Lyapunov Exponent of Rank One Matrices: Ergodic Formula and Inapproximability of the Optimal Distribution

Laboratory for Information and Decision Systems Massachusetts Institute of Technology

Based on joint work with Pablo Parrilo (MIT)

CDC - December 2019

Stochastic linear systems

Given a set $A = \{A_1, \ldots, A_n\}$ of square matrices and a probability distribution p over $\{1, \ldots, n\}$, consider

$$x_{k+1} = A_{\sigma_k} x_k$$

where $\sigma_k \in \{1, \ldots, n\}$ are i.i.d. from p.

Stochastic linear systems

Given a set $A = \{A_1, \ldots, A_n\}$ of square matrices and a probability distribution p over $\{1, \ldots, n\}$, consider

$$x_{k+1} = A_{\sigma_k} x_k$$

where $\sigma_k \in \{1, \ldots, n\}$ are i.i.d. from p.

Appears in several different contexts: control theory, dynamical systems, ergodic theory, computer image generation of fractals, etc.

Stochastic linear systems

Given a set $A = \{A_1, \ldots, A_n\}$ of square matrices and a probability distribution p over $\{1, \ldots, n\}$, consider

$$x_{k+1} = A_{\sigma_k} x_k$$

where $\sigma_k \in \{1, \ldots, n\}$ are i.i.d. from p.

Appears in several different contexts: control theory, dynamical systems, ergodic theory, computer image generation of fractals, etc.

Two key problems:

- Analysis problem: Given (\mathcal{A}, p) , compute convergence rate.
- **Design problem:** Given A, optimize convergence rate (by designing p).

Connection to the Lyapunov exponent

What is the "convergence rate" of the stochastic linear system $x_{k+1} = A_{\sigma_k} x_k$?

$$\underbrace{R_p(\mathcal{A})}_{k \to \infty} := \lim_{k \to \infty} \|x_k\|^{1/k} = \lim_{k \to \infty} \|A_{\sigma_k} \cdots A_{\sigma_2} A_{\sigma_1}\|^{1/k}$$
Lyapunov spectal radius

Connection to the Lyapunov exponent

What is the "convergence rate" of the stochastic linear system $x_{k+1} = A_{\sigma_k} x_k$?

$$\underbrace{R_p(\mathcal{A})}_{k \to \infty} := \lim_{k \to \infty} \|x_k\|^{1/k} = \lim_{k \to \infty} \|A_{\sigma_k} \cdots A_{\sigma_2} A_{\sigma_1}\|^{1/k}$$
Lyapunov spectal radius

▶ (Furstenberg-Kesten 1960)¹ $R_p(\mathcal{A}) = e^{\lambda_p(\mathcal{A})}$ a.s., where

$$\underbrace{\lambda_{p}(\mathcal{A})}_{k\to\infty} := \lim_{k\to\infty} \frac{1}{k} \mathbb{E} \left[\log \| A_{\sigma_k} \cdots A_{\sigma_2} A_{\sigma_1} \| \right]$$

Lyapunov exponent

¹Under mild conditions.

Connection to the Lyapunov exponent

What is the "convergence rate" of the stochastic linear system $x_{k+1} = A_{\sigma_k} x_k$?

$$\underbrace{R_p(\mathcal{A})}_{k \to \infty} := \lim_{k \to \infty} \|x_k\|^{1/k} = \lim_{k \to \infty} \|A_{\sigma_k} \cdots A_{\sigma_2} A_{\sigma_1}\|^{1/k}$$
Lyapunov spectal radius

▶ (Furstenberg-Kesten 1960)¹ $R_p(\mathcal{A}) = e^{\lambda_p(\mathcal{A})}$ a.s., where

$$\underbrace{\lambda_p(\mathcal{A})}_{k \to \infty} := \lim_{k \to \infty} \frac{1}{k} \mathbb{E} \left[\log \| A_{\sigma_k} \cdots A_{\sigma_2} A_{\sigma_1} \| \right]$$
Lyapunov exponent

Stability characterization: converges iff $e^{\lambda_p(\mathcal{A})} < 1$, i.e.

$$x_{k+1} = A_{\sigma_k} x_k$$
 is stable $\iff \lambda_p(\mathcal{A}) < 0$

¹Under mild conditions.

