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A natural question in nonconvex optimization

local min
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global min

If global minima are hard to reach, can we 
at least find a local min efficiently? 



Local minima
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Let’s focus on the following setting:

Simplest cases to consider:

1.  𝛀 polyhedral, 𝒇 linear (i.e., linear programming)
o local minima=global minima
o can be found in polynomial time [Khachiyan], [Karmarkar]

2.  𝛀 polyhedral, 𝒇 quadratic (i.e., quadratic programming)
o global minima NP-hard to find [Pardalos, Vavasis]
o what about local minima? (first focus of this talk)



Finding a local minimizer of a quadratic program
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• A matrix 𝑀 is copositive if 𝑥𝑇𝑀𝑥 ≥ 0, ∀𝑥 ≥ 0
• NP-hard to check copositivity However,



Finding a local minimizer of a quadratic program
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Theorem [AAA, Zhang]

Unless P = NP, there cannot be a polynomial-time algorithm that finds a point 
within Euclidean distance 𝑐𝑛 (for any constant 𝑐 ≥ 0) of a local minimum of an 
𝑛-variate quadratic polynomial over a polytope.

- when Ω is compact, existence of a local min is guaranteed
- there is always a rational local min with polynomial bitsize [Vavasis]

Remarks:

To prove this, let’s move from continuous to discrete…



Stable sets in graphs
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A stable set in a graph 𝐺 is a 
subset of the vertices of 𝐺 that 
are pairwise non-adjacent

The size of the largest such set is 
the stability number of 𝐺, 
denoted by 𝜶(𝑮)

Given a graph 𝐺 on 𝑛 nodes and an integer 𝑟 ∈ {1, … , 𝑛}, it is
NP-hard to decide if 𝜶 𝑮 ≥ 𝒓 [Karp] 

𝜶 𝑮 = 𝟓

We show: a poly-time algorithm that gets within distance 𝑐𝑛 of a local min of the 
following program, would decide if 𝛼 𝐺 ≥ 𝑟 in poly time. 



Proof outline
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Implication (e.g., via [Ogiwara, Watanabe], [Mahaney]):
- Pick any poly-time algorithm that attempts to find a 
local min of a QP.

- Unless P=NP, out of the QP instances that can be 
encoded with 𝑘 bits, this algorithm will land far away 
from any local min on a number of instances that is 
larger than any polynomial in 𝑘. 

For details, see arxiv/2008.05558

Only local minimum is here

All local minima are here

𝜶 𝑮 < 𝒓:

𝜶 𝑮 ≥ 𝒓:

- Suppose there was a poly-
time algorithm that given 
a quadratic program, 
landed within distance 𝑐𝑛 
of one of its local minima

- Run this algorithm on the 
constructed instances

𝜶 𝑮 < 𝒓

𝜶 𝑮 ≥ 𝒓
⇒

⇒



Finding local minima in the unconstrained case
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Given a polynomial of degree 𝑑, can we test if it has a local minimum (and if so, 
can we find one efficiently)?

- When 𝒅 ≥ 𝟒, strongly NP-hard [AAA, Zhang] (key to the proof of the previous result)

- When 𝒅 = 𝟐, poly-time solvable
- Find a critical point (linear system)
- Check if the Hessian is positive semidefinite

- What about 𝒅 = 𝟑?

+

+

--

Unlike quadratic functions,
- First and second order conditions do 

not characterize local minima
- Lack of a descent direction does not 

imply local minimality

To start, can even recognize a local min 
of a cubic polynomial efficiently?



A characterization of local minima for cubics

Theorem (AAA, Zhang) [“third-order condition”]

A point 𝑧 ∈ ℝ𝑛 is a local min of a cubic polynomial 𝑝: ℝ𝑛 → ℝ
if and only if

•  𝛻𝑝 𝑧 = 0, 𝛻2𝑝 𝑧 ≽ 0, (FONC, SONC)

• 𝑑 ∈ 𝑁𝑢𝑙𝑙 𝛻2𝑝 𝑧 ⇒ 𝛻𝑝3 𝑑 = 0. 𝑇𝑂𝐶 *

Moreover, these conditions can be checked in polynomial time.

