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Today’s theme

The entropy functional is non-smooth, and therefore benefits
from the use of proximal methods.

Outline:
• Review of proximal methods in optimization

• Sampling as optimization

• Gaussian variational inference via proximal gradient

• Log-concave sampling via the proximal sampler
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Proximal discretization

For f : Rd → R, the gradient flow of f is

¤xt = −∇f (xt) .

We can discretize explicitly, via gradient descent (GD):

xGD
k+1 = xGD

k − h∇f (xGD
k ) ,

or implicitly, via the proximal point method (PPM):

xPPM
k+1 = xPPM

k − h∇f (xPPM
k+1 ) .

Unlike GD, the PPM does not require smoothness.
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Proximal discretization

Reformulation of the PPM:

xPPM
k+1 = argmin

y∈Rd

[
f (y) + 1

2h
∥y − xPPM

k ∥2
]
C proxhf (xPPM

k ) .

• For small h, implementation of the PPM is easier, but the overall
convergence is slower.

• For large h, implementation of the PPM is harder, but we can
nearly minimize f in one step (even non-convex f ).
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Convergence rate for the PPM

Suppose that f is 𝛼-convex. The gradient flow converges with rate

∥xt − x★∥2 ≤ exp(−2𝛼t) ∥x0 − x★∥2

and the PPM converges with rate

∥xPPM
k − x★∥2 ≤ 1

(1 + 𝛼h)2k
∥x0 − x★∥2 .
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Sampling

If 𝜋 is a probability distribution on Rd with known functional form,
how do we efficiently draw samples from 𝜋?

• cornerstone of Bayesian sampling, high-dimensional integration,
randomized algorithms, etc.

• typical approach: Markov chain Monte Carlo (MCMC)

5



Sampling

Suppose we write the density 𝜋 in the form 𝜋 ∝ exp(−V ), where
V : Rd → R. The Langevin diffusion

dXt = −∇V (Xt) dt +
√

2 dBt , (Bt)t≥0 = Brownian motion ,

converges in law to 𝜋 as t → ∞.

Key insight: Sampling is an optimization problem over the
space of probability measures, and the Langevin diffusion is a
gradient flow.
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Sampling as optimization

Step one: Pass to the space of measures.

Xt ⇝ 𝜇t B law(Xt) .

Kolmogorov’s equations give us the evolution of (𝜇t)t≥0, known as
the Fokker–Planck equation.

𝜕t𝜇t = div(𝜇t ∇V )︸       ︷︷       ︸
drift

+ Δ𝜇t︸︷︷︸
diffusion

.

How do we understand dynamics on the space of measures?

7



Sampling as optimization

Step one: Pass to the space of measures.

Xt ⇝ 𝜇t B law(Xt) .

Kolmogorov’s equations give us the evolution of (𝜇t)t≥0, known as
the Fokker–Planck equation.

𝜕t𝜇t = div(𝜇t ∇V )︸       ︷︷       ︸
drift

+ Δ𝜇t︸︷︷︸
diffusion

.

How do we understand dynamics on the space of measures?

7



Sampling as optimization

Step one: Pass to the space of measures.

Xt ⇝ 𝜇t B law(Xt) .

Kolmogorov’s equations give us the evolution of (𝜇t)t≥0, known as
the Fokker–Planck equation.

𝜕t𝜇t = div(𝜇t ∇V )︸       ︷︷       ︸
drift

+ Δ𝜇t︸︷︷︸
diffusion

.

How do we understand dynamics on the space of measures?

7



Sampling as optimization

Step two: Forget stochastic dynamics for the moment. Consider the
deterministic dynamics

¤Xt = vt (Xt) , X0 ∼ 𝜇0 .

What is the evolution of 𝜇t = law(Xt)?

dynamics over Rd ⇝ dynamics over P(Rd )
¤Xt = vt (Xt) ⇝ 𝜕t𝜇t + div(𝜇tvt) = 0

This is known as the continuity equation.
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Sampling as optimization

Step three: We can interpret the Fokker–Planck equation as a
continuity equation:

𝜕t𝜇t = div(𝜇t ∇V ) + Δ𝜇t = div(𝜇t (∇V + ∇ log 𝜇t)) .

dXt = −∇V (Xt) dt +
√

2 dBt

same evolution of law
𝜕t𝜇t = div(𝜇t (∇V + ∇ log 𝜇t))

¤Xt = −∇V (Xt) − ∇ log 𝜇t (Xt)
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Sampling as optimization

Step four: We endow the space of measures with geometry.

