Bottleneck Structure in Large Depth Networks Mechanisms of Symmetry Learning

Arthur Jacot

New York University

November 2, 2023

Goal: learn a function $f^* : \mathbb{R}^{d_{in}} \to \mathbb{R}^{d_{out}}$ from *N* random observations $y_i = f(x_i)$.

Goal: learn a function $f^* : \mathbb{R}^{d_{in}} \to \mathbb{R}^{d_{out}}$ from *N* random observations $y_i = f(x_i)$.

Linear Models / Kernel Methods:

Given data distribution, decompose $f^* = \sum_{k=1}^{\infty} \beta_k f_k$ (kernel PCA).

For large N: estimate
$$\hat{f} \approx \sum_{k=1}^{N} \beta_k f_k \implies \mathbb{E}_x \left\| \hat{f}(x) - f^*(x) \right\|^2 \approx \sum_{k=N+1}^{\infty} \beta_k^2$$
.

Goal: learn a function $f^* : \mathbb{R}^{d_{in}} \to \mathbb{R}^{d_{out}}$ from *N* random observations $y_i = f(x_i)$.

Linear Models / Kernel Methods:

Given data distribution, decompose $f^* = \sum_{k=1}^{\infty} \beta_k f_k$ (kernel PCA).

- For large *N*: estimate $\hat{f} \approx \sum_{k=1}^{N} \beta_k f_k \implies \mathbb{E}_x \left\| \hat{f}(x) f^*(x) \right\|^2 \approx \sum_{k=N+1}^{\infty} \beta_k^2$.
- Polynomial basis: $f^*(x) = \sum_{m \in \mathbb{N}^{d_{in}}} \beta_m x_1^{m_1} \cdots x_{d_{in}}^{m_{d_{in}}}$.

Number of degree *m* monomial: $m^{d_{in}}$.

Goal: learn a function $f^* : \mathbb{R}^{d_{in}} \to \mathbb{R}^{d_{out}}$ from *N* random observations $y_i = f(x_i)$.

Linear Models / Kernel Methods:

Given data distribution, decompose $f^* = \sum_{k=1}^{\infty} \beta_k f_k$ (kernel PCA).

For large *N*: estimate $\hat{f} \approx \sum_{k=1}^{N} \beta_k f_k \implies \mathbb{E}_x \left\| \hat{f}(x) - f^*(x) \right\|^2 \approx \sum_{k=N+1}^{\infty} \beta_k^2$.

Polynomial basis: $f^*(x) = \sum_{m \in \mathbb{N}^{d_{in}}} \beta_m x_1^{m_1} \cdots x_{d_{in}}^{m_{d_{in}}}$.

Number of degree *m* monomial: $m^{d_{in}}$.

If
$$|\beta_m|^2 \sim ||m||_1^{-\alpha - d_m}$$
 then *k*-largest coefficient $|\beta_k|^2 \sim k^{-\frac{\alpha + d_m}{d_m}}$.
Error $\mathbb{E}_x \left\| \hat{f}(x) - f^*(x) \right\|^2 \approx N^{-\frac{\alpha}{d_m}}$.

Goal: learn a function $f^* : \mathbb{R}^{d_{in}} \to \mathbb{R}^{d_{out}}$ from *N* random observations $y_i = f(x_i)$.

Linear Models / Kernel Methods:

Given data distribution, decompose $f^* = \sum_{k=1}^{\infty} \beta_k f_k$ (kernel PCA).

For large *N*: estimate $\hat{f} \approx \sum_{k=1}^{N} \beta_k f_k \implies \mathbb{E}_x \left\| \hat{f}(x) - f^*(x) \right\|^2 \approx \sum_{k=N+1}^{\infty} \beta_k^2$.

Polynomial basis: $f^*(x) = \sum_{m \in \mathbb{N}^{d_{in}}} \beta_m x_1^{m_1} \cdots x_{d_{in}}^{m_{d_{in}}}$.

Number of degree *m* monomial: $m^{d_{in}}$.

