
Proximal algorithms
for sampling and variational inference

Sinho Chewi
Institute for Advanced Study

September 14, 2023
University of Pennsylvania

Today’s theme

The entropy functional is non-smooth, and therefore benefits
from the use of proximal methods.

Outline:
• Review of proximal methods in optimization

• Sampling as optimization

• Gaussian variational inference via proximal gradient

• Log-concave sampling via the proximal sampler

1

Proximal discretization

For f : Rd → R, the gradient flow of f is

¤xt = −∇f (xt) .

We can discretize explicitly, via gradient descent (GD):

xGD
k+1 = xGD

k − h∇f (xGD
k) ,

or implicitly, via the proximal point method (PPM):

xPPM
k+1 = xPPM

k − h∇f (xPPM
k+1) .

Unlike GD, the PPM does not require smoothness.

2

Proximal discretization

Reformulation of the PPM:

xPPM
k+1 = argmin

y∈Rd

[
f (y) + 1

2h
∥y − xPPM

k ∥2
]
C proxhf (xPPM

k) .

• For small h, implementation of the PPM is easier, but the overall
convergence is slower.

• For large h, implementation of the PPM is harder, but we can
nearly minimize f in one step (even non-convex f).

3

Proximal discretization

Reformulation of the PPM:

xPPM
k+1 = argmin

y∈Rd

[
f (y) + 1

2h
∥y − xPPM

k ∥2
]
C proxhf (xPPM

k) .

• For small h, implementation of the PPM is easier, but the overall
convergence is slower.

• For large h, implementation of the PPM is harder, but we can
nearly minimize f in one step (even non-convex f).

3

Convergence rate for the PPM

Suppose that f is 𝛼-convex. The gradient flow converges with rate

∥xt − x★∥2 ≤ exp(−2𝛼t) ∥x0 − x★∥2

and the PPM converges with rate

∥xPPM
k − x★∥2 ≤ 1

(1 + 𝛼h)2k
∥x0 − x★∥2 .

4

Sampling

If 𝜋 is a probability distribution on Rd with known functional form,
how do we efficiently draw samples from 𝜋?

• cornerstone of Bayesian sampling, high-dimensional integration,
randomized algorithms, etc.

• typical approach: Markov chain Monte Carlo (MCMC)

5

Sampling

Suppose we write the density 𝜋 in the form 𝜋 ∝ exp(−V), where
V : Rd → R. The Langevin diffusion

dXt = −∇V (Xt) dt +
√

2 dBt , (Bt)t≥0 = Brownian motion ,

converges in law to 𝜋 as t → ∞.

Key insight: Sampling is an optimization problem over the
space of probability measures, and the Langevin diffusion is a
gradient flow.

6

Sampling

Suppose we write the density 𝜋 in the form 𝜋 ∝ exp(−V), where
V : Rd → R. The Langevin diffusion

dXt = −∇V (Xt) dt +
√

2 dBt , (Bt)t≥0 = Brownian motion ,

converges in law to 𝜋 as t → ∞.

Key insight: Sampling is an optimization problem over the
space of probability measures, and the Langevin diffusion is a
gradient flow.

6

Sampling as optimization

Step one: Pass to the space of measures.

Xt ⇝ 𝜇t B law(Xt) .

Kolmogorov’s equations give us the evolution of (𝜇t)t≥0, known as
the Fokker–Planck equation.

𝜕t𝜇t = div(𝜇t ∇V)︸ ︷︷ ︸
drift

+ Δ𝜇t︸︷︷︸
diffusion

.

How do we understand dynamics on the space of measures?

7

Sampling as optimization

Step one: Pass to the space of measures.

Xt ⇝ 𝜇t B law(Xt) .

Kolmogorov’s equations give us the evolution of (𝜇t)t≥0, known as
the Fokker–Planck equation.

𝜕t𝜇t = div(𝜇t ∇V)︸ ︷︷ ︸
drift

+ Δ𝜇t︸︷︷︸
diffusion

.

How do we understand dynamics on the space of measures?

7

Sampling as optimization

Step one: Pass to the space of measures.

Xt ⇝ 𝜇t B law(Xt) .

Kolmogorov’s equations give us the evolution of (𝜇t)t≥0, known as
the Fokker–Planck equation.

𝜕t𝜇t = div(𝜇t ∇V)︸ ︷︷ ︸
drift

+ Δ𝜇t︸︷︷︸
diffusion

.

How do we understand dynamics on the space of measures?