At time t , the kinetic energy associated with ¤Xt = vt (Xt) is

1
2

∫
∥vt ∥2︸︷︷︸

squared velocity

d𝜇t︸︷︷︸
mass density

=
1
2
∥vt ∥2

L2 (𝜇t ) .

We can think of vt as a tangent vector at 𝜇t , with norm ∥vt ∥L2 (𝜇t ) .
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Sampling as optimization

An energy-minimizing curve, i.e.,

(𝜇t , vt)t∈[0,1] minimizes
∫ 1

0
∥vt ∥2

L2 (𝜇t ) dt with 𝜇0, 𝜇1 fixed

are geodesics or shortest paths in the space of measures, with∫ 1

0
∥vt ∥2

L2 (𝜇t ) dt = W 2
2 (𝜇0, 𝜇1) .

Here, W2 is the Wasserstein distance from optimal transport.
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Sampling as optimization

Step five: Given a functional F over P(Rd ), we can now look for the
direction of steepest descent:

−∇W2F (𝜇) B argmin
∥v0 ∥L2 (𝜇) ≤1

{
𝜕tF (𝜇t)

��
t=0

��� 𝜕t𝜇t + div(𝜇tvt) = 0, 𝜇0 = 𝜇

}

The Wasserstein gradient flow for F follows this direction:

𝜕t𝜇t = div(𝜇t ∇W2F (𝜇t)) .
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Sampling as optimization

Step six: If we compute the Wasserstein gradient for the KL
divergence w.r.t. 𝜋 ∝ exp(−V ),

KL(𝜇 ∥ 𝜋) =
∫

𝜇 log
𝜇

𝜋
=

∫
V d𝜇 +

∫
𝜇 log 𝜇 + const. ,

one can show that

[∇W2 KL(· ∥ 𝜋)] (𝜇) = ∇V + ∇ log 𝜇 .

The Wasserstein gradient flow for the KL agrees with the
Fokker–Planck equation:

𝜕t𝜇t = div(𝜇t (∇V + ∇ log 𝜇t)) .
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Sampling as optimization

𝜋

𝜇t
When we equip P(Rd ) with the
geometry of optimal transport,
the Langevin diffusion becomes a
gradient flow of KL(· ∥ 𝜋).

[Jordan, Kinderlehrer, Otto ’98, The vari-

ational formulation of the Fokker–Planck

equation.]
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Sampling as optimization

In the aftermath of JKO. . .

• algorithm analysis [Dalalyan ’17; Wibisono ’18; Durmus, Majewski,

Miasojedow ’19; Ahn, C. ’21; Altschuler, Talwar ’22; etc.]

• algorithm design [C., Le Gouic, Lu, Maunu, Rigollet, Stromme ’20; Zhang,

Peyré, Fadili, Pereyra ’20; Ding, Li ’21; Lee, Shen, Tian ’21; etc.]

• theory of complexity [C., Gerber, Lu, Le Gouic, Rigollet ’22; C., de Dios

Pont, Li, Lu, Narayanan ’23; C., Gerber, Lee, Lu ’23; etc.]

⊵ See my book draft if you are interested.
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Sampling as optimization

Langevin diffusion
dXt = −∇V (Xt) dt +

√
2 dBt

⇝
gradient flow of KL

𝜇 ↦→
∫
V d𝜇 +

∫
𝜇 log 𝜇

How do we design sampling algorithms in discrete time?
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Potential energy

First, consider the potential energy functional

V(𝜇) B
∫

V d𝜇 .

• V is 𝛼-convex ⇐⇒ V is 𝛼-convex on Wasserstein space

• V is 𝛽-smooth ⇐⇒ V is 𝛽-smooth on Wasserstein space

• GD step on V ⇐⇒ GD step on V in Wasserstein space
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Entropy functional

The entropy functional is

H(𝜇) B
∫

𝜇 log 𝜇 .

