylog(1/ ε) runtime) for the discretized problem. Second, a desirable feature of
SINKHORN that should be emphasized is its practical scalability, which might make
it advantageous for problems where very fine discretization is required. It is an
interesting direction of practical relevance to develop algorithms that can compute
high-precision solutions at a similarly large scale in practice (see the discussion in
§6.8).
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� 6.6 Application: MOT problems with set-optimization structure

In this section, we consider MOT problems whose cost tensors C take values 0
and 1—or more generally any two values, by a straightforward reduction8. Such
MOT problems arise naturally in applications where one seeks to minimize or
maximize the probability that some event occurs given marginal probabilities on
each variable (see Example 6.6.1). We establish that this general class of MOT
problems can be solved in polynomial time under a condition on the sparsity pat-
tern of C that is often simple to check due its connection to classical combinatorial
optimization problems.

The section is organized as follows. In §6.6.1 we formally describe this setup
and discuss why it is incomparable to all other structures discussed in this chapter.
In §6.6.2, we show that for costs with this structure, the MIN, AMIN, and SMIN
oracles can be implemented in polynomial time; from this it immediately follows
that the ELLIPSOID, MWU, SINKHORN, and COLGEN algorithms discussed in part 1
of this chapter can be implemented in polynomial time. In §6.6.3, we illustrate
our results via a case study on network reliability.

� 6.6.1 Setup

Example 6.6.1 (Motivation for binary-valued MOT costs: minimizing/maximizing
probability of an event). Let S ⊂ [n]k. If C~j = 1[~j ∈ S], then the MOTC problem
amounts to minimizing the probability that event S occurs, given marginals on
each variable. On the other hand, if C~j = 1[~j /∈ S], then the MOTC problem
amounts to maximizing the probability that event S occurs since

MOTC(µ1, . . . , µk) = min
P∈M(µ1,...,µk)

P~j∼P [~j /∈ S] = 1− max
P∈M(µ1,...,µk)

P~j∼P [~j ∈ S].

Even if the cost is binary-valued, there is no hope to solve MOT in polynomial
time without further assumptions—essentially because in the worst case, any
algorithm must query all nk entries if C is a completely arbitrary {0, 1}-valued
tensor.

We show that MOT is polynomial-time solvable under the general and often
simple-to-check condition that the MIN, AMIN, and SMIN oracles introduced in
§6.3 are polynomial-time solvable when restricted to the set S of indices ~j ∈ [n]k

for which C~j = 0. For simplicity, our definition of these set oracles removes the
cost C~j as it is constant on S. Of course it is also possible to remove the negative

8If C takes two values a < b, then define the tensor C̃ with {0, 1}-entries by C̃~j = (C~j −
a)/(b−a). It is straightforward to see that the MOT problems with costs C and C̃ have identical
solutions.
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sign in −p by re-parameterizing the inputs as w = −p; however, we keep this
notation in order to parallel the original oracles.

Definition 6.6.2 (MIN set oracle). Let S ⊂ [n]k. For weights p = (p1, . . . , pk) ∈
Rn×k, MINC,S(p) returns

min
~j∈S
−

k∑
i=1

[pi]ji .

Definition 6.6.3 (AMIN set oracle). Let S ⊂ [n]k. For weights p = (p1, . . . , pk) ∈
Rn×k and accuracy ε > 0, AMINC,S(p, ε) returns MINC,S(p) up to additive error ε.

Definition 6.6.4 (SMIN set oracle). Let S ⊂ [n]k. For weights p = (p1, . . . , pk) ∈
R̄n×k and regularization parameter η > 0, SMINC,S(p, η) returns

sminη
~j∈S

−
k∑
i=1

[pi]ji .

The key motivation behind these set oracle definitions (aside from the syntactic
similarity to the original oracles) is that they encode the problem of (approxi-
mately) finding the min-weight object in S. This opens the door to combinatorial
applications of MOT because finding the min-weight object in S is well-known
to be polynomial-time solvable for many “combinatorial-structured” sets S of
interest—e.g., the set S of cuts in a graph, or the set S of independent sets in a
matroid. See §6.6.3 for fully-detailed applications.

Definition 6.6.5 (Set-optimization structure for MOT). An MOT cost tensor C ∈
(Rn)⊗k has exact, approximate, or soft set-optimization structure of complexity β
if

C~j = 1[~j /∈ S]

for a set S ⊂ [n]k for which there is an algorithm solving MINC,S, AMINC,S, or
SMINC,S, respectively, in β time.

We make two remarks about this structure.

Remark 6.6.6 (Only require set oracle for C−1(0), not for C−1(1)). Note that
Definition 6.6.5 only requires the set oracles for the set S of entries where C is 0,
and does not need the set oracles for the set [n]k \ S where C is 1. The fact that
both set oracles are not needed makes set-optimization structure easier to check
than the original oracles in §6.3, because those effectively require optimization over
both S and [n]k \ S.
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Remark 6.6.7 (Set-optimization structure is incomparable to graphical and
low-rank plus sparse structure). Costs C that satisfy Definition 6.6.5 in general
do not have non-trivial graphical structure or low-rank plus sparse structure. Specif-
ically, there are costs C that satisfy Definition 6.6.5, yet require maximal k − 1
treewidth to model via graphical structure, and super-constant rank or exponential
sparsity to model via low-rank plus sparse structure. (A concrete example is the
network reliability application in §6.6.3.) Because of the NP-hardness of MOT
problems with (k − 1)-treewidth graphical structure or super-constant rank [12],
simply modeling such problems with graphical structure or low-rank plus rank
structure is therefore useless for the purpose of designing polynomial-time MOT
algorithms.

� 6.6.2 Polynomial-time algorithms

By our oracle reductions in part 1 of this chapter, in order to design polynomial-
time algorithms for MOT with set-optimization structure, it suffices to design
polynomial-time algorithms for the MIN, AMIN, or SMIN oracles. We show how
to do this for all three oracles in a straightforward way by exploiting the set-
optimization structure.

Theorem 6.6.8 (Polynomial-time algorithms for the MIN, AMIN, and SMIN
oracles for costs with set-optimization structure). If C ∈ (Rn)⊗k is a cost tensor
with exact, approximate, or soft set-optimization structure of complexity β (see
Definition 6.6.5), then the MINC, AMINC, and SMINC oracles, respectively, can
be computed in β + poly(n, k) time.

Input: Access to C via MINC,S oracle, matrix p ∈ Rn×k
Output: Solution to MINC(p)

1: a← MINC,S(p) . One oracle call

2: x← −∑k
i=1 maxj∈[n][pi]j . Takes O(nk) time

3: return a if a 6 x, or min(a, 1 + x) otherwise . Takes O(1) time

Algorithm 6.6: Polynomial-time algorithm for MIN for costs with exact set-optimization
structure (Theorem 6.6.8).

Proof. Polynomial-time algorithm for MIN. We first claim that Algorithm 6.6 im-
plements the MINC(p) oracle. To this end, define

a := MINC,S(p) = min
~j∈[n]k

s.t. C~j=0

−
k∑
i=1

[pi]ji and b := min
~j∈[n]k

s.t. C~j=1

−
k∑
i=1

[pi]ji . (6.14)
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Input: Access to C via SMINC,S oracle, matrix p ∈ R̄n×k, regularization η
Output: Solution to SMINC(p, η)

1: a← exp(−η · SMINC,S(p)) . One oracle call

2: x←∏k
i=1

∑n
j=1 exp(η[pi]ji) . Takes O(nk) time

3: return −η−1 log(e−ηx+ (1− e−η)a) . Takes O(1) time

Algorithm 6.7: Polynomial-time algorithm for SMIN for costs with soft set-optimization
structure (Theorem 6.6.8).

By re-arranging the sum and max, it follows that

x := −
k∑
i=1

max
j∈[n]

[pi]j = − max
~j∈[n]k

k∑
i=1

[pi]ji = min
~j∈[n]k

k∑
i=1

−[pi]ji = min(a, b). (6.15)

Therefore

MINC(p) = min
~j∈[n]k

C~j −
k∑
i=1

[pi]ji = min(a, 1 + b) =

{
a if a 6 b

min(a, 1 + min(a, b)) if a > b

=

{
a if a 6 x

min(a, 1 + x) if a > x
,

(6.16)

where above the first step is by definition of MINC ; the second step is by parti-
tioning the minimization over ~j ∈ [n]k into ~j such that C~j = 0 or C~j = 1, and
then plugging in the definitions of a and b; the third step is by manipulating
min(a, 1 + b) in both cases; and the last step is because x = min(a, b) as shown
above. We conclude that Algorithm 6.6 correctly outputs MINC(p). Since the
algorithm uses one call to the MINC,S oracle and O(nk) additional time, the claim
is proven.

Polynomial-time algorithm for AMIN. Next, we claim that the same Algo-
rithm 6.6, now run with the approximate oracle AMINC,S(p, ε) in the first step
instead of the exact oracle MINC,S(p), computes a valid solution to AMINC(p, ε).
To prove this, let a, b, and x be as defined in (6.14) and (6.15) for the MIN analysis,
and let ã = AMINC,S(p, ε). By the same logic as in (6.16), except now reversed,
the output {

ã if ã 6 x

min(ã, 1 + x) if ã > x



Sec. 6.6. Application: MOT problems with set-optimization structure 183

is equal to min(ã, 1+b). Now because ã is within additive ε error of a (by definition
of the AMINC,S oracle), it follows that the above output is within ε additive error
of

min(a, 1 + b) = min
~j∈[n]k

C~j −
k∑
i=1

[pi]ji = MINC(p).

Thus the output is a valid answer to AMINC(p, ε), establishing correctness. The
runtime claim is obvious.

Polynomial-time algorithm for SMIN. Finally, we claim that Algorithm 6.7 im-
plements the SMINC(p, η) oracle. To this end, define

a := e−η·SMINC,S(p,η) =
∑
~j∈[n]k

s.t. C~j=0

eη
∑k

i=1[pi]ji and b :=
∑
~j∈[n]k

s.t. C~j=1

eη
∑k

i=1[pi]ji .

By re-arranging products and sums, it follows that

x :=
k∏
i=1

n∑
j=1

eη[pi]ji =
∑
~j∈[n]k

k∏
i=1

eη[pi]ji = a+ b.

Therefore

SMINC(p, η) = −1

η
log

∑
~j∈[n]k

e−η(C~j−
∑k

i=1[pi]ji )


= −1

η
log
(
a+ e−ηb

)
= −1

η
log
(
e−ηx+ (1− e−η)a

)
,

where above the first step is by definition of SMINC ; the second step is by parti-
tioning the sum over ~j ∈ [n]k into ~j such that C~j = 0 or C~j = 1, and then plugging
in the definitions of a and b; and the third step is because x = a + b as shown
above. We conclude that Algorithm 6.7 correctly outputs SMINC(p, η). Since the
algorithm uses one call to the SMINC,S oracle and O(nk) additional time, the
claim is proven.

An immediate consequence of Theorem 6.6.8 combined with our oracle re-
ductions is that all of the candidate MOT algorithms described in §6.4 can be
efficiently implemented for MOT problems with set-optimization structure. From
a theoretical perspective, the ELLIPSOID algorithm gives the best guarantee since
it produces an exact, sparse solution in polynomial time.
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Corollary 6.6.9 (Polynomial-time algorithms for MOT problems with set-opti-
mization structure). Let C ∈ (Rn)⊗k be a cost tensor that has set-optimization
structure with poly(n, k) complexity (see Definition 6.6.5).

• Exact set-optimization structure. The ELLIPSOID algorithm in §6.4.1 com-
putes an exact solution to MOTC in poly(n, k) time. Also, the COLGEN algo-
rithm in §6.4.1.3 can be run for T iterations in poly(n, k, T ) time.

• Approximate set-optimization structure. The MWU algorithm in §6.4.2 com-
putes an ε-approximate solution to MOTC in poly(n, k, Cmax/ ε) time.

• Soft set-optimization structure. The SINKHORN algorithm in §6.4.3 computes
an ε-approximate solution to MOTC in poly(n, k, Cmax/ ε) time.

Moreover, ELLIPSOID, MWU, and COLGEN output a polynomially sparse tensor,
whereas SINKHORN outputs a fully dense tensor through the implicit representation
described in §6.4.3.1.

Proof. Follows immediately from combining the polynomial-time implementations
of the oracles in Theorem 6.7.4 with the polynomial-time algorithm-to-oracle
reductions in Theorems 6.4.1, 6.4.6, 6.4.7, and 6.4.18, respectively.

� 6.6.3 Application vignette: network reliability with correlations

In this section, we illustrate this class of MOT structures via an application to
network reliability, a central topic in network science, engineering, and operations
research, see e.g., the textbooks [28, 29, 95]. The basic network reliability question:
is given an undirected graph G = (V,E) where each edge e ∈ E is reliable with
some probability qe and fails with probability 1 − qe, what is the probability
that all vertices are reachable from all others? This connectivity is desirable in
applications, e.g., if G is a computer cluster, the vertices are the machines, and the
edges are communication links, then connectivity corresponds to the reachability
of all machines. See the aforementioned textbooks for many other applications.

Of course, the above network reliability question is not yet well-defined since
the edge failures are only prescribed up to their marginal distributions. Which
joint distribution greatly impacts the answer.

The most classical setup posits that edge failures are independent [156]. De-
note the network reliability probability for this setting by ρind. This quantity ρind

is #P-complete [181, 221] and thus NP-hard to compute, but there exist fully
polynomial randomized approximation schemes (a.k.a. FPRAS) for multiplica-
tively approximating both the connection probability ρind [128] and the failure
probability 1− ρind [104].
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Figure 6.5: Optimal decompositions for the the worst-case (top) and best-case (bottom)
reliability problems on the same graph G and edge reliability probabilities qe (left).
Coordinating edge failures yields significantly different connection probabilities: ρmin =
40%, ρind ≈ 60%, and ρmax = 90%.