7

Sampling as optimization

Step two: Forget stochastic dynamics for the moment. Consider the
deterministic dynamics

¤Xt = vt (Xt) , X0 ∼ 𝜇0 .

What is the evolution of 𝜇t = law(Xt)?

dynamics over Rd ⇝ dynamics over P(Rd)
¤Xt = vt (Xt) ⇝ 𝜕t𝜇t + div(𝜇tvt) = 0

This is known as the continuity equation.

8

Sampling as optimization

Step two: Forget stochastic dynamics for the moment. Consider the
deterministic dynamics

¤Xt = vt (Xt) , X0 ∼ 𝜇0 .

What is the evolution of 𝜇t = law(Xt)?

dynamics over Rd ⇝ dynamics over P(Rd)
¤Xt = vt (Xt) ⇝ 𝜕t𝜇t + div(𝜇tvt) = 0

This is known as the continuity equation.

8

Sampling as optimization

Step three: We can interpret the Fokker–Planck equation as a
continuity equation:

𝜕t𝜇t = div(𝜇t ∇V) + Δ𝜇t = div(𝜇t (∇V + ∇ log 𝜇t)) .

dXt = −∇V (Xt) dt +
√

2 dBt

same evolution of law
𝜕t𝜇t = div(𝜇t (∇V + ∇ log 𝜇t))

¤Xt = −∇V (Xt) − ∇ log 𝜇t (Xt)

9

Sampling as optimization

Step three: We can interpret the Fokker–Planck equation as a
continuity equation:

𝜕t𝜇t = div(𝜇t ∇V) + Δ𝜇t = div(𝜇t (∇V + ∇ log 𝜇t)) .

dXt = −∇V (Xt) dt +
√

2 dBt

same evolution of law
𝜕t𝜇t = div(𝜇t (∇V + ∇ log 𝜇t))

¤Xt = −∇V (Xt) − ∇ log 𝜇t (Xt)

9

Sampling as optimization

Step four: We endow the space of measures with geometry.

At time t , the kinetic energy associated with ¤Xt = vt (Xt) is

1
2

∫
∥vt ∥2︸︷︷︸

squared velocity

d𝜇t︸︷︷︸
mass density

=
1
2
∥vt ∥2

L2 (𝜇t) .

We can think of vt as a tangent vector at 𝜇t , with norm ∥vt ∥L2 (𝜇t) .

10

Sampling as optimization

An energy-minimizing curve, i.e.,

(𝜇t , vt)t∈[0,1] minimizes
∫ 1

0
∥vt ∥2

L2 (𝜇t) dt with 𝜇0, 𝜇1 fixed

are geodesics or shortest paths in the space of measures, with∫ 1

0
∥vt ∥2

L2 (𝜇t) dt = W 2
2 (𝜇0, 𝜇1) .

Here, W2 is the Wasserstein distance from optimal transport.

11

Sampling as optimization

Step five: Given a functional F over P(Rd), we can now look for the
direction of steepest descent:

−∇W2F (𝜇) B argmin
∥v0 ∥L2 (𝜇) ≤1

{
𝜕tF (𝜇t)

��
t=0

��� 𝜕t𝜇t + div(𝜇tvt) = 0, 𝜇0 = 𝜇

}

The Wasserstein gradient flow for F follows this direction:

𝜕t𝜇t = div(𝜇t ∇W2F (𝜇t)) .

12

Sampling as optimization

Step five: Given a functional F over P(Rd), we can now look for the
direction of steepest descent:

−∇W2F (𝜇) B argmin
∥v0 ∥L2 (𝜇) ≤1

{
𝜕tF (𝜇t)

��
t=0

��� 𝜕t𝜇t + div(𝜇tvt) = 0, 𝜇0 = 𝜇

}
The Wasserstein gradient flow for F follows this direction:

𝜕t𝜇t = div(𝜇t ∇W2F (𝜇t)) .

12

Sampling as optimization

Step six: If we compute the Wasserstein gradient for the KL
divergence w.r.t. 𝜋 ∝ exp(−V),

KL(𝜇 ∥ 𝜋) =
∫

𝜇 log
𝜇

𝜋
=

∫
V d𝜇 +

∫
𝜇 log 𝜇 + const. ,

one can show that

[∇W2 KL(· ∥ 𝜋)] (𝜇) = ∇V + ∇ log 𝜇 .