Analysis problem: Given (\mathcal{A}, p) , **compute** convergence rate $e^{\lambda_p(\mathcal{A})}$.

Design problem: Given \mathcal{A} , optimize convergence rate $\min_{p \in \Delta_n} \lambda_p(\mathcal{A})$.

Analysis problem: Given (\mathcal{A}, p) , **compute** convergence rate $e^{\lambda_p(\mathcal{A})}$.

- Deciding stability (i.e. if $\lambda_p(A) < 0$) is undecidable [Tsitsiklis-Blondel 1997].
- Still: how to compute/approximate? Special cases?

Design problem: Given \mathcal{A} , optimize convergence rate $\min_{p \in \Delta_n} \lambda_p(\mathcal{A})$.

Analysis problem: Given (\mathcal{A}, p) , **compute** convergence rate $e^{\lambda_p(\mathcal{A})}$.

- Deciding stability (i.e. if $\lambda_p(A) < 0$) is undecidable [Tsitsiklis-Blondel 1997].
- Still: how to compute/approximate? Special cases?

Design problem: Given \mathcal{A} , **optimize** convergence rate $\min_{p \in \Delta_n} \lambda_p(\mathcal{A})$.

- ▶ Deciding stabilizability (i.e. if $\min_{p \in \Delta_n} \lambda_p(A) < 0$) is NP-hard [A.-Parrilo 2019].
- Hard even for "simple" case of rank one matrices, in contrast to analogous optimization for the Joint Spectral Radius!

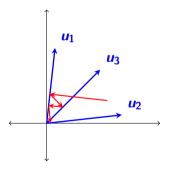
Rank one setting

Consider simple setting: symmetric, rank one matrices $\mathcal{A} = \{A_i = u_i u_i^T\}_{i=1}^n$.

Rank one setting

Consider simple setting: symmetric, rank one matrices $\mathcal{A} = \{A_i = u_i u_i^T\}_{i=1}^n$.

Geometrically, the stochastic linear system $x_{k+1} = A_{\sigma_k} x_k = u_{\sigma_k} (u_{\sigma_k}^T x_k)$ corresponds to projecting state x_k on random lines u_{σ_k} .²



²Assuming w.l.o.g. that each $||u_i|| = 1$, since it is easy to compute the effect of re-normalizing the matrices on the Lyapunov exponent.

Theorem (Lyapunov exponent of rank one matrices). Let $\mathcal{A} = \{A_i = u_i u_i^T\}_{i=1}^n$. Then

$$\lambda_p(\mathcal{A}) = \sum_{ij=1}^n p_i p_j \log |u_i^T u_j|$$

Theorem (Lyapunov exponent of rank one matrices). Let $\mathcal{A} = \{A_i = u_i u_i^T\}_{i=1}^n$. Then

$$\lambda_{\rho}(\mathcal{A}) = \sum_{ij=1}^{n} p_i p_j \log |u_i^{\mathsf{T}} u_j|$$

Ergodic formula: quadratic form in *p*.

In contrast, general case has no simple formula.

Theorem (Lyapunov exponent of rank one matrices). Let $\mathcal{A} = \{A_i = u_i u_i^T\}_{i=1}^n$. Then

$$\lambda_{\rho}(\mathcal{A}) = \sum_{ij=1}^{n} p_i p_j \log |u_i^{\mathsf{T}} u_j|$$

- Ergodic formula: quadratic form in p.
 - In contrast, general case has no simple formula.
- **Computable**, and in polynomial time.
 - In contrast, general case is undecidably hard to approximate.

Theorem (Lyapunov exponent of rank one matrices). Let $\mathcal{A} = \{A_i = u_i u_i^T\}_{i=1}^n$. Then

$$\lambda_p(\mathcal{A}) = \sum_{ij=1}^n p_i p_j \log |u_i^T u_j|$$

- Ergodic formula: quadratic form in p.
 - In contrast, general case has no simple formula.
- **Computable**, and in polynomial time.
 - In contrast, general case is undecidably hard to approximate.
- Depends only on products $A_i A_j$ of length two.
 - ▶ In contrast, JSR of rank one matrices depends on products of length *n*.