Here we investigate the setting of coordinated edge failures, which dates back
to the 1980s [229, 241]. This coordination may optimize for disconnection (e.g., by
an adversary), or for connection (e.g., maximize the time a network is connected
while performing maintenance on each edge e during 1− qe fraction of the time).
We define these notions below; see also Figure 6.5 for an illustration. Below,
Ber(qe) denotes the Bernoulli distribution with parameter qe.

Definition 6.6.10 (Network reliability with correlations). For an undirected
graph G = (V,E) and edge reliability probabilities {qe}e∈E:

• The worst-case network reliability is

ρmin := min
P∈M({Ber(qe)}e∈E)

PH∼P [H is a connected subgraph of G] .

• The best-case network reliability is

ρmax := max
P∈M({Ber(qe)}e∈E)

PH∼P [H is a connected subgraph of G].

Clearly ρmin 6 ρind 6 ρmax. These gaps can be large (e.g., see Figure 6.5), which
promises large opportunities for applications in which coordination is possible.
However, in order to realize such an opportunity requires being able to compute
ρmin and ρmax, and both of these problems require solving an exponentially large
LP with 2|E| variables. Below we show how to use set-optimization structure to
compute these quantities in poly(|E|) time, thereby recovering as a special case of
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our general framework the known polynomial-time algorithms for this particular
problem in [229, 241], as well as more practical polynomial-time algorithms that
scale to input sizes that are an order-of-magnitude larger.

Corollary 6.6.11 (Polynomial-time algorithm for network reliability with corre-
lations). The worst-case and best-case network reliability can both be computed in
poly(|E|) time.

Proof. By the observation in Example 6.6.1, the optimization problems defining
ρmin and 1−ρmax are instances of MOT in which k = |E|, n = 2, µe = Ber(qe), and
each entry of the cost C ∈ {0, 1}|E| is the indicator of whether that subset of edges
is a connected or disconnected subgraph of G, respectively. It therefore suffices to
show that both of these MOT cost tensors satisfy exact set-optimization structure
(Definition 6.6.5) since that implies a polynomial-time algorithm for exactly solving
MOT (Corollary 6.6.9).

Set-optimization structure for 1 − ρmax. In this case, S is the set of connected
subgraphs of G. Thus the MINC,S problem is: given weights p ∈ R2×|E|, compute

min
connected subgraph H of G

−
∑
e∈H

p2,e −
∑
e/∈H

p1,e.

Note that this objective is equal to
∑

e∈H xe −
∑

e∈E p1,e where xe := p1,e − p2,e.
Since the latter sum is independent of H, the MINC,S problem therefore reduces
to the problem of finding a minimum-weight connected subgraph in G; that is,
given edge weights x ∈ R|E|, compute

min
connected subgraph H of G

∑
e∈H

xe. (6.17)

We first show how to solve this in polynomial time in the case that all edge weights
xe are positive. In this case, the optimal solution H is a minimum-weight spanning
tree of G. This can be found by Kruskal’s algorithm in O(|E| log |E|) time [137].

For the general case of arbitrary edge weights, note that the edges e with
non-positive weight x 6 0 can be added to any solution without worsening the
cost or feasibility. Thus these edges are without loss of generality in every solution
H, and so it suffices to solve the same problem (6.17) on the graph G′ obtained
by contracting these non-positively-weighted edges in G. This reduces (6.17) to
the same problem of finding a minimum-weight connected subgraph, except now
in the special case that all edge weights are positive. Since we have already shown
how to solve this case in polynomial time, the proof is complete.



Sec. 6.6. Application: MOT problems with set-optimization structure 187

Set-optimization structure for ρmin. In this case, S is the set of disconnected sub-
graphs of G. We may simplify the MINC,S problem for ρmin by re-parameterizing
the input p ∈ R2×|E| to edge weights x ∈ R|E| as done above in (6.17) for 1− ρmax.
Thus the MINC,S problem for ρmin is: given weights x ∈ R|E|, compute

min
disconnected subgraph H of G

∑
e∈H

xe. (6.18)

We first show how to solve this in the case that all edge weights xe are negative. In
that case, the optimal solution is of the form H = E \C, where C is a maximum-
weight cut of the graph G with weights xe. Equivalently, by negating all edge
weights, C is a minimum-weight cut of the graph G with weights −xe. Since a
minimum-weight cut of a graph with positive weights can be found in polynomial
time [210], the problem (6.18) can be solved in polynomial time when all xe are
negative.

Now in the general case of arbitrary edge weights, note that the edges e with
non-negative weight x > 0 can be removed from any solution without worsening
the cost or feasibility. Thus these edges are without loss of generality not in every
solution H, and so it suffices to solve the same problem (6.18) on the graph G′

obtained by deleting these non-negatively-weighted edges in G. This reduces (6.18)
to the same problem of finding a minimum-weight disconnected subgraph, except
now in the special case that all edge weights are negative. Since we have already
shown how to solve this case in polynomial time, the proof is complete.

In Figure 6.6, we compare the numerical performance of the algorithms in
Corollary 6.6.11—COLGEN and MWU with polynomial-time implementation of their
bottlenecks—with the fastest previous algorithms for both best-case and worst-
case network reliability. Previously, the fastest algorithms that apply to this
problem are (1) out-of-the-box LP solvers run on MOT, (2) the brute-force im-
plementation of SINKHORN which marginalizes over all nk = 2|E| entries in each
iteration, and (3) this COLGEN algorithm that we recover [229, 241]. It is unknown
if there is a practically efficient implementation of the SMINC,S oracle (and thus
of SINKHORN) for both best-case or worst-case reliability. Since the previous algo-
rithms (1) and (2) have exponential runtime that scales as nΩ(k) = 2Ω(|E|), they do
not scale past tiny input sizes. In contrast, the algorithms in Corollary 6.6.11 scale
to much larger inputs. Indeed, the COLGEN algorithm that our framework recovers
can compute exact solutions roughly an order-of-magnitude faster than the other
algorithms, and the new MWU algorithm computes reasonably approximate solu-
tions beyond k = 400, which amounts to an MOT LP with nk = 2400 ≈ 2.6× 10120

variables.
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Figure 6.6: Top: comparison of the runtime (left) and accuracy (right) of the algorithms
described in the main text, for the worst-case reliability of a clique graph on t vertices
and k =

(
t
2

)
edges with reliability probabilities qe = 0.99. Bottom: same, but for

best-case reliability and reliability probabilities qe = 0.01. For worst-case reliability, the
algorithms compute an upper bound, so smaller value is better; reverse for best-case
reliability. The algorithms are cut off at 2 minutes, denoted by an “x”. SINKHORN is
run at the highest precision (i.e., highest η) before numerical precision issues. The
COLGEN algorithm that our framework recovers computes exact solutions an order-of-
magnitude faster than the other algorithms, and the new MWU algorithm computes
reasonably approximate solutions for k = 400, which amounts to an MOT LP with
nk = 2400 ≈ 2.6× 10120 variables.
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� 6.7 Application: MOT problems with low-rank plus sparse structure

In this section, we consider MOT problems whose cost tensors C decompose into
low-rank and sparse components. We propose the first polynomial-time algorithms
for this general class of MOT problems.

The section is organized as follows. In §6.7.1 we formally describe this setup
and discuss why it is incomparable to all other structures discussed in this chapter.
In §6.7.2, we show that for costs with this structure, the AMIN and SMIN oracles
can be implemented in polynomial time; from this it immediately follows that
MWU and SINKHORN can be implemented in polynomial time. Finally, in §6.7.3 and
§6.7.4, we provide two illustrative applications of these algorithms. The former
regards portfolio risk management and is a direct application of our result for MOT
with low-rank cost tensors. The latter regards projecting mixture distributions to
the transportation polytope and illustrates the versality of our algorithmic results
since this problem is quadratic optimization over the transportation polytope
rather than linear (a.k.a. MOT).

� 6.7.1 Setup

We begin by recalling the definition of tensor rank. It is the direct analog of the
standard concept of matrix rank. See the survey [133] for further background.

Definition 6.7.1 (Tensor rank). A rank-r factorization of a tensor R ∈ (Rn)⊗k

is a collection of rk vectors {ui,`}i∈[k],`∈[r] ⊂ Rn satisfying

R =
r∑
`=1

k⊗
i=1

ui,`.

The rank of a tensor is the minimal r for which there exists a rank-r factorization.

In this section we consider MOT problems with the following “low-rank plus
sparse” structure.

Definition 6.7.2 (Low-rank plus sparse structure for MOT). An MOT cost tensor
C ∈ (Rn)⊗k has low-rank plus sparse structure of rank r and sparsity s if it
decomposes as

C = R + S, (6.19)

where R is a rank-r tensor and S is an s-sparse tensor.

Throughout, we make the natural assumption that S is input through its s
non-zero entries, and that R is input through a rank-r factorization. We also make
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the natural assumption that the entries of both R and S are of size O(Cmax)—this
rules out the case of having extremely large entries of R and S, one positive and
one negative, which cancel to yield a small entry of C = R + S.

Remark 6.7.3 (Neither low-rank structure nor sparse structure can be modeled
by graphical structure or set-optimization structure). In general, both rank-1
costs and polynomially sparse costs do not have non-trivial graphical structure.
Specifically, modeling these costs with graphical structure requires the complete
graph (a.k.a., maximal treewidth of k − 1)—and because MOT problems with
graphical structure of treewidth k − 1 are NP-hard to solve in the absence of
further structure [12], modeling such problems with graphical structure is useless
for the purpose of designing polynomial-time MOT algorithms. It is also clear that
neither low-rank structure nor sparse structure can be modeled by set-optimization
structure because in general, neither R nor S nor R+S has binary-valued entries.

� 6.7.2 Polynomial-time algorithms

From a technical perspective, the main result of this section is that there is a
polynomial-time algorithm for approximating the minimum entry of a tensor that
decomposes into constant-rank and sparse components. Previously, this was not
known even for constant-rank tensors. This result may be of independent interest.
We remark that this result is optimal in the sense that unless P = NP, there does
not exist an algorithm with runtime that is jointly polynomial in the input size
and the rank r [12].

Theorem 6.7.4 (Polynomial-time algorithm solving AMIN and SMIN for low-rank
+ sparse costs). Consider cost tensors C ∈ (Rn)⊗k that have low-rank plus sparse
structure of rank r and sparsity s (see Definition 6.7.2). For any fixed r, Algo-
rithm 6.8 runs in poly(n, k, s, Cmax/ ε) time and solves the ε-approximate AMINC
oracle. Furthermore, it also solves the SMINC̃ oracle for η = (2k log n)/ ε on some
cost tensor C̃ ∈ (Rn)⊗k satisfying ‖C − C̃‖max 6 ε /2.

We make three remarks about Theorem 6.7.4. First, we are unaware of any
polynomial-time implementation of SMINC for the cost C. Instead, Theorem 6.7.4
solves the SMINC̃ oracle for an O(ε)-approximate cost tensor C̃ since this is suffi-
cient for implementing SINKHORN on the original cost tensor C (see Corollary 6.7.5
below). Second, it is an interesting open question if the poly(n, k, Cmax/ ε) runtime
for the ε-approximate AMINC oracle can be improved to poly(n, k, log(Cmax/ ε)),
as this would imply a poly(n, k) runtime for the MINC oracle and thus for this
class of MOT problems (see also Footnote 3 in the introduction). Third, we remark
about practical efficiency: the runtime of Algorithm 6.8 is not just polynomially
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small in s and n, but in fact linear in s and near-linear in n. However, since this
improved runtime is not needed for the theoretical results in the sequel, we do not
pursue this further.

Combining the efficient oracle implementations in Theorem 6.7.4 with our
algorithm-to-oracles reductions in §6.4 implies the first polynomial-time algorithms
for MOT problems with costs that have constant-rank plus sparse structure. This
is optimal in the sense that unless P = NP, there does not exist an algorithm with
runtime that is jointly polynomial in the input size and the rank r [12].

Corollary 6.7.5 (Polynomial-time algorithms solving MOT for low-rank + sparse
costs). Consider cost tensors C ∈ (Rn)⊗k that have low-rank plus sparse structure
of constant rank r and poly(n, k) sparsity s (see Definition 6.7.2). For any ε > 0:

• The MWU algorithm in §6.4.2 computes an ε-approximate solution to MOTC
in poly(n, k, Cmax/ ε) time.

• The SINKHORN algorithm in §6.4.3 computes an ε-approximate solution to
MOTC in poly(n, k, Cmax/ ε) time.

Moreover, MWU outputs a polynomially sparse tensor, whereas SINKHORN outputs a
fully dense tensor through the implicit representation described in §6.4.3.1.

Proof. For MWU, simply combine the polynomial-time reduction to the AMINC
oracle (Theorem 6.4.7) with the polynomial-time algorithm for the AMIN ora-
cle (Theorem 6.7.4). For SINKHORN, combining the polynomial-time reduction
to the SMINC̃ oracle (Theorem 6.4.18) with the polynomial-time algorithm for
the SMINC̃ oracle (Theorem 6.7.4) yields a poly(n, k, Cmax/ ε) algorithm for ε /2-
approximating the MOT problem with cost tensor C̃. It therefore suffices to show
that the values of the MOT problems with cost tensors C and C̃ differ by at most
ε /2, that is, ∣∣∣∣ min

P∈M(µ1,...,µk)
〈P,C〉 − min

P∈M(µ1,...,µk)
〈P, C̃〉

∣∣∣∣ 6 ε /2.

But this holds because both MOT problems have the same feasible set, and for any
feasible P ∈M(µ1, . . . , µk) it follows from Hölder’s inequality that the objectives
of the two MOT problems differ by at most∣∣∣〈P,C〉 − 〈P, C̃〉∣∣∣ 6 ‖P‖1‖C − C̃‖max 6 ε /2.
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Below, we describe the algorithm in Theorem 6.7.4. Specifically, in §6.7.2.1, we
give four helper lemmas which form the technical core of our algorithm; and then
in §6.7.2.2, we combine these ingredients to design the algorithm and prove its
correctness. Throughout, recall that we use the bracket notation f [A] to denote
the entrwise application of a univariate function f (e.g., exp, log, or a polynomial)
to A.

