Bottleneck Structure in Large Depth Networks Mechanisms of Symmetry Learning

Arthur Jacot

New York University
November 2, 2023

Curse of Dimensionality

■ Goal: learn a function $f^{*}: \mathbb{R}^{d_{i n}} \rightarrow \mathbb{R}^{d_{\text {out }}}$ from N random observations $y_{i}=f\left(x_{i}\right)$.

Curse of Dimensionality

$■$ Goal: learn a function $f^{*}: \mathbb{R}^{d_{\text {in }}} \rightarrow \mathbb{R}^{d_{\text {out }}}$ from N random observations $y_{i}=f\left(x_{i}\right)$.

- Linear Models / Kernel Methods:

■ Given data distribution, decompose $f^{*}=\sum_{k=1}^{\infty} \beta_{k} f_{k}$ (kernel PCA).

- For large N : estimate $\hat{f} \approx \sum_{k=1}^{N} \beta_{k} f_{k} \Longrightarrow \mathbb{E}_{x}\left\|\hat{f}(x)-f^{*}(x)\right\|^{2} \approx \sum_{k=N+1}^{\infty} \beta_{k}^{2}$.

Curse of Dimensionality

$■$ Goal: learn a function $f^{*}: \mathbb{R}^{d_{\text {in }}} \rightarrow \mathbb{R}^{d_{\text {out }}}$ from N random observations $y_{i}=f\left(x_{i}\right)$.

- Linear Models / Kernel Methods:

■ Given data distribution, decompose $f^{*}=\sum_{k=1}^{\infty} \beta_{k} f_{k}$ (kernel PCA).

- For large N : estimate $\hat{f} \approx \sum_{k=1}^{N} \beta_{k} f_{k} \Longrightarrow \mathbb{E}_{x}\left\|\hat{f}(x)-f^{*}(x)\right\|^{2} \approx \sum_{k=N+1}^{\infty} \beta_{k}^{2}$.
- Polynomial basis: $f^{*}(x)=\sum_{m \in \mathbb{N}^{d_{i n}}} \beta_{m} x_{1}^{m_{1}} \cdots x_{d_{i n}}^{m_{d_{i n}}}$.
$■$ Number of degree m monomial: $m^{d_{i n}}$.

Curse of Dimensionality

■ Goal: learn a function $f^{*}: \mathbb{R}^{d_{i n}} \rightarrow \mathbb{R}^{d_{\text {out }}}$ from N random observations $y_{i}=f\left(x_{i}\right)$.
■ Linear Models / Kernel Methods:
■ Given data distribution, decompose $f^{*}=\sum_{k=1}^{\infty} \beta_{k} f_{k}$ (kernel PCA).
■ For large N : estimate $\hat{f} \approx \sum_{k=1}^{N} \beta_{k} f_{k} \Longrightarrow \mathbb{E}_{x}\left\|\hat{f}(x)-f^{*}(x)\right\|^{2} \approx \sum_{k=N+1}^{\infty} \beta_{k}^{2}$.
$■$ Polynomial basis: $f^{*}(x)=\sum_{m \in \mathbb{N} d_{i n}} \beta_{m} x_{1}^{m_{1}} \cdots x_{d_{i n}}^{m_{d_{i n}}}$.
■ Number of degree m monomial: $m^{d_{i n}}$.
■ If $\left|\beta_{m}\right|^{2} \sim\|m\|_{1}^{-\alpha-d_{i n}}$ then k-largest coefficient $\left|\beta_{k}\right|^{2} \sim k^{-\frac{\alpha+d_{i n}}{d_{i n}}}$.

- Error $\mathbb{E}_{x}\left\|\hat{f}(x)-f^{*}(x)\right\|^{2} \approx N^{-\frac{\alpha}{d_{i n}}}$.

Curse of Dimensionality

■ Goal: learn a function $f^{*}: \mathbb{R}^{d_{i n}} \rightarrow \mathbb{R}^{d_{\text {out }}}$ from N random observations $y_{i}=f\left(x_{i}\right)$.
■ Linear Models / Kernel Methods:
■ Given data distribution, decompose $f^{*}=\sum_{k=1}^{\infty} \beta_{k} f_{k}$ (kernel PCA).
■ For large N : estimate $\hat{f} \approx \sum_{k=1}^{N} \beta_{k} f_{k} \Longrightarrow \mathbb{E}_{x}\left\|\hat{f}(x)-f^{*}(x)\right\|^{2} \approx \sum_{k=N+1}^{\infty} \beta_{k}^{2}$.
$■$ Polynomial basis: $f^{*}(x)=\sum_{m \in \mathbb{N} d_{i n}} \beta_{m} x_{1}^{m_{1}} \cdots x_{d_{i n}}^{m_{d_{i n}}}$.
$■$ Number of degree m monomial: $m^{d_{i n}}$.
■ If $\left|\beta_{m}\right|^{2} \sim\|m\|_{1}^{-\alpha-d_{i n}}$ then k-largest coefficient $\left|\beta_{k}\right|^{2} \sim k^{-\frac{\alpha+d_{i n}}{d_{i n}}}$.

- Error $\mathbb{E}_{x}\left\|\hat{f}(x)-f^{*}(x)\right\|^{2} \approx N^{-\frac{\alpha}{d_{i n}}}$.

■ How can DNN learn text and image tasks successfully?

- DNNs capture a low-dim structure in these tasks.

Breaking the Curse of Dimensionality

Possible structures:
■ The data lies on a $d_{\text {surf }}$-dimensional surface, with $d_{\text {surf }} \leq d_{i n}$.
■ 'asdjgoijdskjasry asifudh' vs ‘Good morning!'