If
$$|\beta_m|^2 \sim ||m||_1^{-\alpha-d_{in}}$$
 then *k*-largest coefficient $|\beta_k|^2 \sim k^{-\frac{\alpha+d_{in}}{d_{in}}}$.
Error $\mathbb{E}_x \left\| \hat{f}(x) - f^*(x) \right\|^2 \approx N^{-\frac{\alpha}{d_{in}}}$.

How can DNN learn text and image tasks successfully?

DNNs capture a low-dim structure in these tasks.

- The data lies on a d_{surf} -dimensional surface, with $d_{surf} \leq d_{in}$.
 - 'asdjgoijdskjasry asifudh' vs 'Good morning!'

- The data lies on a d_{surf} -dimensional surface, with $d_{surf} \leq d_{in}$.
 - 'asdjgoijdskjasry asifudh' vs 'Good morning!'
- Symmetries $f(g \cdot x) = f(x) \Rightarrow$ learn only $f/G : \mathbb{R}^{d_{in}}/G \to \mathbb{R}^{d_{out}}$:
 - Grammar rules: $p(\alpha|$ 'Ann left. She α') $\approx p(\alpha|$ 'Ann left. Ann α').
 - **Reasoning:** $p(\alpha|$ 'It is raining. $\alpha') \approx p(\alpha|$ 'It is raining, the road is wet. α').

- The data lies on a d_{surf} -dimensional surface, with $d_{surf} \le d_{in}$.
 - 'asdjgoijdskjasry asifudh' vs 'Good morning!'
- Symmetries $f(g \cdot x) = f(x) \Rightarrow$ learn only $f/G : \mathbb{R}^{d_{in}}/G \to \mathbb{R}^{d_{out}}$:
 - Grammar rules: $p(\alpha|$ 'Ann left. She α') $\approx p(\alpha|$ 'Ann left. Ann α').
 - **Reasoning:** $p(\alpha|$ 'It is raining. $\alpha') \approx p(\alpha|$ 'It is raining, the road is wet. α').
- Known symmetries: design specific features/kernels [Mallat, 2012].

- The data lies on a d_{surf} -dimensional surface, with $d_{surf} \leq d_{in}$.
 - 'asdjgoijdskjasry asifudh' vs 'Good morning!'
- Symmetries $f(g \cdot x) = f(x) \Rightarrow$ learn only $f/G : \mathbb{R}^{d_{in}}/G \to \mathbb{R}^{d_{out}}$:
 - Grammar rules: $p(\alpha|$ 'Ann left. She α') $\approx p(\alpha|$ 'Ann left. Ann α').
 - **Reasoning:** $p(\alpha|$ 'It is raining. $\alpha') \approx p(\alpha|$ 'It is raining, the road is wet. α').
- Known symmetries: design specific features/kernels [Mallat, 2012].
- Shallow network learn functions of the form f = h(Ax) with Rank $A < d_{full}$ [Bach, 2017, Abbe et al., 2021].
 - Learns translation symmetries: f(x + v) = f(x) for all $v \in \ker A$.

- The data lies on a d_{surf} -dimensional surface, with $d_{surf} \leq d_{in}$.
 - 'asdjgoijdskjasry asifudh' vs 'Good morning!'
- Symmetries $f(g \cdot x) = f(x) \Rightarrow$ learn only $f/G : \mathbb{R}^{d_{in}}/G \to \mathbb{R}^{d_{out}}$:
 - Grammar rules: $p(\alpha|$ 'Ann left. She α') $\approx p(\alpha|$ 'Ann left. Ann α').
 - **Reasoning:** $p(\alpha|$ 'It is raining. $\alpha') \approx p(\alpha|$ 'It is raining, the road is wet. α').
- Known symmetries: design specific features/kernels [Mallat, 2012].
- Shallow network learn functions of the form f = h(Ax) with Rank $A < d_{full}$ [Bach, 2017, Abbe et al., 2021].
 - Learns translation symmetries: f(x + v) = f(x) for all $v \in \ker A$.
- **Deep** Networks learn functions $f = g \circ h$ with small inner dimension.
 - Learns general symmetries $f = \mathbb{R}^{d_{in}} \to \mathbb{R}^{d_{in}}/G \to \mathbb{R}^{d_{out}}$ (e.g. f(Rx) = f(x) for rotations R).