� 6.7.2.1 Technical ingredients

At a high level, our approach to designing the algorithm in Theorem 6.7.4 is to
approximately compute the SMIN oracle in polynomial time by synthesizing four
facts:

1. By expanding the softmin and performing simple operations, it suffices to
compute the total sum of all nk entries of the entrywise exponentiated tensor
exp[−ηR] (modulo simple transforms).

2. Although exp[−ηR] is in general a full-rank tensor, we can exploit the fact
that R is a low-rank tensor in order to approximate exp[−ηR] by a low-rank
tensor L. (Moreover, we can efficiently compute a low-rank factorization of
L in closed form.)

3. There is a simple algorithm for computing the sum of all nk entries of L in
polynomial time because L is low-rank. (And thus we may approximate the
sum of all nk entries of exp[−ηR] as desired in step 1.)

4. This approximation is sufficient for computing both the AMIN and SMIN
oracle in Theorem 6.7.4.

Of these four steps, the main technical step is the low-rank approximation in
step two. Below, we formalize these four steps individually in Lemmas 6.7.6, 6.7.7, 6.7.8,
and 6.7.9. Further detail on how to synthesize these four steps is then provided
afterwards, in the proof of Theorem 6.7.4.

It is convenient to write the first lemma in terms of an approximate tensor
C̃ = R̃ + S rather than the original cost C = R + S.

Lemma 6.7.6 (Softmin for cost with sparse component). Let C̃ = R̃ + S and
p1, . . . , pk ∈ Rn. Then

sminη
~j∈[n]k

C̃~j −
k∑
i=1

[pi]ji = −η−1 log(a+ b),
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where di := exp[ηpi] ∈ Rn
>0,

a :=
∑
~j∈[n]k

s.t. S~j 6=0

k∏
i=1

[di]ji · e−ηR̃~j · (e−ηS~j − 1) (6.20)

and

b :=
∑
~j∈[n]k

k∏
i=1

[di]ji · e−ηR̃~j . (6.21)

Proof. By expanding the definition of softmin, and then substituting pi with di
and C̃ with R̃ + S,

sminη
~j∈[n]k

C̃~j −
k∑
i=1

[pi]ji = −1

η
log

∑
~j∈[n]k

eη
∑k

i=1[pi]jie−ηC̃~j


= −1

η
log

∑
~j∈[n]k

k∏
i=1

[di]ji · e−ηR̃~je−ηS~j

 .

By simple manipulations, we conclude that the above quantity is equal to the
desired quantity:

· · · =− 1

η
log

 ∑
~j∈[n]k

s.t. S~j 6=0

k∏
i=1

[di]ji · e−ηR̃~je−ηS~j +
∑
~j∈[n]k

s.t. S~j=0

k∏
i=1

[di]ji · e−ηR̃~j



=− 1

η
log

 ∑
~j∈[n]k

s.t. S~j 6=0

k∏
i=1

[di]ji · e−ηR̃~j
(
e−ηS~j − 1

)
+
∑
~j∈[n]k

k∏
i=1

[di]ji · e−ηR̃~j


=− 1

η
log(a+ b).

Above, the first step is by partitioning the sum over ~j ∈ [n]k based on if S~j = 0,

the second step is by adding and subtracting
∑

~j∈[n]k s.t. S~j 6=0

∏k
i=1[di]ji · e−ηR̃~j , and

the last step is by definition of a and b.
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Lemma 6.7.7 (Low-rank approximation of the exponential of a low-rank tensor).
There is an algorithm that given R ∈ (Rn)⊗k in rank-r factored form, η > 0,
and a precision ε̃ < e−ηRmax, takes n · poly(k, r̃) time to compute a rank-r̃ tensor
L ∈ (Rn)⊗k in factored form satisfying ‖L− exp[−ηR]‖max 6 ε̃, where

r̃ 6

(
r +O(log 1

ε̃
)

r

)
. (6.22)

Proof. By classical results from approximation theory (see, e.g., [218]), there exists
a polynomial q of degree m = O(log 1/ε̃) satisfying

|exp(−ηx)− q(x)| 6 ε̃, ∀x ∈ [−Rmax, Rmax].

For instance, the Taylor or Chebyshev expansion of x 7→ exp(−ηx) suffices. Thus
the tensor L with entries

L~j = q(R~j)

approximates exp[−ηR] to error

‖L− exp[−ηR]‖max 6 ε̃.

We now show that L has rank r̃ 6
(
r+m
r

)
, and moreover that a rank-r̃ fac-

torization can be computed in n · poly(k, r̃) time. Denote q(x) =
∑m

t=0 atx
t and

R =
∑r

`=1⊗ki=1ui,`. By definition of L, definition of q and R, and then the
Multinomial Theorem,

L~j = q(R~j) =
m∑
t=0

at

(
r∑
`=1

k∏
i=1

[ui,`]ji

)t

=
∑

α∈Nr
0 : |α|6m

(|α|
α

)
a|α|

r∏
`=1

k∏
i=1

[ui,`]
αi
ji
,

where the sum is over r-tuples α with non-negative entries summing to at most
m. Thus

L =
∑

α∈Nr
0 : |α|6m

k⊗
i=1

vi,α,

where vi,α ∈ Rn denotes the vector with j-th entry
(|α|
α

)
a|α|
∏r

`=1[ui,`]
αi
j for i = 1,

and
∏r

`=1[ui,`]
αi
j for i > 1. This yields the desired low-rank factorization of L

because

r̃ 6 #{α ∈ Nr
0 : |α| 6 m} =

(
r +m

r

)
.

Finally, since each of the kr̃ vectors vi,α in the factorization of L can be computed
efficiently from the closed-form expression above, the desired runtime follows.
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Lemma 6.7.8 (Marginalizing a scaled low-rank tensor). Given vectors d1, . . . , dk ∈
Rn and a tensor L ∈ (Rn)⊗k through a rank r̃ factorization, we can compute
m((⊗ki=1di)� L) in O(nkr̃) time.

Proof. Denote the factorization of L by L =
∑r̃

`=1⊗ki=1vi,`. Then

m((⊗ki=1di)� L) =
∑
~j∈[n]k

[
(⊗ki=1di)� L

]
~j

=
∑
~j∈[n]k

r̃∑
`=1

k∏
i=1

[di]ji [vi,`]ji

=
r̃∑
`=1

k∏
i=1

n∑
j=1

[di]j[vi,`]j =
r̃∑
`=1

k∏
i=1

〈di, vi,`〉,

where the first step is by definition of the m(·) operation that sums over all entries,
the second step is by definition of L, and the third step is by swapping products
and sums. Thus computing the desired quantity amounts to computing r̃k inner
products of n-dimensional vectors. This can be done in O(nrk̃) time.

Lemma 6.7.9 (Precision of the low-rank approximation). Let ε 6 1. Suppose
L ∈ (Rn)⊗k satisfies ‖L − exp[−ηR]‖max 6 ε

3
e−ηRmax. Then the matrix C̃ :=

− 1
η

log[L] + S satisfies

‖C̃ − C‖max 6
ε

2
. (6.23)

Proof. Observe that the minimum entry of L is at least

e−ηRmax − ε
3
e−ηRmax > 2

3
e−ηRmax . (6.24)

Since this is strictly positive, the tensor R̃ := −η−1 log[L] is well defined. Further-
more,

‖ηR̃− ηR‖max = max
~j∈[n]k

∣∣∣ηR̃~j − ηR~j∣∣∣ 6 max
~j∈[n]k

∣∣∣L~j − e−ηR~j

∣∣∣
min(L~j, e

−ηR~j)
6

ε
3
e−ηRmax

2
3
e−ηRmax

=
ε

2
,

where above the first step is by definition of the max norm; the second step is
by the elementary inequality | log x − log y| 6 |x − y|/min(x, y) which holds for
positive scalars x and y [10, Lemma K]; and the third step is by (6.24) and the
approximation bound of L. Since η > 1, we therefore conclude that ‖R̃−R‖max 6
ε /2. By adding and subtracting S, this implies ‖C̃ − C‖max = ‖R̃ − R‖max 6
ε /2.
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� 6.7.2.2 Proof of Theorem 6.7.4

We are now ready to state the algorithm in Theorem 6.7.4. Pseudocode is in
Algorithm 6.8. Note that R̃ = −η−1 log[L] and C̃ = R̃ + S are never explicitly
computed because in both Lines 3 and 4, the algorithm performs the relevant
operations only through the low-rank tensor L and the sparse tensor S.

Input: Low-rank tensor R, sparse tensor S, matrix p ∈ R̄n×k, accuracy ε > 0
Output: Solution to both AMINC(p, ε) on cost tensor C = R + S, and also

SMINC̃(p, (2k log n)/ ε) on some approximate cost tensor C̃ satisfying ‖C−C̃‖max 6 ε /2

1: η ← (2k log n)/ ε
2: Compute low-rank approximation L of exp[−ηR] via Lemma 6.7.7, for precision
ε̃ = ε

3e
−ηRmax

3: Compute a in (6.20) directly by enumerating over the polynomially many non-zero
entries of S, where R̃ = −η−1 log[L]

4: Compute b in (6.21) via Lemma 6.7.8, where R̃ = −η−1 log[L]
5: return −η−1 log(a+ b)

Algorithm 6.8: Polynomial-time algorithm for AMIN and SMIN for low-rank + sparse
costs (Theorem 6.7.4).

Proof of Theorem 6.7.4. Proof of correctness for SMIN. Consider any oracle in-
puts p = (p1, . . . , pk) ∈ R̄n×k. By Lemma 6.7.9, the tensor C̃ = R̃ + S =
−η−1 logL + S satisfies ‖C̃ − C‖max 6 ε /2. Therefore it suffices to show that
Algorithm 6.8 correctly computes SMINC̃(p, η). This is true because that quantity
is equal to −η−1 log(a+ b) by Lemma 6.7.6.

Proof of correctness for AMIN. We have just established that Algorithm 6.8
computes SMINC̃(p, η). Because η = (2k log n)/ ε and the fact that SMIN is a
special case of AMIN (Remark 6.3.6), it follows that SMINC̃(p, η) is within additive
accuracy ε /2 of MINC̃(p, η). Therefore, by the triangle inequality, it suffices to
show that MINC̃(p) is within ε /2 additive accuracy of MINC(p). That is, it suffices
to show that ∣∣∣∣∣min

~j∈[n]k
C~j −

k∑
i=1

[pi]ji − min
~j∈[n]k

C̃~j −
k∑
i=1

[pi]ji

∣∣∣∣∣ 6 ε /2.

But this is true because ‖C − C̃‖max 6 ε /2 by Lemma 6.7.9, and thus the
quantities C~j −

∑k
i=1[pi]ji and C̃~j −

∑k
i=1[pi]ji are within additive accuracy ε /2

for each ~j ∈ [n]k.
Proof of runtime. We prove the claimed runtime bound simultaneously for the

AMIN and SMIN computation because we use the same algorithm for both. To
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this end, we first bound the rank r̃ of the low-rank approximation L computed
in Lemma 6.7.7. Note that since ε̃ = ε

3
e−ηRmax and since it is assumed that

Rmax = O(Cmax), we have log 1/ε̃ = O(Cmax

ε
k log n). Therefore

r̃ 6

(
r +O(log 1/ε̃)

r

)
= O(log 1/ε̃)r = O(Cmax

ε
k log n)r = poly(log n, k, Cmax/ ε).

Above, the first step is by Lemma 6.7.7, and the final step is because r is assumed
constant.

Therefore Line 2 in Algorithm 6.8 takes polynomial time by Lemma 6.7.7,
Line 3 takes polynomial time by simply enumerating over the s non-zero entries
of S, and Line 4 takes polynomial time by Lemma 6.7.8.

� 6.7.3 Application vignette: risk estimation

Here we consider an application to portfolio risk management. For simplicity of
exposition, let us first describe the setting of 1 financial instrument (“stock”).
Consider investing in one unit of a stock for k years. For i ∈ {0, . . . , k}, let Xi

denote the price of the stock at year i. Suppose that the return ρi = Xi/Xi−1 of the
stock between years i− 1 and i is believed to follow some distribution ρi ∼ µi. A
fundamental question about the riskiness of this stock is to compute the investor’s
expected profit in the worst-case over all joint probability distributions on future
returns (ρ1, . . . , ρk) that are consistent with the modeled marginal distributions
(µ1, . . . , µk). This is an MOT problem with cost C given by

C(ρ1, . . . , ρk) =
∏
i∈[k]

ρi,

where here we view C as a function rather than a tensor for notational simplicity.
If each return ρi has n possible values (e.g., after quantization), then the cost C
is equivalently represented as a rank-1 tensor in (Rn)⊗k (by assigning an index
to each of the n possible values of each ρi). Therefore our result Corollary 6.7.5
provides a polynomial-time algorithm for solving this MOT problem defining the
investor’s worst-case profit.

Rather than formalize this proof for 1 stock, we directly generalize to the
general case of investing in r stocks, r > 1. This is essentially identical to the
simple case of r = 1 stock, modulo additional notation.

Corollary 6.7.10 (Polynomial-time algorithm for expected profit given marginals
on the returns). Suppose an investor holds 1 unit of r stocks for k years. For
each stock ` ∈ [r] and each year i ∈ [k], let ρi,` denote the relative price of stock `
between years i and i− 1. Suppose ρi,` has distribution µi,`, and that each µi,` has
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at most n atoms. Let Rmax = max{ρi,`}
∑r

`=1

∏k
i=1 ρi,` denote the maximal possible

return. For any constant number of stocks r, there is a poly(n, k,Rmax/ ε) time
algorithm for ε-approximating the expected profit in the worst-case over all futures
that are consistent with the returns’ marginal distributions.