* 𝑝3 here denotes the cubic homogenous component of 𝑝. 



Some intuition on third-order condition (TOC)
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𝑑 ∈ 𝑁𝑢𝑙𝑙(𝛻2𝑝 ҧ𝑥 ) = 0 ⇒ 𝑝3 𝑑 = 0 Necessary for 𝐶3 functions (where 𝑝3 
would be the cubic component of the 
Taylor expansion). 
“Third Order Necessary Condition” (TONC)

𝑝 𝑥1, 𝑥2 = 𝑥2
2 − 𝑥1

2𝑥2

Not sufficient for local optimality, 
even for cubics

Guarantees no descent directions for 
cubic polynomials

Does not guarantee no parabolas of 
descent



Recognizing local minima of cubics in poly time
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• Input: 𝑝, ҧ𝑥 

• Compute gradient and Hessian of 𝑝 at ҧ𝑥

• Check FONC and SONC

• Compute gradient of 𝑝3, evaluated on the null space of 𝛻2𝑝 ҧ𝑥

𝛻𝑝3 𝑥 =

𝜕𝑝3

𝜕𝑥1
(𝑥)

…

𝜕𝑝3

𝜕𝑥𝑛
(𝑥)

⇒

𝜕𝑝3

𝜕𝑥1
(𝛼1𝑣1 + 𝛼2𝑣2 + ⋯ + 𝛼𝑘𝑣𝑘)

…

𝜕𝑝3

𝜕𝑥𝑛
(𝛼1𝑣1 + 𝛼2𝑣2 + ⋯ + 𝛼𝑘𝑣𝑘)

𝑔1(𝛼1, … , 𝑎𝑘)

…

𝑔𝑛 𝛼1, … , 𝑎𝑘

• All coefficients of all 𝑔𝑖 must be zero

• Compute a basis {𝑣1, 𝑣2, … , 𝑣𝑘} for null space of 𝛻2𝑝 ҧ𝑥  in poly time

• E.g.,  by solving a sequence of linear systems



Back to the existence/search question
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Unfortunately…

Theorem (AAA, Zhang)

Deciding if a cubic polynomial has a critical point is strongly NP-hard.

Let’s start with a “simpler” question. Can we find a critical point efficiently?

But somewhat surprisingly:

Theorem (AAA, Zhang)

A local minimum of a cubic polynomial can be found by solving linearly 
many semidefinite programs of size linear in the number of variables.

• So we can check if a given point is a local min efficiently.
• But can we find a local min of a cubic polynomial efficiently?



NP-hardness of testing if a cubic has a critical point
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MAXCUT
Does the graph have a cut of size 𝑘?

Quadratic satisfiability

1 − 𝑥𝑖
2 = 0, 𝑖 = 1, … , 𝑛

1

4
෍

𝑖,𝑗 ∈𝐸

(1 − 𝑥𝑖𝑥𝑗) = 𝑘

Critical points of a cubic polynomial

𝑝 𝑥1, … , 𝑥𝑛, 𝑦0, 𝑦1, … , 𝑦𝑛 = 𝑦𝑜

1

4
෍

𝑖,𝑗 ∈𝐸

1 − 𝑥𝑖𝑥𝑗 − 𝑘 + ෍

𝑖=1

𝑛

𝑦𝑖(1 − 𝑥𝑖
2)



NP-hardness of testing if a cubic has a critical point
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𝛻𝑝 𝑥, 𝑦 =

𝑑𝑝

𝑑𝑥𝑖

𝑑𝑝

𝑑𝑦0

𝑑𝑝

𝑑𝑦𝑖

=

−
𝑦0

4
෍

𝑖,𝑗 ∈𝐸

𝑥𝑗 − 2𝑥𝑖𝑦𝑖

1

4
෍

𝑖,𝑗 ∈𝐸

1 − 𝑥𝑖𝑥𝑗 − 𝑘

1 − 𝑥𝑖
2

𝑝 𝑥, 𝑦 = 𝑦𝑜

1

4
෍

𝑖,𝑗 ∈𝐸

1 − 𝑥𝑖𝑥𝑗 − 𝑘 + ෍

𝑖=1

𝑛

𝑦𝑖(1 − 𝑥𝑖
2)