Deep Neural Networks

Network with layers $\ell = 0, \ldots, L$ each containing w_{ℓ} neurons.

Activations

$$\begin{aligned} \alpha_0(x) &= x\\ \alpha_\ell(x) &= \sigma \left(W_\ell \alpha_{\ell-1}(x) + b_\ell \right)\\ f_\theta(x) &= W_L \sigma(\alpha_{L-1}) + b_L \end{aligned}$$

- Parameters $\theta = (W_1, b_1, \dots, W_L, b_L)$.
 - Initialized randomly $\theta \sim \mathcal{N}(\mathbf{0}, \sigma^2)$.
 - Trained with gradient descent on the loss

$$\mathcal{L}_{\lambda}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left\| f_{\theta}(\boldsymbol{x}_{i}) - f^{*}(\boldsymbol{x}_{i}) \right\|^{2} + \lambda \left\| \theta \right\|^{2}$$

Depth *L*, width $w = w_1 = \cdots = w_{L-1}$.

L₂-regularization

- L₂-Regularization is the 'simplest' regime that exhibits sparsity / symmetry learning.
 - Bias of DNNs is explicit (low parameter norm) instead of implicit (bias of GD/GD).
- Representation cost $R(f) = \min_{\theta: f_{\theta} = f} \|\theta\|^2$

$$\min_{\theta} C(f_{\theta}) + \lambda \left\|\theta\right\|^{2} = \min_{f} C(f) + \lambda R(f).$$

L₂-regularization

- L₂-Regularization is the 'simplest' regime that exhibits sparsity / symmetry learning.
 - Bias of DNNs is explicit (low parameter norm) instead of implicit (bias of GD/GD).
- **Representation cost** $R(f) = \min_{\theta: f_{\theta} = f} \|\theta\|^2$

$$\min_{\theta} C(f_{\theta}) + \lambda \left\|\theta\right\|^{2} = \min_{f} C(f) + \lambda R(f).$$

Linear FCNN $A_{\theta} = W_L \cdots W_1$: L_p -Schatten norm $R(A) = L \sum_{i=1}^{\text{Rank}A} s_i(A)^{\frac{2}{L}}$ [Dai et al., 2021].

Low-rank bias: learns translation symmetries A(x + v) = Ax for $v \in \ker A$.

L₂-regularization

- L₂-Regularization is the 'simplest' regime that exhibits sparsity / symmetry learning.
 - Bias of DNNs is explicit (low parameter norm) instead of implicit (bias of GD/GD).
- **Representation cost** $R(f) = \min_{\theta: f_{\theta} = f} \|\theta\|^2$

$$\min_{\theta} C(f_{\theta}) + \lambda \left\|\theta\right\|^{2} = \min_{f} C(f) + \lambda R(f).$$

Linear FCNN $A_{\theta} = W_L \cdots W_1$: L_p -Schatten norm $R(A) = L \sum_{i=1}^{\text{Rank}A} s_i(A)^{\frac{2}{L}}$ [Dai et al., 2021].

Low-rank bias: learns translation symmetries A(x + v) = Ax for $v \in \ker A$.

What is the rank of a nonlinear function?

Rank of nonlinear functions

There are multiple reasonable notions of rank for finite piecewise linear functions (FPLFs):

- Jacobian Rank: $\operatorname{Rank}_J(f; \Omega) = \max_{x \in \Omega} \operatorname{Rank}(Jf(x))$
- **Bottleneck Rank** Rank_{BN}($f; \Omega$): the smallest k s.t. $f = \Omega \xrightarrow{g} \mathbb{R}^k \xrightarrow{h} \mathbb{R}^{d_{out}}$.