Proof. This is the optimization problem

min
P∈M({µi,`}i∈[k],`∈[r])

E{ρi,`}i∈[k],`∈[r]∼P

[
r∑
`=1

k∏
i=1

ρi,`

]
over all joint distributions P on the returns {ρi,`}i∈[k],`∈[k] that are consistent with
the marginal distibutions {µi,`}i∈[k],`∈[k]. This is an MOT problem with k′ = rk
marginals, each over n atoms, with cost function

C
(
{ρi,`}i∈[k],`∈[r]

)
=
∑
`′∈[r]

∏
(i,`)∈[k]×[r]∼=[k′]

(
ρi,` · 1[` = `′] + 1[` 6= `′]

)
. (6.25)

By viewing this cost function C as a cost tensor in the natural way (i.e., assigning
an index to each of the n possible values of ρi,`), this representation (6.25) shows
that the corresponding cost tensor C ∈ (Rn)⊗k

′
has rank r. Moreover, observe

that the maximum entry of the cost is Rmax. Therefore we may appeal to our
polynomial-time MOT algorithms in Corollary 6.7.5 for costs with constant rank.

The algorithm is readily generalized, e.g., if the investor has different units
of a stock, or if a stock is held for a different number of years. The former is
modeled simply by adding an extra year in which the return of stock ` is equal to
the number of units, with probability 1. The latter is modeled simply by setting
the return of stock ` to be 1 for all years after it is held, with probability 1.

In Figure 6.7, we provide a numerical illustration comparing our new polynomial-
time algorithms for this risk estimation task with the previous fastest algorithms.
Previously, the fastest algorithms that apply to this problem are out-of-the-box
LP solvers run on MOT, and the brute-force implementation of SINKHORN which
marginalizes over all nk entries in each iteration. Since both of these previous
algorithms have exponential runtime that scales as nΩ(k), they do not scale beyond
tiny input sizes of n = 10 and k = 8 even with two minutes of computation time.
In contrast, our new polynomial-time algorithms compute high-quality solutions
for problems that are orders-of-magnitude larger. For example, our polynomial-
time implementation of SINKHORN takes less than a second to solve an MOT LP
with nk = 1030 variables.

Details for this numerical experiment: we consider r = 1 stock over k timesteps,
where each marginal distribution µi is uniform on [1, 1 + 1/k], discretized with
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Figure 6.7: Comparison of the runtime (left) and accuracy (right) of the fastest existing
algorithms (naive LP solver and naive SINKHORN which both have exponential runtimes
that scale as nΩ(k)) with our algorithms (SINKHORN, MWU, and COLGEN and MWU with
polynomial-time implementations of their bottlenecks) for the risk estimation problem
described in the main text. The algorithms are cut off at 2 minutes, denoted by an “x”.
Our new polynomial-time implementation of SINKHORN returns high-quality solutions
for problems that are orders-of-magnitude larger than previously possible: e.g., it takes
less than a second to solve the problem for k = 30, which amounts to an MOT LP with
1030 variables.

n = 10. We implement the AMIN and SMIN oracle efficiently by using our above
algorithm to exploit the rank-one structure of the cost tensor. In particular, the
polynomial approximation we use here to approximate exp[−ηC] is the degree-
5 Taylor approximation (cf., Lemma 6.7.7). This lets us run SINKHORN and
MWU in polynomial time, as described above. In the numerical experiment, we
also implement an approximate version of COLGEN using our polynomial-time
implementation of the approximate violation oracle AMIN. Since the algorithms
compute an upper bound, lower value is better in the right plot of Figure 6.7. We
observe that MWU yields the loosest approximation for this application, whereas our
implementations of SINKHORN and COLGEN produce high-quality approximations,
as is evident by comparing to the exact LP solver in the regime that the latter is
tractable to run.
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� 6.7.4 Application vignette: projection to the transportation polytope

Here we consider the fundamental problem of projecting a joint probability distri-
bution Q onto the transportation polytope M(µ1, . . . , µk), i.e.,

arg min
P∈M(µ1,...,µk)

∑
~j

(P~j −Q~j)2. (6.26)

We provide the first polynomial-time algorithm for solving this problem in the
case where Q is a distribution that decomposes into a low-rank component plus a
sparse component. The low-rank component enables modeling mixtures of product
distributions (e.g., mixtures of isotropic Gaussians), which arise frequently in
statistics and machine learning; see, e.g., [87]. In such applications, the number of
product distributions in the mixture corresponds to the tensor rank. The sparse
component further enables modeling arbitrary corruptions to the distribution in
polynomially many entries.

We emphasize that this projection problem (6.26) is not an MOT problem
since the objective is quadratic rather than linear. This illustrates the versatility
of our algorithmic results. Our algorithm is based on a reduction from quadratic
optimization to linear optimization over M(µ1, . . . , µk) that is tailored to this
problem. Crucial to this reduction is the fact that the MOT algorithms in §6.4
can compute sparse solutions. In particular, this reduction does not work with
SINKHORN because SINKHORN cannot compute sparse solutions.

Corollary 6.7.11 (Efficient projection to the transportation polytope). Let Q =
R + S ∈ (Rn

>0)⊗k, where R has constant rank and S is polynomially sparse.
Suppose that Rmax and Smax are O(1). Given R in factored form, S through its
non-zero entries, measures µ1, . . . , µk ∈ ∆n, and accuracy ε > 0, we can compute
in poly(n, k, 1/ ε) time a feasible P ∈M(µ1, . . . , µk) that has ε-suboptimal cost for
the projection problem (6.26). This solution P is a sparse tensor output through
its poly(n, k, 1/ ε) non-zero entries.

Proof. We apply the Frank-Wolfe algorithm (a.k.a., Conditional Gradient De-
scent) to solve (6.26), specifically using approximate LP solutions for the descent
direction as in [120, Algorithm 2]. By the known convergence guarantee of this
algorithm [120, Theorem 1.1], if each LP is solved to ε′ = O(ε) accuracy, then
T = O(1/ ε) Frank-Wolfe iterations suffice to obtain an ε-suboptimal solution
to (6.26).

The crux, therefore, is to show that each Frank-Wolfe iteration can be com-
puted efficiently, and that the final solution is sparse. Initialize P (0) to be an
arbitrary vertex ofM(µ1, . . . , µk). Then P (0) is feasible and is polynomially sparse
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(see §6.2.1). Let P (t) ∈ (Rn
>0)⊗k denote the t-th Frank-Wolfe iterate. Performing

the next iteration requires two computations:

1. Approximately solve the following LP to ε′ accuracy:

D(t) ← min
P∈M(µ1,...,µk)

〈P, P (t) −Q〉. (6.27)

2. Update P (t+1) ← (1 − γt)P (t) + γtD
(t), where γt = 2/(t + 2) is the current

stepsize.

For the first iteration t = 0, note that the LP (6.27) is an MOT problem with cost
C(0) = P (0)−Q = P (0)−R−S which decomposes into a polynomially sparse tensor
P (0)−S plus a constant-rank tensor−R. Therefore the algorithm in Corollary 6.7.5
can solve the LP (6.27) to ε′ = O(ε) additive accuracy in poly(n, k, 1/ ε) time,
and it outputs a solution D(0) that is poly(n, k, 1/ ε) sparse. It follows that P (1)

can be computed in poly(n, k, 1/ ε) time and moreover is poly(n, k, 1/ ε) sparse
since it is a convex combination of the similarly sparse tensors P (0) and D(0). By
repeating this argument identically for T = O(1/ ε) iterations, it follows that each
iteration takes poly(n, k, 1/ ε) time, and that each iterate P (t) is poly(n, k, 1/ ε)
sparse.

� 6.8 Discussion

In this chapter, we investigated what structure enables MOT—an LP with nk

variables—to be solved in poly(n, k) time. We developed a unified algorithmic
framework for MOT by characterizing what “structure” is required to solve MOT
in polynomial time by different algorithms in terms of simple variants of the dual
feasibility oracle. On one hand, this enabled us to show that ELLIPSOID and MWU

solve MOT in polynomial time whenever any algorithm can, whereas SINKHORN

requires strictly more structure. And on the other hand, this made the design
of polynomial-time algorithms for MOT much simpler, as we illustrated on three
general classes of MOT cost structures.

Our results suggest several natural directions for future research. One exciting
direction is to identify further tractable classes of MOT cost structures beyond
the three studied in this chapter, since this may enable new applications of MOT.
Our results help guide this search because they make it significantly easier to
identify if an MOT problem is polynomial-time solvable (see §6.1.1.4).

Another important direction is practicality. While the focus of this chapter
is to characterize when MOT problems can be solved in polynomial time, in
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practice there is of course a difference between small and large polynomial run-
times. It is therefore a question of practical significance to improve our “proof
of concept” polynomial-time algorithms by designing algorithms with smaller
polynomial runtimes. Our theoretical results help guide this search for practical
algorithms because they make it significantly easier to identify if an MOT problem
is polynomial-time solvable in the first place.

In order to develop more practical algorithms, recall that, roughly speaking,
our approach for designing MOT algorithms consisted of three parts:

• An “outer loop” algorithm such as ELLIPSOID, MWU, or SINKHORN that solves
MOT in polynomial time conditionally on a polynomial-time implementation
of a certain bottleneck oracle.

• An “intermediate” algorithm that reduces this bottleneck oracle to polynomial
calls of a variant of the dual feasibility oracle.

• An “inner loop” algorithm that solves the relevant variant of the dual feasi-
bility oracle for the structured MOT problem at hand.

Obtaining a smaller polynomial runtime for any of these three parts immediately
implies smaller polynomial runtimes for the overall MOT algorithm. Another
approach is to design altogether different algorithms that avoid the polynomial
blow-up of the runtime that arises from composing these three parts. Understand-
ing how to solve an MOT problem more “directly” in this way is an interesting
question.



Chapter 7

Case study: resolving the
computational complexity of

Wasserstein barycenters

This chapter highlights the application of our general MOT framework to one
particularly popular instance of MOT: the computation of Wasserstein barycen-
ters (a.k.a., Optimal Transport barycenters). Wasserstein barycenters provide a
geometrically-meaningful notion of average between probability distributions, and
over the past decade have emerged as a central tool in data science for manipulat-
ing and interpreting complicated geometric data. However, despite considerable
attention, the most fundamental question about the complexity of Wasserstein
barycenters remained open: can they be computed in polynomial time?

In this chapter, we resolve this problem. Specifically, we establish that Wasser-
stein barycenters are NP-hard to compute in general, but can be computed in
polynomial time in any fixed dimension (e.g., as in physical, imaging, or graphics
applications). This uncovers a “curse of dimensionality” for Wasserstein barycen-
ter computation which does not occur for Optimal Transport computation.

� 7.1 Introduction

Wasserstein barycenters provide a natural approach for averaging probability dis-
tributions in a way that respects their geometry. In words, Wasserstein barycenters
are the Riemannian centers of mass (a.k.a. Fréchet means) with respect to the
Optimal Transport distance [3]. More precisely, given probability distributions
µ1, . . . , µk over Rd and non-negative weights λ1, . . . , λk summing to 1, the corre-
sponding Wasserstein barycenters are the probability distributions ν over Rd that

203
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minimize

min
ν

k∑
i=1

λiW2(µi, ν). (7.1)

Here, W denotes the 2-Wasserstein distance (a.k.a. the standard Optimal Trans-
port distance) between probability distributions [224], which we recall is defined
as

W(µ, ν) =

(
inf

π∈M(µ,ν)
E(X,Y )∼π ‖X − Y ‖2

2

)1/2

,

where M(µ, ν) is the set of joint distributions with first marginal µ and second
marginal ν.

Wasserstein barycenters have received considerable research attention over the
past decade due to their elegant mathematical properties (see, e.g., [3]) and many
data-science applications (see, e.g., the surveys [172, 178]). For example, illus-
trative applications include improving Bayesian learning by averaging posterior
distributions [208], improving sensors by averaging their measurements [86], inter-
polating between shapes by averaging them (viewed as point clouds in Euclidean
space) [206], clustering documents (viewed as distributions over word embed-
dings) [234, 235], multilevel clustering of datasets [114, 115], and unsupervised
representation learning in natural language processing [202]. Note that some of
these applications are in low-dimensional settings (e.g., graphics, imaging, and
physical applications), while others are in high-dimensional settings (e.g., natural
language processing, machine learning, and statistics applications).

Open problem: computing barycenters in polynomial time. A key issue that determines
how useful Wasserstein barycenters are in applications is whether they can be
computed efficiently. Note that in most computational applications, each measure
µi is a discrete distribution: it is a “point cloud” over data points. This motivates
the following fundamental question, which has remained open despite considerable
research attention (see the previous work section).

Are Wasserstein barycenters of discrete distributions computable in polynomial time?

That is, can the optimization problem (7.1) be solved in time that is polynomial
in the number of distributions k, the dimension d, the maximum support size n
of the input distributions µi, and the bit complexity logU of each entry in the
input measures and weights? This constitutes a running time that is polynomial
in the input size since each discrete measure is naturally described as a list of at
most n point locations and the corresponding probability masses.
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A highly related open problem is whether Wasserstein barycenters can be
computed to high accuracy, i.e., whether an ε-additively approximate solution
for (7.1) can be computed in time that is polynomial in the input size and log(1/ ε).

All previous algorithms that compute arbitrarily close approximations have
runtimes either 1) of the form poly(nΩ(k), d) which is exponential in the number
of marginals k, or 2) of the form poly(n, k, 1/ εd) which is not only exponential
in the dimension d, but moreover even for constant dimension like d = 3, only
enables solving to a few digits of precision due to the 1/ εd runtime dependence.
See the previous work section for details.

