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A natural question in nonconvex optimization
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If global minima are hard to reach, can we
at least find a local min efficiently?
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Local minima
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Let’s focus on the following setting:
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Simplest cases to consider:

1. Q polyhedral, f linear (i.e., linear programming)
o local minima=global minima
o can be found in polynomial time [Khachiyan], [Karmarkar]
2. () polyhedral, f quadratic (i.e., quadratic programming)
o global minima NP-hard to find [Pardalos, Vavasis|
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Finding a local minimizer of a quadratic program

Open questions in complexity theory for

numerical optimization

Panos M. Pardalos and Stephen A. Vavasis

May 5, 1992

Problem 3. What is the complexity of finding even a local minimizer for nonconvex
quadratic programming, assuming the feasible set is compact? Murty and Kabadi
(1987) and Pardalos and Schnitger (1988) have shown that it is NP-hard to test
whether a given point for such a problem is a local minimizer, but that does not
rule out the possibility that another point can be found that is easily verified as a

local minimizer.

* NP-hard to check copositivity

« A matrix M is copositive if xT Mx > 0,Vx > 0

However,
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Finding a local minimizer of a quadratic program

Open questions in complexity theory for
numerical optimization

Panos M. Pardalos and Stephen A. Vavasis

May 5, 1992

Problem 3. What is the complexity of finding even a local minimizer for nonconvex
quadratic programming, assuming the feasible set is compact? Murty and Kabadi
(1987) and Pardalos and Schnitger (1988) have shown that it is NP-hard to test
whether a given point for such a problem is a local minimizer, but that does not
rule out the possibility that another point can be found that is easily verified as a
local minimizer.

- when () is compact, existence of a local min is guaranteed
- there is always a rational local min with polynomial bitsize [Vavasis]

Theorem [AAA, Zhang]

Unless P = NP, there cannot be a polynomial-time algorithm that finds a point
within Euclidean distance c™ (for any constant ¢ = 0) of a local minimum of an
n-variate quadratic polynomial over a polytope.

W onceron ey To prove this, let’s move from continuous to discrete...
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Stable sets in graphs

A stable set in a graph G is a
subset of the vertices of G that
are pairwise non-adjacent

The size of the largest such set is
the stability number of G,
denoted by a(G)

Given a graph G on n nodes and an integerr € {1, ...,n}, itis
NP-hard to decide if a(G) = 1 [Karp]

We show: a poly-time algorithm that gets within distance ¢™ of a local min of the
following program, would decide if a(G) = r in poly time.

min. 'X.T((r'--i—) (Pl-j-I) -—J) x A: adjacaacd matrix of G
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Proof outline

min. 11—((“1,:3 (A+1) —J) x - Suppose there was a poly-
AR time algorithm that given
s.t Ay o a quadratic program,
n . landed within distance ¢ a(G) >r
%1563 [l of one of its local minima \
a(G) <r: - Run this algorithm on the U
constructed instances

\ a(G)<r
~_ |

Only local minimum is here | |mplication (e.g., via [Ogiwara, Watanabe], [Mahaney]):
- Pick any poly-time algorithm that attempts to find a
a(G) > r: ; local min of a QP.

- Unless P=NP, out of the QP instances that can be
encoded with k bits, this algorithm will land far away
\ from any local min on a number of instances that is
larger than any polynomial in k.

All local minima are
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Finding local minima in the unconstrained case

Given a polynomial of degree d, can we test if it has a local minimum (and if so,
can we find one efficiently)?

- When d = 4, strongly NP-hard [AAA, Zhang] (key to the proof of the previous result)
- When d = 2, poly-time solvable

- Find a critical point (linear system)

- Check if the Hessian is positive semidefinite
- What about d = 3?

Unlike quadratic functions,

- First and second order conditions do
not characterize local minima

- Lack of a descent direction does not
imply local minimality

To start, can even recognize a local min
of a cubic polynomial efficiently?
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A characterization of local minima for cubics

Theorem (AAA, Zhang) [“third-order condition”]

A point z € R" is a local min of a cubic polynomial p: R™ - R
if and only if

« Up(z) =0,V?p(2) = 0, (FONC, SONC)
« d e Null(V?p(z)) = Vps(d) = 0.(TOC)*

Moreover, these conditions can be checked in polynomial time.