Any cut of size 𝑘 ⇒ critical point     (𝑥 = cut, 𝑦 = 0)

Any critical point ⇒ cut of size 𝑘     (𝑥 ⇒ cut)

But this doesn’t necessarily mean finding local minima is NP-hard.
Let’s understand the geometry better…



Unexpected convexity

critical points

local minima

𝛻2𝑝 ≽ 0

Theorem (AAA, Zhang)

The set of local minima of any cubic polynomial is convex.

𝑝 𝑥1, 𝑥2 = 𝑥1
3 + 3𝑥1

2𝑥2 + 3𝑥1𝑥2
2 + 𝑥2

3 − 𝑥1 − 𝑥2

Proof based on our previous characterization:

Theorem (AAA, Zhang) [“third-order condition”]

A point 𝑧 ∈ ℝ𝑛 is a local min of a cubic polynomial 𝑝 if and only if
•  𝛻𝑝 𝑧 = 0, 𝛻2𝑝 𝑧 ≽ 0,

• 𝑑 ∈ 𝑁𝑢𝑙𝑙 𝛻2𝑝 𝑧 ⇒ 𝛻𝑝3 𝑑 = 0.

Not true for quartics:



Set of local minima not necessarily polyhedral
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𝑝 𝑥1, 𝑥2, 𝑥3, 𝑥4 =
1

2
𝑥1

2𝑥3
2 + 2𝑥1𝑥3𝑥4 +

1

2
𝑥1𝑥4

2 −
1

2
𝑥2𝑥3

2

                                  +𝑥2𝑥3𝑥4 + 2𝑥2𝑥4
2 + 𝑥3

2 + 𝑥4
2

𝑥3 = 0, 𝑥4 = 0 ∩
2 + 𝑥1 − 𝑥2 2𝑥1 + 𝑥2

2𝑥1 + 𝑥2 2 + 2𝑥1 + 4𝑥2
≻ 0



Local minima of cubics and SDP
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Theorem (AAA, Zhang)

The set of local minima of any cubic polynomial is semidefinite representable.

(though not always polyhedral)

Theorem (AAA, Zhang)

The interior of any semidefinite representable set is the projection of the set of 
local minima of some cubic polynomial.

“Complexity of SDP = Complexity of local minima of cubics”Informally:

⇒ Any algorithm for finding local minima of cubic 
polynomials can be turned into an SDP solver

For details, see arxiv/2008.06148

In fact, one can show a converse statement:



Connection to “sums of squares” (SOS)
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Theorem (AAA, Zhang)

If a cubic polynomial 𝑝 has a local minimum, then the closure of the set of its 
local minima equals the solution set of:

min.
𝑥

 𝑝(𝑥)

𝛻2𝑝 𝑥 ≽ 0s.t.

Theorem (AAA, Zhang)

If 𝑝 has a second-order point, the first level of this SOS relaxation (i.e., when 
deg 𝜎 = deg 𝑆 = 2) is tight.

min
𝑥

𝑝(𝑥)

s.t. 𝛻2𝑝 𝑥 ≽ 0

max
𝜎 𝑥 ,𝑆 𝑥 ,𝛾 

𝛾

s.t.   𝑝 𝑥 − 𝛾 = 𝜎 𝑥 + 𝑇𝑟 𝛻2𝑝 𝑥 𝑆 𝑥 , ∀𝑥

𝜎 is SOS
𝑆 is an SOS-matrix

≥

𝑆 𝑥 = 𝑅 𝑥 𝑅 𝑥 𝑇
𝜎(𝑥) = ∑𝑞𝑖

2(𝑥)

(this is an SDP in disguise)



Higher-Order Newton Methods
 with Polynomial Work per Iteration

Jeffrey Zhang
Yale University

Joint work with:

Abraar Chaudhry
Princeton University



The Newton method
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• Newton’s algorithm: 
2nd order Taylor expand, 
move to minimizer; iterate.