The current state of affairs leaves open pressing fundamental questions about
the computation of Wasserstien barycenters. Are polynomial runtimes possible in
high dimension? In low dimension, are high-precision solutions possible? Is the
lack of such a results a failure of previous algorithmic techniques or a fundamental
impossibility?

The purpose of this chapter is to resolve all of these questions. Specifically,
we establish that in general Wasserstein barycenters are NP-hard to compute,
even approximately; however, they can be computed exactly in polynomial time
in any fixed dimension (e.g., as in physical, imaging, or graphics applications).
This uncovers a “curse of dimensionality” for Wasserstein barycenter computation
which does not occur for Optimal Transport computation.

We elaborate on both results below.

� 7.1.1 Contribution 1: Wasserstein barycenters are NP-hard to compute,

even approximately

The first main result of this chapter establishes that in general, it is NP-hard to
compute Wasserstein barycenters. This explains why—despite a rapidly growing
literature (see the previous work section)—there has been a lack of progress to-
wards developing algorithms that provably compute optimal Wasserstein barycen-
ters in polynomial time.

Theorem 7.1.1 (NP-hardness). Assuming P 6= NP, there is no algorithm that,
given distributions µ1, . . . , µk and uniform weights λ1, . . . , λk = 1/k, computes the
value of the Wasserstein barycenter problem (7.1) in poly(n, k, d, logU) time.

Moreover, this hardness extends even to computation of approximate Wasser-
stein barycenters. This extension requires the slightly stronger yet standard
complexity-theoretic assumption NP 6⊂ BPP, which in words is the statement that
NP-hard problems do not admit polynomial-time randomized algorithms; see §5.2
for a formal definition. This result is formally stated as follows. Below, let R be
an upper bound on the squared diameter of the supports of the measures µi; any
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running time must depend on R and the accuracy ε through the scale-invariant
ratio R/ ε.

Theorem 7.1.2 (Inapproximability). Assuming NP 6⊂ BPP, there is no random-
ized algorithm that, given distributions µ1, . . . , µk and uniform weights λ1, . . . , λk =
1/k, computes the value of the Wasserstein barycenter problem (7.1) to ε additive
accuracy with probability at least 2/3 in poly(n, k, d, logU,R/ ε) time.

We make three remarks about these results. First, since Theorems 7.1.1
and 7.1.2 establish hardness for (approximately) computing the optimal value
of the barycenter problem, as an immediate corollary they preclude finding an
(approximately) optimal solution. Specifically, since W(ν, µi) is computable in
polynomial time (e.g., via linear programming [196]) whenever ν has polynomial-
size support, these results imply that: unless P = NP, there is no polynomial-time
algorithm for computing a barycenter ν with polynomial-size support.1

Second, these hardness results hold even in seemingly simple settings. For
example, our results are written for the case where all weights λ1 = · · · = λk = 1/k
are uniform. Our construction also sets all measures µ1, . . . , µk to be supported
on n points each with all support points having {0, 1}-valued coordinates, and
can be readily extended to the case where µ1, . . . , µk are uniform distributions;
for details see the paper [14] upon which this the chapter is partially based.

Third, these hardness results capture a robust phenomenon as they extend
to other important notions of averaging in Wasserstein space that are studied in
the literature, see, e.g., [55, 74, 99, 143]. Specifically, for any fixed p ∈ [1,∞)
and q ∈ [1,∞], the “generalized Wasserstein barycenter problem” is similarly
computationally hard, where one replaces the 2-Wasserstein distance with the
p-Wasserstein distance, and also replaces the `2 ground metric by any `q ground
metric. For details on this generalized problem, its robustness properties, its
applications, and the proof of this extension, we refer the reader to the paper [14]
upon which this the chapter is partially based.

� 7.1.2 Contribution 2: Polynomial-time algorithm in fixed dimension

In sharp contrast to the above intractability result that Wasserstein barycenters
are NP-hard in general, our second result shows that in any fixed dimension d,
they are polynomial-time computable. Specifically, we give the first algorithm
that, in any fixed dimension d, solves the Wasserstein barycenter problem exactly
or to high precision in polynomial time. The formal statement of these results

1Note that there always exists a barycenter with support of size O(nk) [22]. Our result shows
that if P 6= NP, then such a barycenter cannot be efficiently computed.
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is as follows. For simplicity of notation, throughout d is a constant; the running
time for fixed d is (nk)d times a polynomial in the input size.

Theorem 7.1.3 (Computing high-precision barycenters in fixed dimension). There
is an algorithm that, given k distributions each supported on n atoms in the ball
of squared radius R in Rd, a weight vector λ, and an accuracy ε > 0, computes
an ε-additively approximate Wasserstein barycenter in poly(n, k, log(R/ ε)) time.
Moreover, this barycenter has support size at most nk − k + 1.

Theorem 7.1.4 (Computing exact barycenters in fixed dimension). If the weight
vector and distributions are represented with logU bits of precision, then an exact
barycenter can be found in poly(n, k, logU) time. Moreover, this barycenter has
support size at most nk − k + 1.

In contrast, the fastest previous algorithms in this setting have runtimes of the
form poly(n, k, 1/ εd), which even in fixed dimension d, depend polynomially on
1/ ε. This means that in practice they can only solve to a few digits of precision.
See the prior work section for details. In many applications, including nearly all
of those mentioned above, Wasserstein barycenters are used as a subroutine in
a larger pipeline to solve downstream data science tasks. Thus, high-precision
algorithms are important for downstream performance and to avoid error propa-
gation, especially in applications which require multiple barycenter computations.
Although the focus of this chapter is theoretical, we also provide preliminary nu-
merical experiments in §7.4.3 demonstrating that a slight variant of our algorithm
can provide high-precision solutions at previously intractable problem sizes.

In addition to its polynomial runtime, our algorithm has two additional proper-
ties that may be useful in downstream applications. First, the outputted barycen-
ter ν has small support of O(nk) size, which is much smaller than the a priori
nk bound on the support size. In particular, the support size of ν is at most the
maximal sparsity of any vertex of the transportation polytope between µ1, . . . , µk—
which is at most nk − k + 1. Note that Theorem 7.1.4 is not at odds with the
NP-hardness of finding the sparsest barycenter [46]: indeed, our algorithm out-
puts a solution that albeit sparse is not necessarily the sparsest. Second, as a
by-product, our algorithm also produces sparse solutions to the Optimal Transport
problems W(µi, ν) that are non-mass-splitting maps from ν to µi. Among other
benefits, this enables easy visualization and interpretability of the results—in
comparison to entropic-regularization based approaches which produce “blurry”
dense maps.

We also mention that the techniques we develop here extend to solving several
related problems involving generalized Wasserstein barycenters. In particular, this
gives the first polynomial-time algorithms for computing geometric medians with
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respect to the 1-Wasserstein distance (a.k.a. Earth Mover’s distance) over any
of the popular ground metrics `1, `2, or `∞. For details, see the paper [11] upon
which this chapter is partially based.

� 7.1.3 Related work

The many applications of Wasserstein barycenters have motivated an extensive
literature that approaches this problem from both the algorithmic and hardness
sides. Here we contextualize our results with the literature.

� 7.1.3.1 Algorithms for the Wasserstein barycenter problem

Many algorithms have been proposed. However, all of them have running time
which scales exponentially in at least one of the input parameters, and/or do not
provably compute arbitrarily close approximations, described below.

Algorithms with exponential dependence in d. A popular approach is to use “fixed-
support approximations”; that is, assume that the barycenter is supported on a
guessed set S ⊂ Rd of points, and then optimize over the corresponding weights,
see, e.g., [32, 55, 74, 121, 136, 143, 206, 209] among many others. The point of
this fixed-support approximation is that it reduces the barycenter problem to
a polynomial-size LP—which can then be solved efficiently using out-of-the-box
LP solvers or specially-tailored approaches such as entropic regularization—if
the set S has polynomial size. However, this “if” is the key issue: obtaining a
barycenter that is ε-additively approximate for the objective (7.1) requires taking
S to be an ε-cover of the space. In particular, this means that all fixed-support
methods require Ω((R/ ε)d) time. Such running times have two issues. First is the
exponential scaling in the dimension d. Second is that they only compute to “low
precision” ε due to the 1/ ε dependence. While not fixed-support approaches, the
Frank-Wolfe algorithm of [147] and the Functional Gradient Descent algorithm
of [199] also suffer from the same two issues.

In contrast, our proposed algorithm in Theorem 7.1.3 has poly(n, k, log(R/ ε))
runtime in fixed dimension—and critically, this has polylogarithmic dependence
on R/ ε.2 In practice, this means that our algorithm can often solve up to machine
precision, whereas fixed-support algorithms can only solve up to a few digits of
precision—see §7.4.3 for numerical experiments.

Algorithms with exponential dependence in k. A well-known approach that avoids
exponential dependence on the dimension d is to reformulate the Wasserstein

2This means that our algorithm solves the barycenter problem exactly in polynomial time,
whereas previous algorithms require pseudo-polynomial time. This is because solving the barycen-
ter problem exactly requires ε to be exponentially small in the bit-complexity of the input.
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barycenter as a linear program (LP) and then solve it. However, this LP has
nk variables (see, e.g., [22, 32]), so applying a standard LP solver out-of-the-box
requires Ω(nk) time which is exponential in k.

2-approximation. [45] proposes the following algorithm: fix the support of ν to
be the union of the supports of the input measures µi, and optimize the corre-
sponding nk weights via an LP solver. [45] shows that this yields a multiplicative
2-approximation to the optimal barycenter problem (7.1) in poly(n, k, d, logU)
time, and that this approximation factor is tight (i.e., there exist inputs for which
this algorithm yields objective exactly twice the optimal). This is the polynomial-
time algorithm with the best provable approximation guarantees we are aware of
for the barycenter problem in high dimensions. In fact, our Theorem 7.1.2 im-
plies that this polynomial-time algorithm is nearly optimal in the sense that this
multiplicative 2-approximation factor is unimprovable to a (1 + ε)-approximation
under standard complexity theory assumptions.

� 7.1.3.2 Hardness of the sparsest Wasserstein barycenter

Perhaps the most related NP-hardness result is that finding the sparsest3 Wasser-
stein barycenter is NP-hard, even in the setting of k = 3 uniform measures in
dimension d = 2 [46]. The key difference from the hardness results in this chapter
is that the results of [46] apply to the problem of finding the sparsest barycenter,
and do not imply NP-hardness of finding a barycenter with sparsity that is poly-
nomial in the input size, which is typically the goal in applications. For example,
for the setting of k = 3 measures, while the result of [46] shows NP-hardness of
finding a barycenter with sparsity n, a barycenter with sparsity O(n) can be found
in poly(n, logU) time by using off-the-shelf LP solvers on the MOT formulation
of the Wasserstein barycenter problem [22, 32]. Similarly, for any fixed dimension
d > 2, while the result of [46] shows NP-hardness of finding a barycenter with
sparsity n, a barycenter with sparsity O(nk) can be found in poly(n, k, logU) time
for arbitrary k by our result in Theorem 7.1.4.

� 7.1.3.3 Other related work

Algorithms based on entropic regularization. The influential paper [73] popularized
the use of entropic regularization for large-scale Optimal Transport computa-

3In [46, Theorem 3], the NP-hardness is stated for the problem of finding a Wasserstein
barycenter with sparsity at most some input integer N . This is polynomial-time equivalent to
the problem of finding the barycenter with smallest sparsity. Indeed an answer to the latter
problem is an answer to the former, and an algorithm for the former problem gives an answer to
the latter by running the algorithm on all N 6 nk−k+ 1 (since there always exists a barycenter
with sparsity nk − k + 1 [22]).
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tion, see Chapter 2. The use of entropic regularization to compute Wasserstein
barycenters was first proposed in [74], which inspired a long line of work, see,
e.g., [32, 121, 136, 143, 147, 199, 206]. Intuitively, the idea is to regularize the
resulting LP by adding δ times an entropy cost, for δ small. This makes the
LP strongly convex and easier to optimize. Previous work has sought to design
barycenter algorithms by judiciously choosing δ and designing specialized algo-
rithms for the resulting δ-regularized barycenter problem. An immediate corollary
of Theorem 7.1.2 is that entropic regularization does not help for computing
barycenters in high dimensions: under standard complexity assumptions, there is
no efficient algorithm for the Wasserstein barycenter problem regardless of whether
one uses entropic regularization.

Continuous distributions. While this chapter and much of the literature focuses
on computing Wasserstein barycenters of discrete distributions, there is also a
growing line of work on computing barycenters of continous distributions. This
continuous setting has several additional computational challenges, such as how to
even represent µi and ν concisely, and how to compute the Wasserstein distance
between them efficiently. Due to these computational issues, the literature on
barycenters of continuous distributions typically restricts to Gaussians, in which
case specialized algorithms can be designed; see, e.g., [21, 64]. In stark contrast
to the discrete setting studied in this chapter, there is no curse of dimensionality
for Wasserstein barycenter computation in the setting of Gaussians [20].

� 7.1.4 Organization

This chapter is organized as follows. §7.2 recalls relevant preliminaries. In §7.3
we prove the hardness results for general Wasserstein barycenters (Theorems 7.1.1
and 7.1.2). In §7.4 we prove the algorithmic results for low-dimensional settings
(Theorems 7.1.3 and 7.1.4). In §7.5 we conclude with a discussion of future research
directions that are motivated by our results.

This chapter is based on the papers [11, 14], although we omit several results
for the sake of brevity. Notable omissions include extensions of the presented
results to generalized Wasserstein barycenters (i.e., for p-Wasserstein distance and
`q ground metric, for general p, q 6= 2) and details on how the Ellipsoid algorithm
can be applied to MOT.

� 7.2 Preliminaries

The section is organized as follows. In §7.2.1, we recall the well-known reformu-
lation of the Wasserstein barycenter problem as an MOT problem. Then, for the
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convenience of the reader, in §7.2.2 we recall the background about MOT from
Chapters 5 and 6 that is relevant for the development in this chapter. In §7.2.3
and §7.2.4, we recall relevant preliminaries from computational geometry and
computational complexity, respectively.