The Wasserstein gradient flow for the KL agrees with the
Fokker–Planck equation:

𝜕t𝜇t = div(𝜇t (∇V + ∇ log 𝜇t)) .

13

Sampling as optimization

Step six: If we compute the Wasserstein gradient for the KL
divergence w.r.t. 𝜋 ∝ exp(−V),

KL(𝜇 ∥ 𝜋) =
∫

𝜇 log
𝜇

𝜋
=

∫
V d𝜇 +

∫
𝜇 log 𝜇 + const. ,

one can show that

[∇W2 KL(· ∥ 𝜋)] (𝜇) = ∇V + ∇ log 𝜇 .

The Wasserstein gradient flow for the KL agrees with the
Fokker–Planck equation:

𝜕t𝜇t = div(𝜇t (∇V + ∇ log 𝜇t)) .

13

Sampling as optimization

𝜋

𝜇t
When we equip P(Rd) with the
geometry of optimal transport,
the Langevin diffusion becomes a
gradient flow of KL(· ∥ 𝜋).

[Jordan, Kinderlehrer, Otto ’98, The vari-

ational formulation of the Fokker–Planck

equation.]

14

Sampling as optimization

In the aftermath of JKO. . .

• algorithm analysis [Dalalyan ’17; Wibisono ’18; Durmus, Majewski,

Miasojedow ’19; Ahn, C. ’21; Altschuler, Talwar ’22; etc.]

• algorithm design [C., Le Gouic, Lu, Maunu, Rigollet, Stromme ’20; Zhang,

Peyré, Fadili, Pereyra ’20; Ding, Li ’21; Lee, Shen, Tian ’21; etc.]

• theory of complexity [C., Gerber, Lu, Le Gouic, Rigollet ’22; C., de Dios

Pont, Li, Lu, Narayanan ’23; C., Gerber, Lee, Lu ’23; etc.]

⊵ See my book draft if you are interested.

15

Sampling as optimization

In the aftermath of JKO. . .

• algorithm analysis [Dalalyan ’17; Wibisono ’18; Durmus, Majewski,

Miasojedow ’19; Ahn, C. ’21; Altschuler, Talwar ’22; etc.]

• algorithm design [C., Le Gouic, Lu, Maunu, Rigollet, Stromme ’20; Zhang,

Peyré, Fadili, Pereyra ’20; Ding, Li ’21; Lee, Shen, Tian ’21; etc.]

• theory of complexity [C., Gerber, Lu, Le Gouic, Rigollet ’22; C., de Dios

Pont, Li, Lu, Narayanan ’23; C., Gerber, Lee, Lu ’23; etc.]

⊵ See my book draft if you are interested.

15

Sampling as optimization

Langevin diffusion
dXt = −∇V (Xt) dt +

√
2 dBt

⇝
gradient flow of KL

𝜇 ↦→
∫
V d𝜇 +

∫
𝜇 log 𝜇

How do we design sampling algorithms in discrete time?

16

Potential energy

First, consider the potential energy functional

V(𝜇) B
∫

V d𝜇 .

• V is 𝛼-convex ⇐⇒ V is 𝛼-convex on Wasserstein space

• V is 𝛽-smooth ⇐⇒ V is 𝛽-smooth on Wasserstein space

• GD step on V ⇐⇒ GD step on V in Wasserstein space

17

Potential energy

First, consider the potential energy functional

V(𝜇) B
∫

V d𝜇 .

• V is 𝛼-convex ⇐⇒ V is 𝛼-convex on Wasserstein space

• V is 𝛽-smooth ⇐⇒ V is 𝛽-smooth on Wasserstein space

• GD step on V ⇐⇒ GD step on V in Wasserstein space

17

Potential energy

First, consider the potential energy functional

V(𝜇) B
∫

V d𝜇 .

• V is 𝛼-convex ⇐⇒ V is 𝛼-convex on Wasserstein space

• V is 𝛽-smooth ⇐⇒ V is 𝛽-smooth on Wasserstein space

• GD step on V ⇐⇒ GD step on V in Wasserstein space

17

Potential energy

First, consider the potential energy functional

V(𝜇) B
∫

V d𝜇 .

• V is 𝛼-convex ⇐⇒ V is 𝛼-convex on Wasserstein space

• V is 𝛽-smooth ⇐⇒ V is 𝛽-smooth on Wasserstein space

• GD step on V ⇐⇒ GD step on V in Wasserstein space

17

Entropy functional

The entropy functional is

H(𝜇) B
∫

𝜇 log 𝜇 .