The entropy is convex on Wasserstein space, but H(𝜇) = ∞ if
𝜇 3 Lebesgue. Hence, the entropy is non-smooth.
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Sampling as optimization

Langevin diffusion
dXt = −∇V (Xt) dt +

√
2 dBt

⇝
gradient flow of KL

𝜇 ↦→
∫
V d𝜇 +

∫
𝜇 log 𝜇

After discretization,

[Wibisono ’18] showed:

Xt+h = Xt − h∇V (Xt) +
√

2 (Bt+h − Bt) ⇝ ???
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Sampling as optimization

Langevin diffusion
dXt = −∇V (Xt) dt +

√
2 dBt

⇝
gradient flow of KL

𝜇 ↦→
∫
V d𝜇 +

∫
𝜇 log 𝜇

After discretization, [Wibisono ’18] showed:

X+
t = Xt − h∇V (Xt) ⇝ gradient descent for V

Xt+h = X+
t +

√
2 (Bt+h − Bt) ⇝ gradient flow for H

He called this a forward–flow discretization.
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Forward–flow is biased

In other words, for positive step size h > 0,

𝜇t ̸→ 𝜋 .

How can we remedy this issue?
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Confronting the non-smoothness of entropy

In the original JKO paper, they proposed using the PPM for KL:

𝜇t+h = proxhKL(𝜇t) B argmin
𝜇∈P(Rd )

{
KL(𝜇 ∥ 𝜋) + 1

2h
W 2

2 (𝜇, 𝜇t)
}

Alternatively, one can split the objective and use proximal gradient
(see analysis in [Salim, Korba, Luise ’20]):

𝜇t+h = proxhH
(
(id − h∇V )#𝜇t︸             ︷︷             ︸
gradient step on V

)

= argmin
𝜇∈P(Rd )

{
H(𝜇) + 1

2h
W 2

2
(
𝜇, (id − h∇V )#𝜇t

)}
.
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Wasserstein proximal algorithms

However, these proximal operators are computationally intractable.
Is all hope for a Wasserstein proximal algorithm lost?
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Restricting to a parametric class

Instead of minimizing over all probability measures, what if we
minimize over a parametric family P?

The parametric family must be specific:

• It should be convex in the Wasserstein geometry.

• The proximal operator should be computable over P.

• Projections of gradients to P should be computable.
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Gaussian variational inference

Problem: Compute the best Gaussian approximation to 𝜋 in
the sense of KL divergence KL(· ∥ 𝜋).

This corresponds to P = {Gaussians over Rd }.

Gaussian VI is used to provide approximations to the mean and
covariance of 𝜋 which is hopefully cheaper than MCMC sampling.

Prior work: Lambert, C., Bach, Bonnabel, Rigollet ’22, Variational inference via

Wasserstein gradient flows.
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Proximal gradient for Gaussian VI

The set of Gaussians P is a geodesically convex submanifold of
Wasserstein space. We consider the iteration

𝜇k+1 = P-proxhH
( [
id − h projT𝜇k P∇W2V(𝜇k)

]
#𝜇k

)
= argmin

𝜇∈P

{
H(𝜇) + 1

2h
W 2

2
(
(id − h∇PV(𝜇k))#𝜇k, 𝜇

)}
.

Michael Z. Diao, Krishnakumar Balasubramanian,
S.C., Adil Salim ’23, Forward–backward Gaussian

variational inference via JKO in the
Bures–Wasserstein space.
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Implementation

Proposition
1. The gradient ∇PV(𝜇) can be computed as

∇PV(𝜇) = (E𝜇 ∇2V ) (· −m𝜇) + E𝜇 ∇V ,

where m𝜇 is the mean of 𝜇.

2. [Wibisono ’18] The P-proximal operator for entropy is given
by P-proxhH (N (m, Σ)) = N(m, f (Σ)), where

f (x) =
(
x + 2h +

√︁
x (x + 4h)

)
/2 .