* p3 here denotes the cubic homogenous component of p.
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Some intuition on third-order condition (TOC)

d € Null(V?p(x)) = 0 = p3(d) = 0 Necessary for C3 functions (where p5
7 would be the cubic component of the

. ~ /g S Taylor expansion).
VPB u) o Eule” (Je; s “Third Order Necessary Condition” (TONC)
f)- i dvpd)

2 2

XN - P(X+¢d)
P(x1;2) xz — x X2

cl ,
7"/
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-
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Not sufficient for local optimality,
even for cubics

Guarantees no descent directions for
cubic polynomials

-2 -1.5 -1 -0.5 0 0.5 1 15 2

Does not guarantee no parabolas of
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Recognizing local minima of cubics in poly time

e Input:p,x
e Compute gradient and Hessian of p at x
e Check FONC and SONC

e Compute a basis {vy, V5, ..., V4 } for null space of V2p(x) in poly time
e E.g., bysolving a sequence of linear systems

e Compute gradient of p3, evaluated on the null space of V4p(x)

0 0
a—Zi (x)\ /aps (a1v1 + auy + -+ akvk)\ — /gl(ocl, ...,ak)\

T =| - |=

ops / ops / \
A 1V1 + a5, + -+ ;v —
e ®/)  \g @ +aw, Vi) o () ]

e All coefficients of all g; must be zero
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Back to the existence/search question

* So we can check if a given point is a local min efficiently.
* But can we find a local min of a cubic polynomial efficiently?

Let’s start with a “simpler” question. Can we find a critical point efficiently?

Theorem (AAA, Zhang)

Deciding if a cubic polynomial has a critical point is strongly NP-hard.

But somewhat surprisingly:

Theorem (AAA, Zhang)

A local minimum of a cubic polynomial can be found by solving linearly
many semidefinite programs of size linear in the number of variables.
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NP-hardness of testing if a cubic has a critical point

MAXCUT
Does the graph have a cut of size k

N " sCutvalue=23
Quadratic satisfiability (optimal)

z (1—xx;) =k 1-x7=0,i=1,..,n

(i,j)EE

Critical points of a cubic polynomial

p(x1;---;xn;}’0;}71;- 'yn)—yo< 2 (1_xx]) k) ZYL(l_xz)

(i,j))EE
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NP-hardness of testing if a cubic has a critical point

p(x, Y)—YO< z (1_xlx]) k> Zyl(l—xz)

(i,j)EE

APl [_Yo ‘
dp (i,j)EE

V =1— = 1
p(x,y) dy, - z (1 _ xixj) K
dp (i,j)EE

_dyi_ B 1 _xl

Any cut of size k = critical point (x =cut,y = 0)

Any critical point = cut of size k  (x = cut)

But this doesn’t necessarily mean finding local minima is NP-hard.
Let’s understand the geometry better...
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Unexpected convexity

Theorem (AAA, Zhang)

The set of local minima of any cubic polynomial is convex.

Not true for quartics: p(x1, %) = x3 + 3x2x, + 3x,%2 + x5 —x; — x,
(1- 2 critical points
2.0 0.6
1.5 0.4
15 V2p > 0
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Proof based on our previous characterization:

Theorem (AAA, Zhang) [“third-order condition”]

A point z € R" is a local min of a cubic polynomial p if and only if
« Vp(2) =0,V*p(2) =0,
e de Null(Vzp(z)) = Vps(d) = 0.
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Set of local minima not necessarily polyhedral

1 1
_ 2.2 2 2
p(xq, %5, X3,X4) = §x1 X3 + 2x1x3%4 + §x1x4 — Exzxs

+x,X3%, + 2XpX5 + X5 + x5

-0.5

{x-13 =0,x, =0}N
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Local minima of cubics and SDP

Theorem (AAA, Zhang)

The set of local minima of any cubic polynomial is semidefinite representable.

@

In fact, one can show a converse statement:

(though not always polyhedral)

Theorem (AAA, Zhang)

The interior of any semidefinite representable set is the projection of the set of
local minima of some cubic polynomial.