• Work per iteration: Solving a 
linear system (poly-time in 
dimension)

• Classical theorem in optimization: 
Newton’s method has local quadratic convergence

𝒙𝒌+𝟏 − 𝒙∗ ≤ 𝒄 𝒙𝒌 − 𝒙∗ 𝟐

Q: Why not Taylor expand to higher order?!
- Because minimizing multivariate polynomials of higher degree is NP-hard 



An unregularized third-order Newton method
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• Newton’s method: 2nd order Taylor expand, 
move to minimizer

Sensitivity to initialization:

Newton 3rd-order 
Newton

• 3rd-order Newton: 3rd order Taylor expand, 
move to local minimizer (by SDP)
o Polynomial iteration complexity

Theorem (informal) [Silina, Zhang]

Under standard assumptions, the 3rd-order unregularized Newton method has 

local cubic convergence (i.e., 𝑥𝑘+1 − 𝑥∗ ≤ 𝑐 𝑥𝑘 − 𝑥∗ 3
).



Higher-order Newton with polynomial work per iteration
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Let 𝑓: ℝ𝑛 → ℝ be the function we wish to minimize.

Our algorithm (“𝒅𝐭𝐡 degree Newton”) :
1. Taylor expand 𝑓 to order 𝑑 around the current iterate 𝑥𝑘

Denote the resulting degree-𝑑 polynomial by 𝑇𝑑,𝑥𝑘

2. Find the “closest” sos-convex polynomial of degree 𝑑 + 1 (if 𝑑 is odd) or 
𝑑 + 2 (if 𝑑 is even) to 𝑇𝑑,𝑥𝑘

Denote the resulting (sos-convex) polynomial by 𝜓𝑑,𝑥𝑘

3. Let 𝑥𝑘+1 be a minimizer of 𝜓𝑑,𝑥𝑘

Claim: Steps 2 and 3 take polynomial time (in dimension): they reduce to SDPs

Theorem: The above algorithm has local convergence of order 𝒅:

𝒙𝒌+𝟏 − 𝒙∗ ≤ 𝒄 𝒙𝒌 − 𝒙∗ 𝒅

(leads to lower oracle complexity compared to Newton)



Basin of attraction

Our method in dimension one and with 𝑑 = 3:

𝑥𝑘+1 = 𝑥𝑘 − 2
𝑓′′ 𝑥𝑘

𝑓′′′ 𝑥𝑘
−

3 12𝑓′ 𝑥𝑘 𝑓′′(𝑥𝑘)

𝑓′′′ 𝑥𝑘
3 − 2

𝑓′′ 𝑥𝑘

𝑓′′′ 𝑥𝑘

3

Newton in dimension one:

𝑥𝑘+1 = 𝑥𝑘 −
𝑓′ 𝑥𝑘

𝑓′′ 𝑥𝑘

Example. Minimize:

𝑓 𝑥 = 𝑥2 + 1 − 1

Newton’s basin: 𝑥0 < 1

Our third-order method’s basin: 𝑥0 < 3.407

(exact cutoff: 1

3
11 +

142
3

1691+9𝑖 47
+

3
1691 + 9𝑖 47  )



This talk not doing justice to SOS
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• Sum of squares optimization is a 
powerful machinery to globally solve 
any (nonconvex) optimization problem 
modelled by polynomial equations 
and inequalities

• Nice survey by Georgina Hall (INSEAD)
• Covers applications in finance, 

game theory, statistics and ML, 
control, etc.



One takeaway message
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Want to know more?

aaa.princeton.edu
sites.google.com/view/jeffreyzhang
chaudhrya.github.io

• Finding local minima for QPs:
Mathematical Programming, 2022
arxiv/2008.05558

• Finding local minima for cubics:
Advances in Mathematics, 2022
arxiv/2008.06148
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