The entropy is convex on Wasserstein space, but H(𝜇) = ∞ if
𝜇 3 Lebesgue. Hence, the entropy is non-smooth.

18

Sampling as optimization

Langevin diffusion
dXt = −∇V (Xt) dt +

√
2 dBt

⇝
gradient flow of KL

𝜇 ↦→
∫
V d𝜇 +

∫
𝜇 log 𝜇

After discretization,

[Wibisono ’18] showed:

Xt+h = Xt − h∇V (Xt) +
√

2 (Bt+h − Bt) ⇝ ???

19

Sampling as optimization

Langevin diffusion
dXt = −∇V (Xt) dt +

√
2 dBt

⇝
gradient flow of KL

𝜇 ↦→
∫
V d𝜇 +

∫
𝜇 log 𝜇

After discretization, [Wibisono ’18] showed:

X+
t = Xt − h∇V (Xt) ⇝ gradient descent for V

Xt+h = X+
t +

√
2 (Bt+h − Bt) ⇝ gradient flow for H

He called this a forward–flow discretization.

19

Forward–flow is biased

In other words, for positive step size h > 0,

𝜇t ̸→ 𝜋 .

How can we remedy this issue?

20

Confronting the non-smoothness of entropy

In the original JKO paper, they proposed using the PPM for KL:

𝜇t+h = proxhKL(𝜇t) B argmin
𝜇∈P(Rd)

{
KL(𝜇 ∥ 𝜋) + 1

2h
W 2

2 (𝜇, 𝜇t)
}

Alternatively, one can split the objective and use proximal gradient
(see analysis in [Salim, Korba, Luise ’20]):

𝜇t+h = proxhH
(
(id − h∇V)#𝜇t︸ ︷︷ ︸
gradient step on V

)

= argmin
𝜇∈P(Rd)

{
H(𝜇) + 1

2h
W 2

2
(
𝜇, (id − h∇V)#𝜇t

)}
.

21

Confronting the non-smoothness of entropy

In the original JKO paper, they proposed using the PPM for KL:

𝜇t+h = proxhKL(𝜇t) B argmin
𝜇∈P(Rd)

{
KL(𝜇 ∥ 𝜋) + 1

2h
W 2

2 (𝜇, 𝜇t)
}

Alternatively, one can split the objective and use proximal gradient
(see analysis in [Salim, Korba, Luise ’20]):

𝜇t+h = proxhH
(
(id − h∇V)#𝜇t︸ ︷︷ ︸
gradient step on V

)

= argmin
𝜇∈P(Rd)

{
H(𝜇) + 1

2h
W 2

2
(
𝜇, (id − h∇V)#𝜇t

)}
.

21

Confronting the non-smoothness of entropy

In the original JKO paper, they proposed using the PPM for KL:

𝜇t+h = proxhKL(𝜇t) B argmin
𝜇∈P(Rd)

{
KL(𝜇 ∥ 𝜋) + 1

2h
W 2

2 (𝜇, 𝜇t)
}

Alternatively, one can split the objective and use proximal gradient
(see analysis in [Salim, Korba, Luise ’20]):

𝜇t+h = proxhH
(
(id − h∇V)#𝜇t︸ ︷︷ ︸
gradient step on V

)
= argmin

𝜇∈P(Rd)

{
H(𝜇) + 1

2h
W 2

2
(
𝜇, (id − h∇V)#𝜇t

)}
.

21

Wasserstein proximal algorithms

However, these proximal operators are computationally intractable.
Is all hope for a Wasserstein proximal algorithm lost?

22

Restricting to a parametric class

Instead of minimizing over all probability measures, what if we
minimize over a parametric family P?

The parametric family must be specific:

• It should be convex in the Wasserstein geometry.

• The proximal operator should be computable over P.

• Projections of gradients to P should be computable.

23

Restricting to a parametric class

Instead of minimizing over all probability measures, what if we
minimize over a parametric family P?

The parametric family must be specific:

• It should be convex in the Wasserstein geometry.

• The proximal operator should be computable over P.

• Projections of gradients to P should be computable.

23

Gaussian variational inference

Problem: Compute the best Gaussian approximation to 𝜋 in
the sense of KL divergence KL(· ∥ 𝜋).

This corresponds to P = {Gaussians over Rd }.

Gaussian VI is used to provide approximations to the mean and
covariance of 𝜋 which is hopefully cheaper than MCMC sampling.