Theorem (Lyapunov exponent of rank one matrices). Let $\mathcal{A} = \{A_i = u_i u_i^T\}_{i=1}^n$. Then

$$\lambda_p(\mathcal{A}) = \sum_{ij=1}^n p_i p_j \log |u_i^T u_j|$$

Ergodic formula: quadratic form in p.

In contrast, general case has no simple formula.

Computable, and in polynomial time.

- In contrast, general case is undecidably hard to approximate.
- **•** Depends only on products $A_i A_j$ of length two.
 - ▶ In contrast, JSR of rank one matrices depends on products of length *n*.
- Proof idea: average time spent on edges of weighted graph.

$$\min_{p\in\Delta_n}\lambda_p(\mathcal{A})\stackrel{?}{<}0$$

Theorem (Hardness of optimizing the Lyapunov exponent). Given a set A of n symmetric rank-one matrices, it is NP-hard to decide if

$$\min_{p\in\Delta_n}\lambda_p(\mathcal{A})\stackrel{?}{<}0$$

▶ Thus, NP-hard to decide stabilizability of $x_{k+1} = A_{\sigma_k} x_k$.

$$\min_{p\in\Delta_n}\lambda_p(\mathcal{A})\stackrel{?}{<}0$$

- ► Thus, NP-hard to decide stabilizability of $x_{k+1} = A_{\sigma_k} x_k$.
- ► Also, NP-hard even to approximate $\min_{p \in \Delta_n} \lambda_p(\mathcal{A})$.

$$\min_{\boldsymbol{\nu}\in\Delta_n}\lambda_{\boldsymbol{\nu}}(\mathcal{A})\stackrel{?}{<}0$$

- ► Thus, NP-hard to decide stabilizability of $x_{k+1} = A_{\sigma_k} x_k$.
- ► Also, NP-hard even to approximate $\min_{p \in \Delta_n} \lambda_p(\mathcal{A})$.
- Proof idea: minimizing quadratic form over simplex. Reduce from Motzkin-Straus formulation of Independent Set.

$$\min_{\boldsymbol{\nu}\in\Delta_n}\lambda_{\boldsymbol{\nu}}(\mathcal{A})\stackrel{?}{<}0$$

- Thus, NP-hard to decide stabilizability of $x_{k+1} = A_{\sigma_k} x_k$.
- ► Also, NP-hard even to approximate $\min_{\rho \in \Delta_n} \lambda_{\rho}(\mathcal{A})$.
- Proof idea: minimizing quadratic form over simplex. Reduce from Motzkin-Straus formulation of Independent Set.
- λ_p(A) neither convex/concave in p. (Connections to non-metrizability of the Martin distance on (1, d) Grassmanian...)

Summary

- Background. Lyapunov exponent λ_p(A) dictates convergence rate of stochastic linear system x_{k+1} = A_{σ_k}x_k.
 - Analysis problem of *computing* convergence rate known to be hard.
 - Design problem of *optimizing* convergence open problem.

Summary

- Background. Lyapunov exponent λ_p(A) dictates convergence rate of stochastic linear system x_{k+1} = A_{σ_k}x_k.
 - Analysis problem of *computing* convergence rate known to be hard.
 - Design problem of optimizing convergence open problem.

▶ This paper. Focusing on rank-one matrices reveals fundamental properties.

- Analysis problem: simple ergodic formula.
- Design problem: NP-hard.
- Along the way, uncover other properties: convexity/concavity, special cases when computable, surprising differences with deterministic analogue, etc.

Summary

- Background. Lyapunov exponent λ_p(A) dictates convergence rate of stochastic linear system x_{k+1} = A_{σ_k}x_k.
 - Analysis problem of *computing* convergence rate known to be hard.
 - Design problem of optimizing convergence open problem.

▶ This paper. Focusing on rank-one matrices reveals fundamental properties.

- Analysis problem: simple ergodic formula.
- Design problem: NP-hard.
- Along the way, uncover other properties: convexity/concavity, special cases when computable, surprising differences with deterministic analogue, etc.

Extensions. Techniques extend to more exotic settings. Optimizing convergence still NP-hard for exchangeable processes, but poly-time for Markov processes.