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m How can DNN learn text and image tasks successfully?
m DNNs capture a low-dim structure in these tasks.

m Error Ey
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m Grammar rules: p(«|'Ann left. She o) = p(«/|'Ann left. Ann o).
m Reasoning: p(a/'ltis raining. o’) =~ p(«/|'lt is raining, the road is wet. ).
m Known symmetries: design specific features/kernels [Mallat, 2012].

m Shallow network learn functions of the form f = h(Ax) with RankA < dj,y
[Bach, 2017, Abbe et al., 2021].

m Learns translation symmetries: f(x + v) = f(x) for all v € ker A.
m Deep Networks learn functions f = g o h with small inner dimension.
m Learns general symmetries f = R9% — k% /g — R%« (e.g. f(Rx) = f(x) for
rotations R).



Deep Neural Networks

Network with layers ¢ = 0, ..., L each containing w; neurons.
m Activations

ag(x) = x
Ozg(X) O'(Wgozg_1 (X) + bg)
fg(X) = WLU(aL_1) + b

m Parameters 0 = (W, by,..., W., by).
m Initialized randomly ¢ ~ N(0, 02).
m Trained with gradient descent on the loss

N
lefe X)) = £ 0a) |12+ A [10]]°.

m Depth L,widthw=w; =--- = w_4.
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m What is the rank of a nonlinear function?
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H Rank (x — Ax + b) = RankA.
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Infinite Depth Limit

The infinite depth representation cost RO)(f; Q) := lim;_,,, A" ig a notion of
rank

Theorem (Jacot 2023a)

For a bounded 2, R(®) satisfies properties (1,2,3) and

Ranky(f; Q) < RO(f; Q) < Rankgy(f; Q).



Infinite Depth Limit

The infinite depth representation cost RO)(f; Q) := lim;_,,, A" ig a notion of
rank
Theorem (Jacot 2023a)

For a bounded 2, R(®) satisfies properties (1,2,3) and

Ranky(f; Q) < RO(f; Q) < Rankgy(f; Q).

Conjecture: RO)(f; Q) = Rankgy(f; Q).
Proven for functions f = ¢ o A o ¢ for bijections ¢, 1.
m Symmetries lead to low BN-rank: f* : Q — @/ — R%u =
Rankpgy(f*; Q) < dim ©@/a.
m Functions with symmetries require a small parameter norm.
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Upper bound: For f of the form R9% % RK N Rdout represent f as:
E L, layers representing g.
B L - Ly — L, representing the identity on Rﬁ.
B L layers representing h.

The identity layers each have parameter norm ||W,||? = k:
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Lower bound: Forall x € Qlet L — oo in

2 2 2
o [Wille +- -+ Wil _ [19]]

[ ()2 = WD (x) - Dy () WA [ < [ L

2/L



First correction

Theorem (Jacot 2023b)

At any point x where RankJf(x) = RO)(f; Q),
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Theorem (Jacot 2023b)

At any point x where RankJf(x) = RO)(f; Q),

2log |Jf(x)], < RO(f;Q),

1] R(O)(fog) — RO)f — R(O)g:> R(1)(fog) < RMf + /:;(1)9,
B RO(f+g) = ROf+ ROg = RO(f + g) < RVf+ R(Vg,
B Under some cond. on Q, R (x — Ax + b) = 2log |A|, .

Balance between dimension reduction R(®) and regularity R("):

min C(f(X)) + ALRO(£) + XRM(¥).



Parameter norm and depth

1204

1004

80

lel*

404

20

60

Rank(W,p) =3
Rank(W,p) =2
X Rank(Wip)=1
X Rank(W;) =0
— 3L+32
2L +34
— L+25

X XX XXX

5 10 15 20 25

(a) Parameter norm and depth

30

2.0
A C
151 1.5
1.07 1.0

0.5 \ 2? 0.5 \ é
0.0 0.0

154 B D
1.51
1.01
1.0
0.5 \ Z 0.5 ‘ é
0.01 0.01
0 5 10 0 5 10 15 20
4 4

(b) Bottleneck structure at different depths.
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Impact of the Output Dim.

m General symmetries ~: f*(x) = f*(y) for all x ~ y.
B Rankgy(f*; Q) < dim 2/~.
m Full Bottleneck dim 2/~ < min{di,, dout }:
m Inner dimension is smaller than input and output.
m Non-generic: measure zero amongst functions.
m Half bottleneck dim @/~ > dy:
m ‘Full symmetry’ x ~qy y <= *(x) = f*(y) vs True symetry’ (~) < (~pun).
m DNN learn (~yy) instead of (~) in the bottleneck.
m The true symmetry could be learned before the bottleneck.



Implications: Classification

m Class boundaries of a rank k classifier are topologically akin to dim. k
classifications.
m When k = 1, no tripoints (intersection of three classes)

52 o 1 2

(c)L=2,A=10"° (d)L=9,x=10"°

-3 -2 -1 0 1 2 3

Figure: Classification on 4 classes for two depths with Lo-regularization.
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Symmetry overfitting?

m Finite data: always possible to fit with rank 1 = rank underestimation!
m Learns ‘spurious symmetries’.
m Rank understimation is rare in practice. Why?