Prior work: Lambert, C., Bach, Bonnabel, Rigollet ’22, Variational inference via

Wasserstein gradient flows.

24

Proximal gradient for Gaussian VI

The set of Gaussians P is a geodesically convex submanifold of
Wasserstein space. We consider the iteration

𝜇k+1 = P-proxhH
([
id − h projT𝜇k P∇W2V(𝜇k)

]
#𝜇k

)
= argmin

𝜇∈P

{
H(𝜇) + 1

2h
W 2

2
(
(id − h∇PV(𝜇k))#𝜇k, 𝜇

)}
.

Michael Z. Diao, Krishnakumar Balasubramanian,
S.C., Adil Salim ’23, Forward–backward Gaussian

variational inference via JKO in the
Bures–Wasserstein space.

25

Proximal gradient for Gaussian VI

The set of Gaussians P is a geodesically convex submanifold of
Wasserstein space. We consider the iteration

𝜇k+1 = P-proxhH
([
id − h projT𝜇k P∇W2V(𝜇k)

]
#𝜇k

)
= argmin

𝜇∈P

{
H(𝜇) + 1

2h
W 2

2
(
(id − h∇PV(𝜇k))#𝜇k, 𝜇

)}
.

Michael Z. Diao, Krishnakumar Balasubramanian,
S.C., Adil Salim ’23, Forward–backward Gaussian

variational inference via JKO in the
Bures–Wasserstein space.

25

Implementation

Proposition
1. The gradient ∇PV(𝜇) can be computed as

∇PV(𝜇) = (E𝜇 ∇2V) (· −m𝜇) + E𝜇 ∇V ,

where m𝜇 is the mean of 𝜇.

2. [Wibisono ’18] The P-proximal operator for entropy is given
by P-proxhH (N (m, Σ)) = N(m, f (Σ)), where

f (x) =
(
x + 2h +

√︁
x (x + 4h)

)
/2 .

The gradient ∇PV(𝜇) can be approximated stochastically.

26

Implementation

Proposition
1. The gradient ∇PV(𝜇) can be computed as

∇PV(𝜇) = (E𝜇 ∇2V) (· −m𝜇) + E𝜇 ∇V ,

where m𝜇 is the mean of 𝜇.

2. [Wibisono ’18] The P-proximal operator for entropy is given
by P-proxhH (N (m, Σ)) = N(m, f (Σ)), where

f (x) =
(
x + 2h +

√︁
x (x + 4h)

)
/2 .

The gradient ∇PV(𝜇) can be approximated stochastically.

26

Implementation

Concretely, if 𝜇k = N(mk, Σk), we have the recursion:

FB–GVI (forward–backward Gaussian variational inference)

mk+1 = mk − h Ê𝜇k∇V ,

Σk+1 = f
(
(I − h Ê𝜇k∇2V) Σk (I − h Ê𝜇k∇2V)

)
.

It’s easy to implement and converges quickly in practice!

27

Convergence guarantees

Theorem: If 𝛼I ⪯ ∇2V ⪯ 𝛽I and 𝜅 B 𝛽/𝛼 , then FB–GVI
outputs a measure 𝜀-close to the best Gaussian approximation
in O(𝜅 log(d/𝜀2)) iterations.

If we use stochastic gradients, the iteration complexity instead
becomes Õ(𝜅d/𝜀2).

See the paper for other settings.

28

Back to sampling

Although the naı̈ve application of proximal gradient to sampling is
intractable, there is another approach, called the proximal sampler
[Titsias, Papaspiliopoulos ’18; Lee, Shen, Tian ’21].

We first define a new sampling analogue of the proximal operator.

29

Restricted Gaussian oracle

Recall the analogy between sampling and optimization:

minimize f ↭ sample from 𝜋 ∝ exp(−V)

We therefore introduce the restricted Gaussian oracle (RGO):

x+ = proxhf (x)
x+ minimizes

f (·) + 1
2h ∥· − x ∥2

↭
x+ ∼ RGOhV (x)

x+ is a sample from
∝ exp

(
−V (·) − 1

2h ∥· − x ∥2)

30

Restricted Gaussian oracle

Recall the analogy between sampling and optimization:

minimize f ↭ sample from 𝜋 ∝ exp(−V)

We therefore introduce the restricted Gaussian oracle (RGO):

x+ = proxhf (x)
x+ minimizes

f (·) + 1
2h ∥· − x ∥2

↭
x+ ∼ RGOhV (x)

x+ is a sample from
∝ exp

(
−V (·) − 1

2h ∥· − x ∥2)

30

Derivation of the proximal sampler

If X ∼ 𝜋X ∝ exp(−V), and Y | X ∼ N(X , hI), let 𝝅 denote the joint
distribution of (X ,Y):

𝝅 (x, y) ∝ exp
(
−V (x) − 1

2h
∥y − x ∥2

)
.