Rank of nonlinear functions

There are multiple reasonable notions of rank for finite piecewise linear functions (FPLFs):

- Jacobian Rank: $\operatorname{Rank}_J(f; \Omega) = \max_{x \in \Omega} \operatorname{Rank} (Jf(x))$
- Bottleneck Rank $\operatorname{Rank}_{BN}(f; \Omega)$: the smallest k s.t. $f = \Omega \xrightarrow{g} \mathbb{R}^k \xrightarrow{h} \mathbb{R}^{d_{out}}$.

Both satisfy

- 1 $\operatorname{Rank}(f \circ g) \leq \min{\operatorname{Rank}f, \operatorname{Rank}g},$
- 2 $\operatorname{Rank}(f+g) \leq \operatorname{Rank}f + \operatorname{Rank}g$,
- 3 Rank $(x \mapsto Ax + b) = \text{Rank}A$.

Rank of nonlinear functions

There are multiple reasonable notions of rank for finite piecewise linear functions (FPLFs):

- Jacobian Rank: $\operatorname{Rank}_J(f; \Omega) = \max_{x \in \Omega} \operatorname{Rank} (Jf(x))$
- Bottleneck Rank $\operatorname{Rank}_{BN}(f; \Omega)$: the smallest k s.t. $f = \Omega \xrightarrow{g} \mathbb{R}^k \xrightarrow{h} \mathbb{R}^{d_{out}}$.

Both satisfy

1
$$\operatorname{Rank}(f \circ g) \leq \min{\operatorname{Rank}f, \operatorname{Rank}g},$$

- 2 $\operatorname{Rank}(f+g) \leq \operatorname{Rank}f + \operatorname{Rank}g$,
- 3 Rank $(x \mapsto Ax + b) = \text{Rank}A$.
- $\Rightarrow \operatorname{Rank} f \leq \min\{d_{in}, d_{out}\}$
- $\Rightarrow \operatorname{Rank} \phi \circ f \circ \psi = \operatorname{Rank} f \text{ for bijections } \phi, \psi.$

Infinite Depth Limit

The infinite depth representation cost $R^{(0)}(f; \Omega) := \lim_{L \to \infty} \frac{R(f; \Omega, L)}{L}$ is a notion of rank

Theorem (*Jacot 2023a*)

For a bounded Ω , $R^{(0)}$ satisfies properties (1,2,3) and

 $\operatorname{Rank}_{J}(f;\Omega) \leq \boldsymbol{R}^{(0)}(f;\Omega) \leq \operatorname{Rank}_{BN}(f;\Omega).$

Infinite Depth Limit

The infinite depth representation cost $R^{(0)}(f; \Omega) := \lim_{L \to \infty} \frac{R(f; \Omega, L)}{L}$ is a notion of rank

Theorem (*Jacot 2023a*)

For a bounded Ω , $R^{(0)}$ satisfies properties (1,2,3) and

 $\operatorname{Rank}_{J}(f;\Omega) \leq \boldsymbol{R}^{(0)}(f;\Omega) \leq \operatorname{Rank}_{BN}(f;\Omega).$

Conjecture: $R^{(0)}(f; \Omega) = \operatorname{Rank}_{BN}(f; \Omega)$. Proven for functions $f = \phi \circ A \circ \psi$ for bijections ϕ, ψ .

Symmetries lead to low BN-rank: $f^* : \Omega \to \Omega/G \to \mathbb{R}^{d_{out}} \Rightarrow \operatorname{Rank}_{BN}(f^*; \Omega) \leq \dim \Omega/G.$

Functions with symmetries require a small parameter norm.

Sketch of proof: Bottleneck Structure

Upper bound: For *f* of the form $\mathbb{R}^{d_{in}} \xrightarrow{g} \mathbb{R}^{k}_{+} \xrightarrow{h} \mathbb{R}^{d_{out}}$ represent *f* as:

- **1** L_g layers representing g.
- **2** $L L_g L_h$ representing the identity on \mathbb{R}_+^k .
- **3** L_h layers representing h.