The gradient ∇PV(𝜇) can be approximated stochastically.
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Implementation

Concretely, if 𝜇k = N(mk, Σk), we have the recursion:

FB–GVI (forward–backward Gaussian variational inference)

mk+1 = mk − h Ê𝜇k∇V ,

Σk+1 = f
(
(I − h Ê𝜇k∇2V ) Σk (I − h Ê𝜇k∇2V )

)
.

It’s easy to implement and converges quickly in practice!
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Convergence guarantees

Theorem: If 𝛼I ⪯ ∇2V ⪯ 𝛽I and 𝜅 B 𝛽/𝛼 , then FB–GVI
outputs a measure 𝜀-close to the best Gaussian approximation
in O(𝜅 log(d/𝜀2)) iterations.

If we use stochastic gradients, the iteration complexity instead
becomes Õ(𝜅d/𝜀2).

See the paper for other settings.
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Back to sampling

Although the naı̈ve application of proximal gradient to sampling is
intractable, there is another approach, called the proximal sampler
[Titsias, Papaspiliopoulos ’18; Lee, Shen, Tian ’21].

We first define a new sampling analogue of the proximal operator.
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Restricted Gaussian oracle

Recall the analogy between sampling and optimization:

minimize f ↭ sample from 𝜋 ∝ exp(−V )

We therefore introduce the restricted Gaussian oracle (RGO):

x+ = proxhf (x)
x+ minimizes

f (·) + 1
2h ∥· − x ∥2

↭
x+ ∼ RGOhV (x)

x+ is a sample from
∝ exp

(
−V (·) − 1

2h ∥· − x ∥2)
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Derivation of the proximal sampler

If X ∼ 𝜋X ∝ exp(−V ), and Y | X ∼ N(X , hI), let 𝝅 denote the joint
distribution of (X ,Y ):

𝝅 (x, y) ∝ exp
(
−V (x) − 1

2h
∥y − x ∥2

)
.

Observation: 𝝅X |Y=y = RGOhV (y).
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The proximal sampler

Algorithm (Gibbs sampling for 𝝅 ):

• Draw Yk ∼ 𝝅Y |X=Xk = N(Xk, hI).
• Draw Xk+1 ∼ 𝝅X |Y=Yk = RGOhV (Yk).

Note: Gibbs sampling is automatically unbiased, unlike the
forward–flow discretization. As h ↘ 0, one can indeed show this
recovers the Langevin diffusion.
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Convergence of the proximal sampler

Theorem [Lee, Shen, Tian ’21; Chen, C., Salim, Wibisono ’22]

Suppose that V is 𝛼-convex. Then, the law 𝜇Xk B law(Xk) of
the proximal sampler converges to 𝜋X at rate

W 2
2 (𝜇Xk , 𝜋

X ) ≤ 1

(1 + 𝛼h)2k
W 2

2 (𝜇X0 , 𝜋X ) .

Yongxin Chen, S.C., Adil Salim, Andre Wibisono ’22, Improved
analysis for a proximal algorithm for sampling.
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Implementation of the RGO

. . .will not be discussed today.

Recently, the proximal sampler has led to the first high-accuracy
samplers with

√
d dimension dependence in two concurrent works

[Altschuler, C. ’23; Fan, Yuan, Chen ’23].

Jason M. Altschuler, S.C. ’23, Faster high-accuracy
log-concave sampling via algorithmic warm starts.
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One last vignette: the SDE perspective

Instead of thinking of Y | X ∼ N(X , hI), we can think of Y as the
output of a Brownian motion (Xt)t≥0 at time h, started from X0 = X .

The two steps of the proximal sampler then correspond to running an
SDE forward and backward in time.

X0 Xh

N(X0, hI)

RGOhV (Xh )

Where have we seen the use of forward
and backward SDEs elsewhere?
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Diffusion models

forward process

backward process

Diffusion models are the “large step size” regime of the PPM.
They converge rapidly (see growing literature) but implementa-
tion of the reverse process is difficult, requiring deep learning.
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Outlook

Probabilistic problems involving the non-smooth entropy functional
benefit from the use of proximal methods.

⊵ We saw this through forward–backward Gaussian variational
inference and the proximal sampler.

Is there a deeper sense in which the proximal sampler is the true
PPM analogue for sampling? How far can we push the analogy?

Thank you for your attention!
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