Observation: 𝝅X |Y=y = RGOhV (y).

31

Derivation of the proximal sampler

If X ∼ 𝜋X ∝ exp(−V), and Y | X ∼ N(X , hI), let 𝝅 denote the joint
distribution of (X ,Y):

𝝅 (x, y) ∝ exp
(
−V (x) − 1

2h
∥y − x ∥2

)
.

Observation: 𝝅X |Y=y = RGOhV (y).

31

The proximal sampler

Algorithm (Gibbs sampling for 𝝅):

• Draw Yk ∼ 𝝅Y |X=Xk = N(Xk, hI).
• Draw Xk+1 ∼ 𝝅X |Y=Yk = RGOhV (Yk).

Note: Gibbs sampling is automatically unbiased, unlike the
forward–flow discretization. As h ↘ 0, one can indeed show this
recovers the Langevin diffusion.

32

The proximal sampler

Algorithm (Gibbs sampling for 𝝅):

• Draw Yk ∼ 𝝅Y |X=Xk = N(Xk, hI).
• Draw Xk+1 ∼ 𝝅X |Y=Yk = RGOhV (Yk).

Note: Gibbs sampling is automatically unbiased, unlike the
forward–flow discretization. As h ↘ 0, one can indeed show this
recovers the Langevin diffusion.

32

Convergence of the proximal sampler

Theorem [Lee, Shen, Tian ’21; Chen, C., Salim, Wibisono ’22]

Suppose that V is 𝛼-convex. Then, the law 𝜇Xk B law(Xk) of
the proximal sampler converges to 𝜋X at rate

W 2
2 (𝜇Xk , 𝜋

X) ≤ 1

(1 + 𝛼h)2k
W 2

2 (𝜇X0 , 𝜋X) .

Yongxin Chen, S.C., Adil Salim, Andre Wibisono ’22, Improved
analysis for a proximal algorithm for sampling.

33

Implementation of the RGO

. . .will not be discussed today.

Recently, the proximal sampler has led to the first high-accuracy
samplers with

√
d dimension dependence in two concurrent works

[Altschuler, C. ’23; Fan, Yuan, Chen ’23].

Jason M. Altschuler, S.C. ’23, Faster high-accuracy
log-concave sampling via algorithmic warm starts.

34

One last vignette: the SDE perspective

Instead of thinking of Y | X ∼ N(X , hI), we can think of Y as the
output of a Brownian motion (Xt)t≥0 at time h, started from X0 = X .

The two steps of the proximal sampler then correspond to running an
SDE forward and backward in time.

X0 Xh

N(X0, hI)

RGOhV (Xh)

Where have we seen the use of forward
and backward SDEs elsewhere?

35

One last vignette: the SDE perspective

Instead of thinking of Y | X ∼ N(X , hI), we can think of Y as the
output of a Brownian motion (Xt)t≥0 at time h, started from X0 = X .

The two steps of the proximal sampler then correspond to running an
SDE forward and backward in time.

X0 Xh

N(X0, hI)

RGOhV (Xh)

Where have we seen the use of forward
and backward SDEs elsewhere?

35

One last vignette: the SDE perspective

Instead of thinking of Y | X ∼ N(X , hI), we can think of Y as the
output of a Brownian motion (Xt)t≥0 at time h, started from X0 = X .

The two steps of the proximal sampler then correspond to running an
SDE forward and backward in time.

X0 Xh

N(X0, hI)

RGOhV (Xh)

Where have we seen the use of forward
and backward SDEs elsewhere?

35

Diffusion models

forward process

backward process

Diffusion models are the “large step size” regime of the PPM.
They converge rapidly (see growing literature) but implementa-
tion of the reverse process is difficult, requiring deep learning.

36

Outlook

Probabilistic problems involving the non-smooth entropy functional
benefit from the use of proximal methods.

⊵ We saw this through forward–backward Gaussian variational
inference and the proximal sampler.

Is there a deeper sense in which the proximal sampler is the true
PPM analogue for sampling? How far can we push the analogy?

Thank you for your attention!

37