= Any algorithm for finding local minima of cubic
polynomials can be turned into an SDP solver

Informally: “Complexity of SDP = Complexity of local minima of cubics”

W ooy g For details, see arxiv/2008.06148



Connection to “sums of squares” (SOS)

Theorem (AAA, Zhang)

If a cubic polynomial p has a local minimum, then the closure of the set of its
local minima equals the solution set of:

min. p(x)
X

s.t. V2p(x) = 0

mxi np(x) = a(xr)nSa()ag) Y o -
s.t. V2p(x) >0 st. p(x) =y =0a(x)+Tr(V?p (x)S(x)) Vx
o is SOS « o(x) = Yq7(x)

S is an SOS-matrix+—S(x) = R(x)R(x)T

Theorem (AAA, Zhang)

If p has a second-order point, the first level of this SOS relaxation (i.e., when
deg(o) = deg(S) = 2) is tight.

8 PRINCETON
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Higher-Order Newton Methods
with Polynomial Work per Iteration

Joint work with:

Abraar Chaudhry Jeffrey Zhang
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The Newton method

fay
* Newton’s algorithm:
2"d order Taylor expand,
move to minimizer; iterate.

 Work per iteration: Solving a
linear system (poly-time in

Predicted Minimi%er 6) u

x1 xk+1 xa
dimension)
* C(lassical theorem in optimization:
. 1
Newton’s method has local quadratic convergence -
3
4
k ES3 2 =
|11 — X71| < |2y — 27| ’
;.
10
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2.

Circled in red: correct significant digits

Q: Why not Taylor expand to higher order?!

- Because minimizing multivariate polynomials of higher degree is NP-hard
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An unregularized third-order Newton method

fix)
Second-Order Approximation at x0

* Newton’s method: 2" order Taylor expand, | mesoompmamonnso |
move to minimizer

« 3rd.grder Newton: 3" order Taylor expand,
move to local minimizer (by SDP)
o Polynomial iteration complexity

30N
Xy

e on -
Xy Global minimum

Sensitivity to initialization:
Newton .. [l

06

3rd_order -
Newton
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Theorem (informal) [Snflina, Zhang]

Under standard assumptions, the 3-order unregularized Newton method has

3).

local cubic convergence (i.e.,
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Higher-order Newton with polynomial work per iteration

Let f: R™ — R be the function we wish to minimize.

Our algorithm (“d'™ degree Newton”) :
1. Taylor expand f to order d around the current iterate x
Denote the resulting degree-d polynomial by Ty ,,

2. Find the “closest” sos-convex polynomial of degree d + 1 (if d is odd) or
d+ 2 (ifdiseven)toTyy,

Denote the resulting (sos-convex) polynomial by ¥ ,,

3. Letxgyq beaminimizerof g,

Steps 2 and 3 take polynomial time (in dimension): they reduce to SDPs

Theorem: The above algorithm has local convergence of order d:

d

|Ix1 — 21| < elx — %7

(leads to lower oracle complexity compared to Newton)
PRINCETON mw 22
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Basin of attraction

Newton in dimension one:
14
f (xk)

T T T )

Our method in dimension one and with d = 3:

Xpiq = X f”(xk) F12f Ca ) f" () ( f”(xk)>
k+1 k f”’(x ) (f”’(xk))3 f”’(x )

Example. Minimize: ;
f(x)=+x2+1-1 .
Newton'’s basin: |x,| < 1 L
Our third-order method’s basin: x| < 3.407

Destee Radinus of Convergenc
. 1 (ED].{"{“ Ad1ls O SOTIV erj_jerl{,e
(exact cutoff: J3 (11 +- rmw_ + 31691 + 9iva7 ) | E— :

3 ~a3.4

4 ~4.5
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game theory, statistics and ML,

Covers applications in finance,
control, etc.
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powerful machinery to globally solve

any (nonconvex) opt
Nice survey by Georgina Hall (INSEAD)

modelled by polynomial equations

and inequalities
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One takeaway message

local min

Want to know more?

: ,.‘.:\\\\\\\\\\1;\\\,\_.
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global min

* Finding local minima for QPs:
Mathematical Programming, 2022
arxiv/2008.05558

* Finding local minima for cubics:
Advances in Mathematics, 2022
arxiv/2008.06148

aaa.princeton.edu
sites.google.com/view/jeffreyzhang
chaudhrya.github.io
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