Sketch of proof: Bottleneck Structure

Upper bound: For *f* of the form $\mathbb{R}^{d_{in}} \xrightarrow{g} \mathbb{R}^k_+ \xrightarrow{h} \mathbb{R}^{d_{out}}$ represent *f* as:

- **1** L_g layers representing g.
- **2** $L L_g L_h$ representing the identity on \mathbb{R}_+^k .
- **3** L_h layers representing h.

The identity layers each have parameter norm $||W_{\ell}||^2 = k$:

$$\frac{\left\|\theta\right\|^{2}}{L} = \frac{\left\|\theta_{g}\right\|^{2} + \left\|\theta_{h}\right\|^{2} + (L - L_{g} - L_{h})k}{L} \xrightarrow{L \to \infty} k.$$

Sketch of proof: Bottleneck Structure

Upper bound: For *f* of the form $\mathbb{R}^{d_{in}} \xrightarrow{g} \mathbb{R}^k_+ \xrightarrow{h} \mathbb{R}^{d_{out}}$ represent *f* as:

- **1** L_g layers representing g.
- **2** $L L_g L_h$ representing the identity on \mathbb{R}_+^k .
- **3** L_h layers representing h.

The identity layers each have parameter norm $||W_{\ell}||^2 = k$:

$$\frac{\|\theta\|^2}{L} = \frac{\|\theta_g\|^2 + \|\theta_h\|^2 + (L - L_g - L_h)k}{L} \xrightarrow{L \to \infty} k.$$

Lower bound: For all $x \in \Omega$ let $L \to \infty$ in

$$\|Jf(x)\|_{2/L}^{2/L} = \|W_L D_{L-1}(x) \cdots D_1(x) W_1\|_{2/L}^{2/L} \leq \frac{\|W_L\|_F^2 + \cdots + \|W_1\|_F^2}{L} = \frac{\|\theta\|^2}{L}.$$

First correction

Theorem (Jacot 2023b)

At any point x where $\operatorname{Rank} Jf(x) = R^{(0)}(f; \Omega)$,

 $2\log |Jf(x)|_+ \leq R^{(1)}(f;\Omega),$

1
$$R^{(0)}(f \circ g) = R^{(0)}f = R^{(0)}g \Rightarrow R^{(1)}(f \circ g) \le R^{(1)}f + R^{(1)}g,$$

2 $R^{(0)}(f + g) = R^{(0)}f + R^{(0)}g \Rightarrow R^{(1)}(f + g) \le R^{(1)}f + R^{(1)}g,$
3 Under some cond. on Ω , $R^{(1)}(x \mapsto Ax + b) = 2\log|A|_+.$

First correction

Theorem (Jacot 2023b)

At any point x where $\operatorname{Rank} Jf(x) = R^{(0)}(f; \Omega)$,

 $2\log |Jf(x)|_+ \leq R^{(1)}(f;\Omega),$

1
$$R^{(0)}(f \circ g) = R^{(0)}f = R^{(0)}g \Rightarrow R^{(1)}(f \circ g) \le R^{(1)}f + R^{(1)}g,$$

2 $R^{(0)}(f + g) = R^{(0)}f + R^{(0)}g \Rightarrow R^{(1)}(f + g) \le R^{(1)}f + R^{(1)}g,$
3 Under some cond. on Ω , $R^{(1)}(x \mapsto Ax + b) = 2\log|A|_+.$

Balance between dimension reduction $R^{(0)}$ and regularity $R^{(1)}$:

$$\min_{f} C(f(X)) + \lambda LR^{(0)}(f) + \lambda R^{(1)}(f).$$

Parameter norm and depth

Impact of the Output Dim.

- General symmetries ~: $f^*(x) = f^*(y)$ for all $x \sim y$.
 - $\blacksquare \operatorname{Rank}_{BN}(f^*;\Omega) \leq \dim \Omega/\sim.$
- Full Bottleneck dim $\Omega/\sim < \min\{d_{in}, d_{out}\}$:
 - Inner dimension is smaller than input and output.
 - Non-generic: measure zero amongst functions.

Impact of the Output Dim.