Notation. The atoms in the support of distribution µi are denoted by xi,1, . . . , xi,n ∈
Rd. We abuse notation slightly by writing µi to denote this discrete distribution
as well as the vector of probability masses in the simplex ∆n = {p ∈ Rn

>0 :∑n
i=1 pi = 1} over the n atoms {xi,j}nj=1 in any fixed ordering. The set {1, . . . , n}

is denoted by [n]. The k-fold tensor product space Rn⊗ · · · ⊗ Rn is denoted
by (Rn)⊗k, and similarly for (Rn

>0)⊗k. For shorthand, we often denote a tuple

(j1, . . . , jk) ∈ [n]k by ~j. The i-th marginal, i ∈ [k], of a tensor P ∈ (Rn)⊗k is
denoted by the vector mi(P ) ∈ Rn, and has entries [mi(P )]` :=

∑
~j∈[n]k:ji=`

P~j.
The transportation polytope between µ1, . . . , µk is the set of joint distributions
with one-dimensional marginal distributions µ1, . . . , µk, and is identified with the
set M(µ1, . . . , µk) := {P ∈ (Rn

>0)⊗k : mi(P ) = µi, ∀i ∈ [k]}.

� 7.2.1 MOT Formulation of Wasserstein barycenters

For both our intractability and algorithmic results, we make use of the well-known
fact [3, 22, 32, 53] that the Wasserstein barycenter problem has an equivalent
formulation as a certain exponential-size linear program, namely the Multimarginal
Optimal Transport (MOT) problem

min
P∈M(µ1,...,µk)

〈P,C〉 (MOT)

for the specific cost tensor C ∈ (Rn)⊗k that has entries

C~j = min
y∈Rd

k∑
i=1

λi‖xi,ji − y‖2, (7.2)

or equivalently, C~j =
∑k

i=1 λi‖xi,ji−
∑k

`=1 λ`x`,j`‖2 by optimality of y =
∑k

`=1 λ`x`,j` .
This equivalence is formally stated as follows.

Proposition 7.2.1 (MOT formulation). The value of the Wasserstein barycenter
problem (7.1) for measures µ1, . . . , µk is equal to the value of the MOT problem
with marginals µ1, . . . , µk and cost tensor C ∈ (Rn)⊗k given by (7.2).

In fact, more is true about this connection: not only are the optimal values
of these two problems equal (Proposition 7.2.1), but also their solutions are
in “correspondence” in the sense that, given a solution to either one of these
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two problems, one can construct a solution to the other problem with the same
objective value. While our intractability results only require the above connection
between optimal values, our algorithmic results require the following direction of
this correspondence between optimal solutions.

Lemma 7.2.2. If P ∈ M(µ1, . . . , µk) is an optimal solution to (MOT), then
the pushforward of P under the map (X1, . . . , Xk) 7→

∑k
i=1 λiXi is an optimal

barycenter ν. Furthermore, the support size of ν is at most the support size of P ,
and also the coupling (

∑k
i=1 λiXi, Xj) is a non-mass-splitting map that solves the

Optimal Transport problem from ν to µj.

Notice that applying this pushforward map (X1, . . . , Xk) 7→
∑k

i=1 λiXi in
order to compute ν from P requires only O(skd) arithmetic operations, where s
denotes the support size of P . In particular, this takes polynomial time if s is of
polynomial size. Therefore in order to efficiently compute a sparse Wasserstein
barycenter, it suffices to efficiently compute a sparse solution P of (MOT). To this
end, note that the solution P is guaranteed to be sparse if it is a vertex solution.
Indeed, since (MOT) is a standard-form LP whose constraints have rank at most
nk − k + 1, each vertex solution has at most nk − k + 1 non-zero entries.

Lemma 7.2.3. If P is a vertex of the transportation polytopeM(µ1, . . . , µk), then
P has at most nk − k + 1 non-zero entries.

� 7.2.2 Separation oracle for MOT formulation of Wasserstein barycenters

An obvious obstacle for computing any solution—let alone a sparse solution—of
the MOT formulation (MOT) is that it has nk exponentially many variables. See
Chapters 5 and 6 for in-depth discussions of when MOT problems can be solved
in poly(n, k) time and related work to this end.

For the convenience of the reader, we recall here the preliminaries about MOT
that are necessary for this chapter. First of all, whether an MOT problem can be
solved in poly(n, k) time is intimately related to the “structure” of its cost tensor
C. However, the cost tensor (7.2) which arises in the Wasserstein barycenter
problem does not fall under any of the classes of structured cost tensors studied
in Chapters 5 and 6 (or any other previous work for that matter), and thus
the computational complexity of this problem does not follow from previous
work. What the known results about MOT do show is that the (approximate)
computation of an optimal value/solution is polynomial-time equivalent to the
(approximate) computation of the “MIN” oracle studied in Chapters 5 and 6.

For the particular cost tensor (7.2) that arises in the Wasserstein barycenter
problem, the MINC(p) problem is: given points {xi,j}i∈[k],j∈[n] ⊂ Rd, scalings
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Figure 7.1: Illustration of the CHEAPEST-HUB problem in the case of k = 3 sets, each
with n = 3 points. The points in set Si are denoted by {xi,1, xi,2, xi,3} and displayed in
the same color. The CHEAPEST-HUB problem is to choose one point per set to minimize
the average distance to the closest “hub” y ∈ Rd. Top: the points {x1,3, x2,2, x3,3}
corresponding to tuple (j1, j2, j3) = (3, 2, 3) yield the best hub y. Bottom: the points
{x1,1, x2,1, x3,1} corresponding to tuple (j1, j2, j3) = (1, 1, 1) yield a suboptimal hub.

λ ∈ ∆n, and weights p = (p1, . . . , pk) ∈ Rn×k, compute

min
~j∈[n]k

(
min
y∈Rd

λi

k∑
i=1

‖xi,ji − y‖2

)
−

k∑
i=1

[pi]ji .

For our hardness results, we show that in high dimension it is hard to compute
MINC even in the special case of zero weights p = 0 and uniform scalings λi = 1/k.
In this particular case, we call the MINC(p) problem CHEAPEST-HUB because
of its geometric interpretation: given k sets Si ⊂ Rd, each consisting of n points
Si = {xi,j}j∈[n], find one point from each set so as to minimize the average distance

to the closest “hub” y ∈ Rd. See Figure 7.1 for an illustration.

Definition 7.2.4 (CHEAPEST-HUB). Given points {xi,j}i∈[k],j∈[n] ⊂ Rd as input,
the CHEAPEST-HUB problem is to compute

min
~j∈[n]k

min
y∈Rd

k∑
i=1

‖xi,ji − y‖2.

� 7.2.3 Relevant preliminaries from computational geometry

A key ingredient in our barycenter algorithm is power diagrams. Here we introduce
these objects and some basic facts about their complexity. Although d is a fixed
constant in our final algorithmic result, we state the explicit dependence on the
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Figure 7.2: Two power diagrams on the same n = 9 points with varying weights w. Left:
zero weights (this is a Voronoi diagram). Right: the weight of a point is indicated by
the size of the ball around it. Increasing a point’s weight increases the size of its cell.

dimension d in these power diagram complexity bounds to highlight how and
where our algorithm incurs exponential runtime dependence in d.

Definition 7.2.5. The power diagram on the spheres S(z1, r1), . . . , S(zn, rn) with
centers zj ∈ Rd and radii rj > 0 is the cell complex whose cells E1, . . . , En are
given by

Ej = {y ∈ Rd : ‖zj − y‖2 − r2
j < ‖zj′ − y‖2 − r2

j′ , ∀j′ 6= j}.

A power diagram essentially partitions Rd in the sense that its cells are disjoint
and their closures cover Rd. See Figure 7.2 for an illustration. Following are two
relevant classical facts. The first essentially shows that a power diagram is defined
by a small hyperplane arrangement which can moreover be computed efficiently.

Lemma 7.2.6. (Theorems 1 and 7 of [25], using convex hull algorithm
of [60]) A power diagram on n spheres in Rd has O(n) affine facets of dimension
d− 1. Moreover these facets can be computed in O((n log n+ ndd/2e) · polylog U)
time, where logU is the number of bits of precision.

The second is about hyperplane arrangements. In the sequel this lets us bound
the complexity of the “intersection” of multiple power diagrams (defined in §7.4.1).

Lemma 7.2.7 (Theorem 3.3 of [84]). The cell complex formed by an arrangement
of N hyperplanes in Rd, represented up to logU bits of precision, can be computed
in Nd · polylog(N,U) time.

� 7.2.4 Relevant preliminaries from computational complexity

For a graph G = (V,E) and vertices v1, . . . , vk ∈ V , denote the number of
edges in the induced subgraph of G with these vertices by |E(v1, . . . , vk)| =
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i<i′∈[k] 1[(vi, vi′) ∈ E]. In the sequel, it is convenient to consider this quantity

|E(v1, . . . , vk)| in the general case where the vertices are not necessarily distinct;
the definition extends as written to this case, and counts the number of edges
with multiplicity. We make use of the well-known fact that the CLIQUE decision
problem is NP-hard [129]. Recall that a k-clique in an undirected graph G = (V,E)
is a subset of vertices S ⊆ V of size |S| = k such that |E(S)| =

(
k
2

)
. The CLIQUE

decision problem is: given an undirected graph G = (V,E) and an integer k > 0,
decide whether G contains a k-clique. For technical reasons, it is convenient to
use the fact that this CLIQUE problem is NP-hard even in certain special cases;
for a proof see the Appendix of [14].

Proposition 7.2.8 (Hardness of CLIQUE). Assuming P 6= NP, there does not
exist an algorithm that, given an integer k > 0 and a graph G on n vertices, decides
whether G contains a clique of size k in poly(n, k) time. This is unchanged if G
is assumed regular and k is even.

� 7.3 Intractability in high dimension

Here we establish the hardness of the Wasserstein barycenter problem for ex-
act and approximate computation by proving Theorems 7.1.1 and 7.1.2, respec-
tively. The section is organized as follows. In §7.4.1 we prove intractability of
the CHEAPEST-HUB problem, which as described above is a special case of the
separation oracle corresponding to the dual MOT formulation of the Wasserstein
barycenter poblem. This proves Theorems 7.1.1 and 7.1.2 by the general results
about MOT in Chapter 5, as detailed in §7.4.2.

For simplicity, throughout §7.3 we ignore discussion of bit complexity since the
constructed “hard” instances of Wasserstein barycenters are such that all support
points xi,j ∈ Rd have {−1, 0, 1}-valued entries, and thus clearly have polynomial
bit complexity. The optimal value of the Wasserstein barycenter problem (7.1) is
denoted by OPTBARY. We show that the claimed hardness results hold even in
the special case where the weights λ1 = · · · = λk = 1/k are uniform, and thus
henceforth specialize solely to this case.

� 7.3.1 Intractability of separation oracle

Here we show that the CHEAPEST-HUB problem (see Definition 7.2.4) is NP-hard
to compute, even approximately.

Lemma 7.3.1 (Inapproximability of CHEAPEST-HUB). Given vectors {xi,j}i∈[k],j∈[n] ⊆
{0, 1}d, it is NP-hard to compute the value of CHEAPEST-HUB to additive error
0.99/k.



216
CHAPTER 7. CASE STUDY: RESOLVING THE COMPUTATIONAL COMPLEXITY OF WASSERSTEIN

BARYCENTERS

The motivation behind our proof is the geometric interpretation of the CHEAPEST-HUB
problem, which recall from §7.2.2 is: given k sets Si ⊂ Rd, each consisting of n
points Si = {xi,j}j∈[n], find one point from each set so as to minimize the average

distance to the closest “hub” y ∈ Rd. On an intuitive level, this question of finding
k points which are close somewhat resembles the k-CLIQUE problem, which is the
task of finding a set of k vertices in a graph such that all pairs of vertices are close
in the sense of being adjacent. Motivated by this intuitive observation, we show
a reduction from k-CLIQUE to CHEAPEST-HUB.

A key part of this reduction is figuring out how to appropriately embed the
(combinatorial) adjacency properties of a graph G into a (geometric) point config-
uration in order to encode k-CLIQUE problem as an instance of CHEAPEST-HUB
in sufficiently high dimension d. Briefly, we show that, given an n-vertex graph
G = (V,E), one can efficiently compute points {xi,j}i∈[k],j∈[n] ⊂ Rd such that the
value of the corresponding CHEAPEST-HUB problem indicates whether G has
a clique of size k. Our embedding ensures that G has a clique of size k if and
only if there are k points x1,j1 , . . . , xk,jk that are sufficiently close to each other.
Roughly speaking, we achieve this by setting the nk points {xi,j}i∈[k],j∈[n] to be an
embedding of k copies of the vertex set V of the graph G, where adjacent vertices
are embedded as close points in Rd.

Concretely, this embedding is as follows; see Remark 7.3.3 below for an interpre-
tation of it as the edge-indicator vector embedding of a certain augmented graph.
For simplicity of exposition, we make no attempt to optimize d here (dimension-
ality reduction can be done, e.g., by simply applying the Johnson-Lindenstrauss
lemma).

Lemma 7.3.2 (Embedding for CLIQUE). Given an n-vertex D-regular graph

G = (V,E) and an integer k > 0, there exists a function φ : [k]× [n]→ {0, 1}(k
2)n2

satisfying the following.

(i) φ can be evaluated in poly(n, k) time.

(ii) For all i 6= i′ ∈ [k] and v, v′ ∈ V , it holds that 〈φ(i, v), φ(i′, v′)〉 = 1[(v, v′) ∈
E].

(iii) For all i ∈ [k] and v ∈ V , it holds that ‖φ(i, v)‖2
2 = D(k − 1).