Theorem (A.J., 2023a)

Given f* with Rank,(f*; Q) = k* > 1, then for all ¢ there is a constant c. such that
for any BN-rank 1 function f that fits f(x;) = f*(x;) a dataset x1, . .., Xy sampled
i.i.d. from a distribution p with support 2, we have

R(f,Q,04,L) > 2 (1 — %) log N + c. with prob. at least1 — .



Minima stability

Another possible explanation is that rank underestimating minima are unstable
under reasonable learning rates  ~ L~ 1:

Theorem (A.J., 2023b)

Given f* with Ranky(f*; Q) = k* > 1, then with high probability over the sampling
of a training set x4, . .., xn (sampled from a distribution with support 2), we have
that for any parameters 6 of a deep enough network that represent a BN-rank 1
function f, that fits the training set f,(x;) = f*(x;) with norm ||6||> = L + ¢, then
there is a point x € Q where

oo (X) |2 > ¢ Le™% N*—+=

GD with learning rate  cannot converge to a minima with % ||J9f9(x,-)||(2)p >n
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m Representations ay(x) = (W, - +b)oco---ooo (W - +by))(x)
m Infinite depth convergence of £ — X4(x, y) = as(x)Tae(y)?

£

m Linear networks: X,(x,y) = x (ATA)" y ‘straight line in log space’.
m Limiting representations K, = lim;_, >, with { — p € (0, 1) satisfy

ROY(f, Q) = RO(id — K, Q) = RO(K, — £,Q),
RO(f, Q) = RI(id — Ky, Q) + RD(K, — £,Q).
m At any ratio p € (0, 1) with a continuous limit:
RO(K, — K, Q) = RO(£; Q),
RM(K, — Kp; Q) = 0.
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Identity cost

m Rank(id; Q) defines a notion of dimension of .
m Ranky(id; Q) is maximum local dimension.
m Rankgy(id; Q) is embedding dimension.

For a domain Q with Rank (id; Q) = Rankgy(id; Q) = k, then R()(id; Q) = 0 if and
only if Q is k-planar and completely positive.

m Piecewise continuous limit X, = k-planar repr. at almost every ratio p.

m But X, does not converge in general!



Bottleneck Structure on the Weights

The weights of almost all layers are approximately rank k:

Given parameters 6 of a depth L network, with ||0||> < kL + c¢; and a point x such
that RankJfy(x) = k, then there are w; x k (semi-)orthonormal V, such that

i [We — ViV | < e — 2108 (o)1,
/=1

thus for any p € (0, 1) there are at least (1 — p)L layers ¢ with

c1 — 2log |Jfp(X)|
pL '

T 2
o .



Convergence of the representations

The representations «ay(x) of almost all layers converge, assuming a stable
network (so that GD with learning rate n ~ L~ can converge to it):

Theorem

20
If furthermore ||Jpfy(x)||% < cL, then S5 [lau_1(x)|5 < #k);/k and thus for all
(X e

p € (0,1) there are at least (1 — p)L layers such that

2
1 cex“
lag—1 (X)IIE < —————.
Pk |ty (x)| "

— Symmetries are learned in the first o(L) layers as L — oc.
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Convolutional Networks

m Inputs x and activations ay,(x) are n x nimages with w, channels.
m Weights W, are multi-channel convolutions.
m Can represent a general translation equivariant functions f,.

m Bottleneck structure:

m The singular s,, ;(W,) are indexed by frequency w € [0, n — 1]2 and channel i.
m In the bottleneck, only a few singular values are close to 1.



Learning Newtonian Mechanics

. . . - N
S
3
0 X
N /
0.5 —— w=(0,0)
w=(0,1)
— w=(1,0)
0.0 other fegs. w

[ 2 4 6 8 10

(a) Learning the trajectory of a ‘ball’ under (b) Singular values of W, colored by
gravity. frequency. The network keeps position and
velocity in two freq. 1 pairs.



Conclusion

m Botleneck structure appears in Lo-regularized DNNs.
m Relations between:

m Dimensionality inside the bottleneck.
m Large depth L parameter norm.
m Dimensionality of the symmetries of the task.

m To show: This breaks the curse of dimensionality!
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Implications: Summary Statistics

m Complex system: 0:x(t) = F(x(t)).
m ‘Macroscopic description’: u: RP — RP for D < P s.t.

dru(x(t)) ~ G(u(x(1)))-

m Rank 1 Matrix Factorization £(¢) = ||jwwT — 997||f__.
m Invariant under rotation of # around w.

m Summary statistics [Arous et al., 2022]: u(#) = (w6,

(1= wwT)a|)).
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Implications: Summary Statistics

Use a depth L = 25 DNN to learn:

fo — u(bo) — (L(6o), L(61),...,L(07))

jw

0 5 10 15 20
L

(i) Singular values of a;(X).

1004

si(Wy)

(j) Singular values of W,.



Summary Statistics
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(m) Rotation symmetry at
layer ¢ = 2.