- General symmetries \sim : $f^*(x) = f^*(y)$ for all $x \sim y$.
 - Rank_{BN} $(f^*; \Omega) \leq \dim \Omega/\sim$.
- Full Bottleneck dim $\Omega/\sim < \min\{d_{in}, d_{out}\}$:
 - Inner dimension is smaller than input and output.
 - Non-generic: measure zero amongst functions.
- Half bottleneck dim $\Omega/\sim \geq d_{out}$:
 - 'Full symmetry' $x \sim_{full} y \iff f^*(x) = f^*(y)$ vs 'True symetry' (\sim) \prec (\sim_{full}).
 - **DNN** learn (\sim_{full}) instead of (\sim) in the bottleneck.
 - The true symmetry could be learned before the bottleneck.

Implications: Classification

- Class boundaries of a rank *k* classifier are topologically akin to dim. *k* classifications.
 - When k = 1, no tripoints (intersection of three classes)

Figure: Classification on 4 classes for two depths with L₂-regularization.

Symmetry overfitting?

- Finite data: always possible to fit with rank $1 \Rightarrow$ rank underestimation!
 - Learns 'spurious symmetries'.
 - Rank understimation is rare in practice. Why?

Symmetry overfitting?

- Finite data: always possible to fit with rank $1 \Rightarrow$ rank underestimation!
 - Learns 'spurious symmetries'.
 - Rank understimation is rare in practice. Why?

Theorem (A.J., 2023a)

Given f^* with $\operatorname{Rank}_J(f^*; \Omega) = k^* > 1$, then for all ϵ there is a constant c_{ϵ} such that for any BN-rank 1 function \hat{f} that fits $\hat{f}(x_i) = f^*(x_i)$ a dataset x_1, \ldots, x_N sampled i.i.d. from a distribution p with support Ω , we have $R^{(1)}(\hat{f}; \Omega, \sigma_a, L) > 2(1 - \frac{1}{k^*}) \log N + c_{\epsilon}$ with prob. at least $1 - \epsilon$.

Minima stability

Another possible explanation is that rank underestimating minima are unstable under reasonable learning rates $\eta \sim L^{-1}$:

Theorem (*A.J., 2023b*)

Given f^* with $\operatorname{Rank}_J(f^*; \Omega) = k^* > 1$, then with high probability over the sampling of a training set x_1, \ldots, x_N (sampled from a distribution with support Ω), we have that for any parameters θ of a deep enough network that represent a BN-rank 1 function f_{θ} that fits the training set $f_{\theta}(x_i) = f^*(x_i)$ with norm $\|\theta\|^2 = L + c_1$ then there is a point $x \in \Omega$ where

$$\|J_{\theta}f_{\theta}(x)\|_{F}^{2} \geq c''Le^{-c_{1}}N^{4-\frac{4}{k^{*}}}.$$

GD with learning rate η cannot converge to a minima with $\frac{2}{N} \|J_{\theta}f_{\theta}(x_i)\|_{op}^2 \geq \eta^{-1}$.

Representation geodesics

- **Representations** $\alpha_{\ell}(x) = ((W_{\ell} \cdot + b_{\ell}) \circ \sigma \circ \cdots \circ \sigma \circ (W_{1} \cdot + b_{1}))(x)$
- Infinite depth convergence of $\ell \mapsto \Sigma_{\ell}(x, y) = \alpha_{\ell}(x)^{T} \alpha_{\ell}(y)$?
 - Linear networks: $\Sigma_{\ell}(x, y) = x^{T} (A^{T}A)^{\frac{\ell}{L}} y$ 'straight line in log space'.