Proof. Define the embedding φ as follows. Index the
(
k
2

)
n2 coordinates by tuples

(`, u, `′, u′) for indices ` < `′ ∈ [k] and u, u′ ∈ [n] ∼= V . Set

[φ(i, v)](`,u,`′,u′) = 1[(u, u′) ∈ E] · 1[(`, u) = (i, v) or (`′, u′) = (i, v)]. (7.3)

Property (i) clearly holds since each entry of φ is computable in poly(n, k) time.



Sec. 7.3. Intractability in high dimension 217

To show property (ii), note that the vectors φ(i, v) and φ(i′, v′) have disjoint
support if (v, v′) /∈ E, and otherwise share exactly one non-zero entry at the
coordinate (`, u, `′, u′) = (i, v, i′, v′). Thus 〈φ(i, v), φ(i′, v′)〉 = 1[(v, v′) ∈ E].

To show property (iii), note that the squared norm ‖φ(i, v)‖2
2 is equal to the

number of non-zeros in the embedded vector φ(i, v) since it is an indicator vector.
Since G is D-regular, counting the number of non-zero entries in φ(i, v) shows
that ‖φ(i, v)‖2

2 = D(k − 1).

Remark 7.3.3 (Interpretation of embedding via tensor-product graph). The
embedding φ : [k]× [n]→ Rd is the edge-indicator embedding of the graph G̃ which
is the tensor product of the complete graph on k vertices and G. That is, G̃ is
k-partite and has vertex set Ṽ equal to k independent copies of V . A vertex in Ṽ
can be indexed by a tuple (i, v), where i ∈ [k] denotes the copy index and v ∈ V
denotes the corresponding vertex in the original graph. Two vertices (i, v) and
(i′, v′) are adjacent in G̃ if and only if i 6= i′ and (v, v′) ∈ E; that is, if and only
if these two vertices in Ṽ are from different copies of V and are such that their
underlying vertex indices are adjacent in the original graph G.

Proof of Lemma 7.3.1. We reduce CLIQUE to approximately solving CHEAPEST-HUB.
Given an n-vertex D-regular graph G = (V,E) and an integer k > 0, let φ be the
corresponding embedding in Lemma 7.3.2. Set xi,j = φ(i, j) ∈ {0, 1}d for each
i ∈ [k] and j ∈ [n] ∼= V , where d =

(
k
2

)
n2.

Recall that the CHEAPEST-HUB for the input points {xi,j}i∈[k],j∈[n] ⊂ Rd is
the problem of computing the value

F ∗ := min
(j1,...,jk)∈[n]k

min
y∈Rd

k∑
i=1

‖xi,ji − y‖2
2, (7.4)

see Definition 7.2.4. This objective simplifies for the particular choice of input
points. Indeed,

min
y∈Rd

k∑
i=1

‖xi,ji − y‖2
2 =

(
1− 1

k

) k∑
i=1

‖xi,ji‖2
2 −

2

k

∑
i<i′∈[k]

〈xi,ji , xi′,j′i〉

= D(k − 1)2 − 2

k

∑
i<i′∈[k]

1[(ji, ji′) ∈ E]

= M − 2

k
|E(j1, . . . , jk)|. (7.5)

Above, the first step is by plugging in the closed-form solution for y = 1
k

∑k
i=1 xi,ji .

The second step is by using the key properties (ii) and (iii) of the embedding φ
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in Lemma 7.3.2. The third step is by defining M := D(k − 1)2 and recalling that
we write |E(j1, . . . , jk)| =

∑
i<i′∈[k] 1[(ji, ji′) ∈ E] to denote the number of edges

in the induced subgraph of G with vertices j1, . . . , jk where we count the edges
with multiplicity if j1, . . . , jk are not distinct (see §7.2.4).

Therefore by combining (7.4) and (7.5), we conclude that the value F ∗ of the
CHEAPEST-HUB problem for the particular chosen input points {xi,j}i∈[k],j∈[n] ⊂
Rd is equal to

F ∗ = M − 2

k
· max

(j1,...,jk)∈[n]k
|E(j1, . . . , jk)| = M − 2

k
· max
S∈V k

|E(S)|. (7.6)

Note that in this final equation, the optimization is over a multiset S of k vertices
in V that are not necessarily distinct. This is a multiset rather than a set because
CHEAPEST-HUB optimizes over tuples (j1, . . . , jk) ∈ [n]k, and such a tuple does
not necessarily consist of distinct indices; this is also why we defined |E(S)| to
count edges with multiplicity.

Using (7.6), we now argue that the value F ∗ of CHEAPEST-HUB varies signif-
icantly depending on whether G contains a clique of size k. Specifically, on one
hand

F ∗ = M − k + 1, if G contains a clique of size k , (7.7)

because using this clique as the set S and plugging into (7.6) yields objective value
M − 2

k
·
(
k
2

)
= M − k + 1. On the other hand,

F ∗ >M − k + 1− 2

k
, if G does not contain a clique of size k , (7.8)

because then maxS∈V k |E(S)| 6
(
k
2

)
− 1, whereby from (7.6) we conclude that

F ∗ >M− 2
k
(
(
k
2

)
−1) = M−k+1− 2

k
. It therefore follows from (7.7) and (7.8) that

computing CHEAPEST-HUB to any additive error less than 1
k

enables one to decide
whether G contains a clique of size k, which is an NP-hard problem [129].

� 7.3.2 Putting the pieces together

Here we make precise how Lemma 7.3.1 implies Theorems 7.1.1 and 7.1.2.

Proof of Theorem 7.1.1. If there is a poly(n, k, d)-time algorithm for computing
OPTBARY, then by Proposition 7.2.1 there is a poly(n, k, d)-time algorithm for
computing MOTC with the cost tensor C given by (7.2), thus by Theorem 5.3.2
there is a poly(n, k, d)-time algorithm for CHEAPEST-HUB. Assuming P 6= NP,
this contradicts the NP-hardness of CHEAPEST-HUB in Lemma 7.3.1.
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Proof of Theorem 7.1.2. If there is a poly(n, k, d, R/ ε)-time randomized algo-
rithm for ε-approximating OPTBARY with probability 2/3, then by Proposi-
tion 7.2.1 there is a poly(n, k, d, R/ ε)-time randomized algorithm for ε-approximating
MOTC with probability 2/3. By a standard boosting argument—namely repeat-
ing this algorithm log 1/δ times, taking the median, and applying a Chernoff
bound—this implies a poly(n, k, d, R/ ε, log 1/δ)-time randomized algorithm for
ε-approximating MOTC with probability 1 − δ. Therefore, by setting δ suf-
ficiently high, we conclude by Theorem 5.3.3 and a union bound that there
exists a poly(n, k, d, R/ ε)-time randomized algorithm for ε(nk)α-approximating
CHEAPEST-HUB with probability of success at least 0.51. This can be boosted to
2/3 probability of success by another standard boosting argument, proving that
CHEAPEST-HUB lies in BPP. However, assuming NP 6⊂ BPP, this contradicts the
NP-hardness in Lemma 7.3.1.

� 7.4 Polynomial-time algorithm in fixed dimension

In this section we prove Theorems 7.1.3 and 7.1.4, describe the algorithm in these
theorems, and provide preliminary numerical simulations demonstrating that this
algorithm enables computing exact solutions at previously intractable sizes.

The section is organized as follows. In §7.4.1 we design a polynomial-time
algorithm for the separation oracle corresponding to the dual MOT formulation of
the low-dimensional Wasserstein barycenter problem. This proves Theorems 7.1.3
and 7.1.4 aside from checking bit-complexity details, which is done formally in
§7.4.2. Finally §7.4.3 provides preliminary numerical simulations.

For simplicity, throughout §7.4 we assume without loss of generality that each
λi is strictly positive, since otherwise µi does not affect the barycenter (see (7.1)).

� 7.4.1 Efficient separation oracle

Here we design a polynomial-time algorithm for the separation oracle correspond-
ing to the dual MOT formulation of the low-dimensional Wasserstein barycenter
problem. This is formally stated as follows.

Proposition 7.4.1. If the cost C is given by (7.2), then the oracle MINC(p) can
be implemented in poly(n, k, logU) time, where logU is the number of bits of
precision needed to represent the points xi,j ∈ Rd, weights λi ∈ Rk

>0 and potentials
p ∈ Rn×k.

Recall from §7.2.2 that this MINC oracle requires computing the value of

min
~j∈[n]k

min
y∈Rd

g(~j, y) (7.9)
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intersect−−−−−→

Figure 7.3: Illustrates k = 3 power diagrams {{Ei,j}j∈[n]}i∈[k] each with n = 3 cells,
and their intersection {F~j}~j∈[n]k . For instance, the red cell in the intersected diagram is
F1,2,1 = E1,1 ∩ E2,2 ∩ E3,1, and the purple cell is F2,3,2 = E1,2 ∩ E2,3 ∩ E3,2. Note that
the intersected diagram has only 13 non-empty cells, which is less than nk = 27 (c.f.,
Lemma 7.4.3).

where

g(~j, y) :=
k∑
i=1

λi(‖xi,ji − y‖2 − [wi]ji),

and wi denotes pi/λi. At a high level, our approach is to swap the order of
minimization, optimize over y ∈ Rd, and then (easily) recover an optimal tuple
from this optimal y. The difficulty is in the optimization over y ∈ Rd. The key
to performing this efficiently is partitioning the space Rd into a “cell complex”
such that (i) the optimization over y in each cell is easy, and (ii) there are only
polynomially many cells. Operationally, this allows us to reduce the separation
oracle optimization (7.9) to optimizing over only a polynomially sized set of
candidate tuples in [n]k—one for each cell—which we moreover show can be
efficiently identified and enumerated.

To formalize this, we make the following key definitions. Define for each i ∈ [k]
and j ∈ [n] the set

Ei,j = {y ∈ Rd : ‖xi,j − y‖2 − [wi]j < ‖xi,j′ − y‖2 − [wi]j′ , ∀j′ 6= j}, (7.10)

and define for each tuple ~j ∈ [n]k the set

F~j =
k⋂
i=1

Ei,ji . (7.11)

Geometrically, for each i ∈ [k], the cells {Ei,j}j∈[n] form a power diagram (see
§7.2.3) on the spheres S(xi,1, ri,1), . . . , S(xi,n, ri,n), where the j-th sphere is cen-
tered at point xi,j and has radius ri,j :=

√
[wi]j −minj′ [wi]j′ > 0. Each power

diagram essentially partitions Rd in the sense that its constituent cells are disjoint
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and their closures cover Rd; see Figure 7.2 for an illustration. The cell complex
{F~j}~j∈[n]k is the intersection of these k power diagrams and essentially partitions

Rd in the analogous way; see Figure 7.3 for an illustration.
The heart of our algorithm lies in the following two lemmas. The first lemma

shows that the optimization (7.9) over the exponentially many tuples j ∈ [n]k

may be restricted to just those whose corresponding cell F~j is non-empty, i.e., we
may restrict to the tuples in

T := {~j ∈ [n]k : F~j 6= ∅}. (7.12)

The second lemma shows that this candidate set T contains only polynomially
many tuples and moreover can be efficiently enumerated. Briefly, the first lemma
exploits the fact that the optimization over y ∈ Rd is equivalent to optimizing
over the cells in F~j, and the second lemma exploits complexity bounds for the
intersections of power diagrams. Together, these lemmas are sufficient to efficiently
solve the separation oracle because for any fixed ~j, the value miny∈Rd g(~j, y) can
be efficiently computed in closed-form (as shown below in (7.13)).

Lemma 7.4.2. The optimization over ~j ∈ [n]k in the separation oracle prob-
lem (7.9) can be equivalently restricted to ~j ∈ T . That is,

min
~j∈[n]k

min
y∈Rd

g(~j, y) = min
~j∈T

min
y∈Rd

g(~j, y).

Proof. The inequality “6” is obvious; we show the other inequality “>”. By
swapping the order of minimization and using the fact that {F~j}~j∈T cover Rd

modulo closure, we have

min
~l∈[n]k

min
y∈Rd

g(~l, y) = min
y∈Rd

min
~l∈[n]k

g(~l, y) = min
~j∈T

min
y∈F~j

min
~l∈[n]k

g(~l, y).

We claim that the inner minimization over ~l is explicit: ~l = ~j. Indeed, by
separability of g in the coordinates of ~l and non-negativity of λi, for each i ∈ [n]
the optimal `i is a solution of arg min`i∈[n] ‖xi,`i − y‖2 − [wi]`i ; and ji is a solution

of this by definition of Ei,ji (see (7.10)) and the fact that Ei,ji contains y (by
definition of F~j, see (7.11)). Therefore

min
~j∈T

min
y∈F~j

min
~l∈[n]k

g(~l, y) = min
~j∈T

min
y∈F~j

g(~j, y).

Now by enlarging the optimization region, we have the simple bound

min
~j∈T

min
y∈F~j

g(~j, y) > min
~j∈T

min
y∈Rd

g(~j, y).

Combining the above three displays completes the proof.
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Lemma 7.4.3. For any fixed dimension d, the set T can be enumerated in
poly(n, k, logU) time.

Proof. By Lemma 7.2.6, theO(nk) total facets for the k power diagrams {{Ei,j}i∈[n]}j∈[k]

can be computed in poly(n, k, logU) time. For each facet, compute the (d − 1)-
dimensional hyperplane it lies in. The cell complex H formed by these hyperplanes
is a subcomplex of the cell complex formed by intersecting the power diagrams. By
Lemma 7.2.7, we can enumerate the cells in H in poly(n, k, logU) time. For each
cell in H, the corresponding tuple ~j ∈ [n]k is computable in O(nk ·polylog U) time
by computing the k coordinates of the tuple separately. Since each non-empty
cell F~j contains at least one cell in H, this process enumerates all tuples in T .

We now conclude the desired efficient algorithm for the separation oracle.