Representation geodesics

■ Representations $\alpha_{\ell}(x) = ((W_{\ell} \cdot + b_{\ell}) \circ \sigma \circ \cdots \circ \sigma \circ (W_{1} \cdot + b_{1}))(x)$

- Infinite depth convergence of $\ell \mapsto \Sigma_{\ell}(x, y) = \alpha_{\ell}(x)^{T} \alpha_{\ell}(y)$?
 - Linear networks: $\Sigma_{\ell}(x, y) = x^{T} (A^{T}A)^{\frac{\ell}{L}} y$ 'straight line in log space'.
- Limiting representations $K_{p} = \lim_{L \to \infty} \Sigma_{\ell}$ with $\frac{\ell}{L} \to p \in (0, 1)$ satisfy

$$\begin{split} R^{(0)}(f;\Omega) &= R^{(0)}(id \to K_{\rho};\Omega) = R^{(0)}(K_{\rho} \to f;\Omega), \\ R^{(1)}(f;\Omega) &= R^{(1)}(id \to K_{\rho};\Omega) + R^{(1)}(K_{\rho} \to f;\Omega). \end{split}$$

At any ratio $p \in (0, 1)$ with a continuous limit:

$$egin{aligned} & R^{(0)}(K_{
ho}
ightarrow K_{
ho};\Omega) = R^{(0)}(f;\Omega), \ & R^{(1)}(K_{
ho}
ightarrow K_{
ho};\Omega) = 0. \end{aligned}$$

Identity cost

- **E** Rank(*id*; Ω) defines a notion of dimension of Ω .
- **E** Rank_J(*id*; Ω) is maximum local dimension.
- Rank_{BN}(*id*; Ω) is embedding dimension.

Identity cost

- Rank(*id*; Ω) defines a notion of dimension of Ω.
- Rank_J(*id*; Ω) is maximum local dimension.
- Rank_{BN}(*id*; Ω) is embedding dimension.

Proposition

For a domain Ω with $\operatorname{Rank}_J(id; \Omega) = \operatorname{Rank}_{BN}(id; \Omega) = k$, then $R^{(1)}(id; \Omega) = 0$ if and only if Ω is k-planar and completely positive.

Piecewise continuous limit $\Sigma_{\rho} \Rightarrow k$ -planar repr. at almost every ratio p.

Identity cost

- Rank(*id*; Ω) defines a notion of dimension of Ω.
- Rank_J(*id*; Ω) is maximum local dimension.
- Rank_{BN}(*id*; Ω) is embedding dimension.

Proposition

For a domain Ω with $\operatorname{Rank}_J(id; \Omega) = \operatorname{Rank}_{BN}(id; \Omega) = k$, then $R^{(1)}(id; \Omega) = 0$ if and only if Ω is k-planar and completely positive.

- Piecewise continuous limit $\Sigma_{\rho} \Rightarrow k$ -planar repr. at almost every ratio p.
- But Σ_{ℓ} does not converge in general!

Bottleneck Structure on the Weights

The weights of almost all layers are approximately rank k:

Theorem

Given parameters θ of a depth L network, with $\|\theta\|^2 \le kL + c_1$ and a point x such that $\operatorname{Rank} Jf_{\theta}(x) = k$, then there are $w_{\ell} \times k$ (semi-)orthonormal V_{ℓ} such that

$$\sum_{\ell=1}^{L} \left\| W_{\ell} - V_{\ell} V_{\ell+1}^{\mathsf{T}}
ight\|_{\mathsf{F}}^2 \leq c_1 - 2 \log \left| J f_{ heta}(x)
ight|_+$$

thus for any $p \in (0, 1)$ there are at least (1 - p)L layers ℓ with

$$\left\| oldsymbol{W}_\ell - oldsymbol{V}_\ell oldsymbol{V}_{\ell-1}
ight\|_F^2 \leq rac{c_1 - 2 \log |Jf_ heta(x)|_+}{pL}$$

Convergence of the representations

The representations $\alpha_{\ell}(x)$ of almost all layers converge, assuming a stable network (so that GD with learning rate $\eta \sim L^{-1}$ can converge to it):

Theorem

If furthermore
$$\|J_{\theta}f_{\theta}(x)\|_{F}^{2} \leq cL$$
, then $\sum_{\ell=1}^{L} \|\alpha_{\ell-1}(x)\|_{2}^{2} \leq \frac{cLe^{\frac{2}{k}c_{1}}}{k|J_{f_{\theta}}(x)|_{+}^{2/k}}$ and thus for all

 $p\in(0,1)$ there are at least (1-p)L layers such that

$$\|\alpha_{\ell-1}(x)\|_{2}^{2} \leq \frac{1}{\rho} \frac{c e^{\frac{2}{k}c_{1}}}{k |Jf_{\theta}(x)|_{+}^{2/k}}$$

 \implies Symmetries are learned in the first o(L) layers as $L \rightarrow \infty$.