Proof of Proposition 7.4.1. By Lemma 7.4.2, it suffices to compute the optimal
value of min~j∈T miny∈Rd g(~j, y). Since

∑k
i=1 λixi,ji ∈ arg miny∈Rd g(~j, y), it there-

fore suffices to solve

min
~j∈T

k∑
i=1

λi‖xi,ji‖2 − ‖
k∑
i=1

λixi,ji‖2 −
k∑
i=1

λi[wi]ji . (7.13)

Peform this by enumerating the set T using the algorithm in Lemma 7.4.3.

� 7.4.2 Putting the pieces together

Proof of Theorem 7.1.4. Assume each xi,ji and λi is written to logU bits of pre-
cision. Since each entry of the cost tensor (7.2) requires only O(log k + logU)
bits of precision, and since the parameter w ∈ Rn×k in each MINC query made
by the algorithm in Theorem 6.4.1 requires only poly(n, k, logU) bits of precision,
it follows that the algorithm in Theorem 6.4.1 combined with the MINC oracle
implementation in Proposition 7.4.1 computes a vertex solution P ∗ for (MOT)
in poly(n, k, logU) time. By Lemma 7.2.3, P ∗ has at most nk − k + 1 non-zero
entries. Thus we can recover from P ∗ an optimal barycenter ν with support size
at most nk− k+ 1 in time poly(n, k, logU) by the reduction in Lemma 7.2.2.

Proof of Proof of Theorem 7.1.3. By rounding both the weights λi and the co-
ordinates of the atoms xi,j ∈ Rd to poly(ε /(Rkd)) additive accuracy, it can be
ensured that each of these numbers requires only O(log(Rkd/ ε)) bits of precision
and also that the objective function ν 7→∑k

i=1 λiW(µi, ν) for the barycenter opti-
mization (7.1) is preserved pointwise to ε additive accuracy. This follows from a
straightforward calculation and the fact (immediate from the definition of Optimal
Transport and an application of Hölder’s inequality) that if the squared Euclidean
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distance between each atom of µi and each atom of ν is preserved up to ε′ additive
accuracy, then the squared 2-Wasserstein distance W(µi, ν) is preserved up to ε′

additive accuracy. Now solve the barycenter problem for the rounded weights and
atoms exactly using Theorem 7.1.4.

� 7.4.3 Numerical implementation

While the focus of this section is theoretical, here we briefly mention that a
slight variant of our algorithm can provide high-precision solutions at previously
intractable problem sizes. To demonstrate this, we implement our algorithm
for dimension d = 2 in Python. The only difference between our numerical
implementation and the theoretical algorithm described above is that we use a
standard Column Generation method for the “outer loop” in step 1 rather than the
Ellipsoid algorithm due to its good practical performance; for details see §6.4.1.3.
Code and further implementation details are provided on Github.4

Computing Exact Solutions at Previously Intractable Scales. Figure 7.4 demonstrates
that our algorithm solves the barycenter problem (7.1) to machine precision on
an instance with k = 10 uniform distributions each on n = 20 points randomly
drawn from [−1, 1]2 ⊂ R2. In contrast, existing popular barycenter algorithms
which use the fixed-support assumption can converge faster but only to lower-
precision approximations. This is because the Θ(1/ εd) gridsize that they require
for ε-additive approximation results in a large-scale LP which is prohibitive even
for relatively low precision ε; see the previous work section for details. Note also
that a standard LP solver requires optimizing over nk = 2010 ≈ 1013 variables for
the LP formulation (MOT) and thus is clearly infeasible at this scale.

Sharper Visualizations. Here we demonstrate that the high-precision solutions com-
puted by our algorithm yield significantly sharper visualizations than the low-
precision solutions that were previously computable. Specifically, here we com-
pare our barycenter algorithm against state-of-the-art methods on a standard
benchmark dataset of images of nested ellipses [74, 121]. This dataset consists of
k = 10 images, each of size 60× 60. Five of these images are shown in Figure 7.5.
Figure 7.6 contains a visual comparison of the exact barycenter computed by our
algorithm and the approximate barycenters produced by the most competitive al-
gorithms tested in the recent paper [121]. All are fixed-support algorithms except
for the algorithm of [147].

Of the compared algorithms, MAAIPM gives the most accurate barycenter ap-
proximation. It uses a 60×60 grid fixed-support assumption. Although MAAIPM
solves this fixed-support problem exactly, the support of an optimal barycenter

4https://github.com/eboix/high_precision_barycenters

https://github.com/eboix/high_precision_barycenters
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(a) Comparison with the Iterated
Bregman Projection (IBP) algorithm
of [206] using their implementation
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Figure 7.4: Comparison with state-of-the-art algorithms. The y-axis is the suboptimality
for the barycenter optimization (7.1); note that while standard LP solvers cannot be
run at this scale, our algorithm yields an exact solution (certified by our separation
oracle) which enables plotting this suboptimality. Both compared algorithms require
a fixed-support assumption and are run on uniform grids of increasing sizes. IBP has
an additional parameter: the entropic regularization γ, which significantly impacts the
algorithm’s accuracy and numerical stability, see [178, 206]. We provide a generous
comparison here for IBP by (i) fine-tuning γ for it (we binary search for the most
accurate γ; note that their code does not always converge for γ small due to numerical
instability); and (ii) exactly computing the Wasserstein distances W(µi, ν) to IBP’s
current barycenter ν in the barycenter objective (7.1) using [79], which is more accurate
than IBP’s approximation (this is slow for large grids but is not counted in IBP’s timing).
Our algorithm finds an exact barycenter after ∼50 seconds. All experiments are run on
a standard 2014 Lenovo Yoga 720-13IKB laptop.

Figure 7.5: Five sample images from the nested ellipses dataset in [121].

https://github.com/gpeyre/2015-SIGGRAPH-convolutional-ot
https://github.com/gpeyre/2015-SIGGRAPH-convolutional-ot
https://gitlab.com/ZXiong/wasserstein-barycenter
https://gitlab.com/ZXiong/wasserstein-barycenter


Sec. 7.5. Discussion 225

Ours MAAIPM Debiased IBP Frank-Wolfe
[92] [121] [206] [147]

Cost: 0.2666 (exact) Cost: 0.2671 Cost: 0.2675 Cost: 0.2723 Cost: 0.2790

Figure 7.6: Comparison of barycenter algorithms on a standard benchmark dataset of
ellipse images. Each barycenter atom is plotted as a disk with area proportional to its
probability mass. All compared methods are run with the code, parameter choices, and
dataset of [121].

does not lie on a 60× 60 grid, and thus MAAIPM only computes an approximate
barycenter. A natural approach is to run MAAIPM on a finer grid discretization,
i.e., finer than 60 × 60. However, this does not work, since MAAIPM does not
scale to much larger grid sizes (see also Figure 7.4b).

The other two fixed-support algorithms are based on entropic regularization:
debiased Sinkhorn barycenters [121] and IBP [206]. These use entropic regulariza-
tion parameter γ = 0.002 and the same 60× 60 fixed-support approximation as
MAAIPM. Again, these methods produce suboptimal barycenters. While these
methods scale to larger grid sizes than MAAIPM, this results in qualitatively
similar and blurry visualizations as in this 60× 60 case due to the entropic regu-
larization.

The final compared algorithm is the free-support algorithm of [147], which
is based on the Frank-Wolfe algorithm. Although this method does not make
a fixed-support assumption, it still returns an approximate solution due to the
approximate nature of the Frank-Wolfe algorithm.

� 7.5 Discussion

Over the past decade, Wasserstein barycenters have become central to diverse
applications in data science. However, fundamental questions about their com-
putational complexity remained open—in particular, it was previously unknown
whether they can be computed in polynomial time. This chapter addressed this
issue by giving two results that, together, resolve the computational complex-
ity of Wasserstein barycenters. On one hand, we showed that under standard
complexity-theoretic assumptions, it is impossible to compute arbitrarily close
approximations for the Wasserstein barycenter problem in polynomial time. And
on the other hand, we gave the first algorithm that, in any fixed dimension d,



226
CHAPTER 7. CASE STUDY: RESOLVING THE COMPUTATIONAL COMPLEXITY OF WASSERSTEIN

BARYCENTERS

solves the barycenter problem exactly or to high precision in polynomial time.
Our results motivate several interesting research directions.

Future directions for high-dimensional computation. Our intractability results moti-
vate the question: what properties of distributions enable efficient computation
of Wasserstein barycenters? A first candidate could be to require all distributions
to be uniform discrete distributions, but unfortunately, this does not help from a
computational complexity perspective; for details see the paper [14] upon which
this chapter is partially based.

Nevertheless, there is a growing body of work that shows that other assump-
tions do help, both in theory and practice. For example, polynomial-time com-
putation of Wasserstein barycenters is possible for certain parametric families of
high-dimensional distributions such as Gaussian distributions, or more generally
location-scatter families [20]. There is also recent work that shows promising
empirical results for computing barycenters of high-dimensional distributions if
they are supported on low-dimensional manifolds or are represented by a convo-
lutional neural network generative model [68]. Other assumptions that might be
interesting to investigate are if the input distributions µi are drawn from some
generative process, or if the points in their supports lie in structured geometric
configurations. Further understanding what commonly arising properties of distri-
butions ensure efficient computation would have immediate impact on the many
data-science applications of Wasserstein barycenters.

Future directions for low-dimensional computation. While Theorem 7.1.4 answers the
polynomial-time computability of low-dimensional Wasserstein barycenters from a
theoretical perspective, from a practical perspective it is still a hard and interesting
problem to compute high-precision barycenters for large-scale inputs. Indeed,
our current implementation is not efficient beyond moderate-scale inputs; and
while existing algorithms such as IBP scale to larger inputs, they have limited
accuracy. Moreover, all existing algorithms pay for the curse of dimensionality
in one way or another. We emphasize that our implementation does not contain
further optimizations or heuristics; it is an interesting direction for future work to
investigate potential such options including pruning cutting planes, warm starts,
and specially tailored algorithms for the power diagram intersections in §7.4.1 (e.g.,
in R2 or R3, settings which commonly arise in image processing and computer
graphics applications).
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[155] Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie
Royale des Sciences de Paris, 1781.

[156] Edward F Moore and Claude E Shannon. Reliable circuits using less reliable relays.
Journal of the Franklin Institute, 262(3):191–208, 1956.

[157] Jonas W Mueller and Tommi Jaakkola. Principal differences analysis: Interpretable
characterization of differences between distributions. Advances in Neural Information
Processing Systems, 28, 2015.

[158] Boris Muzellec, Richard Nock, Giorgio Patrini, and Frank Nielsen. Tsallis regularized
optimal transport and ecological inference. In AAAI Conference on Artificial Intelligence,
volume 31, 2017.

[159] Arthur Nadas. Probabilistic PERT. IBM Journal of Research and Development, 23(3):
339–347, 1979.

[160] Karthik Natarajan, Miao Song, and Chung-Piaw Teo. Persistency model and its applica-
tions in choice modeling. Management Science, 55(3):453–469, 2009.

[161] Arkadi Nemirovski and Uriel Rothblum. On complexity of matrix scaling. Linear Algebra
and its Applications, 302:435–460, 1999.

[162] Luca Nenna. Numerical methods for multi-marginal optimal transportation. PhD thesis,
PSL Research University, 2016.



238 REFERENCES

[163] Yurii Nesterov and Sebastian U Stich. Efficiency of the accelerated coordinate descent
method on structured optimization problems. SIAM Journal on Optimization, 27(1):
110–123, 2017.

[164] James B Orlin. The complexity of dynamic languages and dynamic optimization problems.
In Symposium on the Theory of Computing, pages 218–227. ACM, 1981.

[165] James B Orlin and Ravindra K Ahuja. New scaling algorithms for the assignment and
minimum mean cycle problems. Mathematical Programming, 54(1-3):41–56, 1992.

[166] EE Osborne. On pre-conditioning of matrices. Journal of the ACM, 7(4):338–345, 1960.

[167] Rafail Ostrovsky, Yuval Rabani, and Arman Yousefi. Matrix balancing in lp norms: bound-
ing the convergence rate of Osborne’s iteration. In Symposium on Discrete Algorithms,
pages 154–169. SIAM, 2017.

[168] Rafail Ostrovsky, Yuval Rabani, and Arman Yousefi. Strictly balancing matrices in
polynomial time using Osborne’s iteration. In International Colloquium on Automata,
Languages and Programming, 2018.

[169] Adam Ouorou and Philippe Mahey. A minimum mean cycle cancelling method for non-
linear multicommodity flow problems. European Journal of Operational Research, 121(3):
532–548, 2000.

[170] Divya Padmanabhan, Selin Damla Ahipasaoglu, Arjun Ramachandra, and Karthik
Natarajan. Extremal probability bounds in combinatorial optimization. Preprint at
arXiv:2109.01591, 2021.

[171] Victor M Panaretos and Yoav Zemel. Amplitude and phase variation of point processes.
The Annals of Statistics, 44(2):771–812, 2016.

[172] Victor M Panaretos and Yoav Zemel. Statistical aspects of Wasserstein distances. Annual
Review of Statistics and its Application, 6:405–431, 2019.

[173] Christos H Papadimitriou. The largest subdeterminant of a matrix. Bulletin of the Greek
Mathematical Society, 25(25):95–105, 1984.

[174] Christos H Papadimitriou and Tim Roughgarden. Computing correlated equilibria in
multi-player games. Journal of the ACM, 55(3):1–29, 2008.

[175] Beresford N Parlett and Christian Reinsch. Balancing a matrix for calculation of eigen-
values and eigenvectors. Numerische Mathematik, 13(4):293–304, 1969.

[176] Brendan Pass. Multi-marginal optimal transport: theory and applications. ESAIM:
Mathematical Modelling and Numerical Analysis, 49(6):1771–1790, 2015.

[177] Ofir Pele and Michael Werman. Fast and robust Earth Mover’s Distances. In International
Conference on Computer Vision, pages 460–467. IEEE, 2009.
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