Convolutional Networks

- Inputs *x* and activations $\alpha_{\ell}(x)$ are $n \times n$ images with w_{ℓ} channels.
- Weights W_{ℓ} are multi-channel convolutions.
- **C**an represent a general translation equivariant functions f_{θ} .

Convolutional Networks

- Inputs *x* and activations $\alpha_{\ell}(x)$ are $n \times n$ images with w_{ℓ} channels.
- Weights W_{ℓ} are multi-channel convolutions.
- **Can represent a general translation equivariant functions** f_{θ} .
- Bottleneck structure:
 - The singular $s_{\omega,i}(W_{\ell})$ are indexed by frequency $\omega \in [0, n-1]^2$ and channel *i*.
 - In the bottleneck, only a few singular values are close to 1.

Learning Newtonian Mechanics

(a) Learning the trajectory of a 'ball' under gravity.

(b) Singular values of W_{ℓ} colored by frequency. The network keeps position and velocity in two freq. 1 pairs.

Conclusion

- Botleneck structure appears in *L*₂-regularized DNNs.
- Relations between:
 - Dimensionality inside the bottleneck.
 - Large depth *L* parameter norm.
 - Dimensionality of the symmetries of the task.
- To show: This breaks the curse of dimensionality!

Bibliography I

- Emmanuel Abbe, Enric Boix-Adserà, Matthew Stewart Brennan, Guy Bresler, and Dheeraj Mysore Nagaraj. The staircase property: How hierarchical structure can guide deep learning. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=fj6rFciApc.
- Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. High-dimensional limit theorems for SGD: Effective dynamics and critical scaling. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=Q38D6xxrKHe.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. The Journal of Machine Learning Research, 18(1):629-681, 2017.

- Zhen Dai, Mina Karzand, and Nathan Srebro. Representation costs of linear neural networks: Analysis and design. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=30dyjABdbC8.
- Arthur Jacot. Implicit bias of large depth networks: a notion of rank for nonlinear functions. In *The Eleventh International Conference on Learning Representations*, 2023a. URL https://openreview.net/forum?id=6iDHce-0B-a.

Arthur Jacot. Bottleneck structure in learned features: Low-dimension vs regularity tradeoff, 2023b.

Stéphane Mallat. Group invariant scattering. Communications on Pure and Applied Mathematics, 65(10):1331–1398, 2012.

• Complex system: $\partial_t x(t) = F(x(t))$.

• 'Macroscopic description': $u : \mathbb{R}^P \to \mathbb{R}^D$ for $D \ll P$ s.t.

 $\partial_t u(x(t)) \approx G(u(x(t))).$

• Complex system: $\partial_t x(t) = F(x(t))$.

• 'Macroscopic description': $u : \mathbb{R}^P \to \mathbb{R}^D$ for $D \ll P$ s.t.

 $\partial_t u(x(t)) \approx G(u(x(t))).$

- Rank 1 Matrix Factorization L(θ) = ||ww^T θθ^T||_F².
 Invariant under rotation of θ around w.
- Summary statistics [Arous et al., 2022]: $u(\theta) = (|w^T \theta|, ||(I ww^T)\theta||).$

Use a depth L = 25 DNN to learn:

$$\theta_0 \mapsto (\mathcal{L}(\theta_0), \mathcal{L}(\theta_1), \dots, \mathcal{L}(\theta_T))$$

Use a depth L = 25 DNN to learn: $\theta_0 \mapsto u(\theta_0) \mapsto (\mathcal{L}(\theta_0), \mathcal{L}(\theta_1), \dots, \mathcal{L}(\theta_T))$

Summary Statistics