Breaking the Curse of Dimensionality

Possible structures:
■ The data lies on a $d_{\text {surf }}$-dimensional surface, with $d_{\text {surf }} \leq d_{\text {in }}$.
■ 'asdjgoijdskjasry asifudh' vs 'Good morning!'
■ Symmetries $f(g \cdot x)=f(x) \Rightarrow$ learn only $f / G: \mathbb{R}^{d_{\text {in }}} / G \rightarrow \mathbb{R}^{d_{\text {out }}}$:
■ Grammar rules: $\boldsymbol{p}\left(\left.\alpha\right|^{\prime}\right.$ Ann left. She $\left.\alpha^{\prime}\right) \approx p\left(\left.\alpha\right|^{\prime}\right.$ Ann left. Ann $\left.\alpha^{\prime}\right)$.
\square Reasoning: $p\left(\left.\alpha\right|^{\prime}\right.$ It is raining. $\left.\alpha^{\prime}\right) \approx p\left(\left.\alpha\right|^{\prime}\right.$ It is raining, the road is wet. $\left.\alpha^{\prime}\right)$.

Breaking the Curse of Dimensionality

Possible structures:
■ The data lies on a $d_{\text {surf }}$-dimensional surface, with $d_{\text {surf }} \leq d_{\text {in }}$.
■ 'asdjgoijdskjasry asifudh' vs 'Good morning!'
■ Symmetries $f(g \cdot x)=f(x) \Rightarrow$ learn only $f / G: \mathbb{R}^{d_{\text {in }}} / G \rightarrow \mathbb{R}^{d_{\text {out }}}$:
■ Grammar rules: $\boldsymbol{p}\left(\left.\alpha\right|^{\prime}\right.$ 'Ann left. She $\left.\alpha^{\prime}\right) \approx p\left(\alpha \mid\right.$ 'Ann left. Ann $\left.\alpha^{\prime}\right)$.

- Reasoning: $p\left(\left.\alpha\right|^{\prime}\right.$ It is raining. $\left.\alpha^{\prime}\right) \approx p\left(\left.\alpha\right|^{\prime}\right.$ It is raining, the road is wet. $\left.\alpha^{\prime}\right)$.

■ Known symmetries: design specific features/kernels [Mallat, 2012].

Breaking the Curse of Dimensionality

Possible structures:
■ The data lies on a $d_{\text {surf }}$-dimensional surface, with $d_{\text {surf }} \leq d_{\text {in }}$.
■ 'asdjgoijdskjasry asifudh' vs 'Good morning!'
■ Symmetries $f(g \cdot x)=f(x) \Rightarrow$ learn only $f / G: \mathbb{R}^{d_{i n}} / G \rightarrow \mathbb{R}^{d_{\text {out }}}$:
■ Grammar rules: $\boldsymbol{p}\left(\left.\alpha\right|^{\prime}\right.$ 'Ann left. She $\left.\alpha^{\prime}\right) \approx p\left(\alpha \mid\right.$ 'Ann left. Ann $\left.\alpha^{\prime}\right)$.

- Reasoning: $p\left(\left.\alpha\right|^{\prime}\right.$ It is raining. $\left.\alpha^{\prime}\right) \approx p\left(\left.\alpha\right|^{\prime}\right.$ It is raining, the road is wet. $\left.\alpha^{\prime}\right)$.

■ Known symmetries: design specific features/kernels [Mallat, 2012].

- Shallow network learn functions of the form $f=h(A x)$ with $\operatorname{Rank} A<d_{\text {full }}$ [Bach, 2017, Abbe et al., 2021].

■ Learns translation symmetries: $f(x+v)=f(x)$ for all $v \in \operatorname{ker} A$.

Breaking the Curse of Dimensionality

Possible structures:
■ The data lies on a $d_{\text {surf }}$-dimensional surface, with $d_{\text {surf }} \leq d_{i n}$.
■ 'asdjgoijdskjasry asifudh' vs 'Good morning!'
■ Symmetries $f(g \cdot x)=f(x) \Rightarrow$ learn only $f / G: \mathbb{R}^{d_{\text {in }}} / G \rightarrow \mathbb{R}^{d_{\text {out }}}$:
■ Grammar rules: $\boldsymbol{p}\left(\left.\alpha\right|^{\prime}\right.$ 'Ann left. She $\left.\alpha^{\prime}\right) \approx p\left(\alpha \mid\right.$ 'Ann left. Ann $\left.\alpha^{\prime}\right)$.

- Reasoning: $p\left(\left.\alpha\right|^{\prime}\right.$ It is raining. $\left.\alpha^{\prime}\right) \approx p\left(\left.\alpha\right|^{\prime}\right.$ It is raining, the road is wet. $\left.\alpha^{\prime}\right)$.

■ Known symmetries: design specific features/kernels [Mallat, 2012].
■ Shallow network learn functions of the form $f=h(A x)$ with $\operatorname{Rank} A<d_{\text {full }}$ [Bach, 2017, Abbe et al., 2021].

■ Learns translation symmetries: $f(x+v)=f(x)$ for all $v \in \operatorname{ker} A$.
■ Deep Networks learn functions $f=g \circ h$ with small inner dimension.
$■$ Learns general symmetries $f=\mathbb{R}^{d_{\text {in }}} \rightarrow \mathbb{R}^{d_{\text {i }}} / G \rightarrow \mathbb{R}^{d_{\text {out }}}$ (e.g. $f(R x)=f(x)$ for rotations R).

Deep Neural Networks

Network with layers $\ell=0, \ldots, L$ each containing w_{ℓ} neurons.

- Activations

$$
\begin{aligned}
\alpha_{0}(x) & =x \\
\alpha_{\ell}(x) & =\sigma\left(W_{\ell} \alpha_{\ell-1}(x)+b_{\ell}\right) \\
f_{\theta}(x) & =W_{L} \sigma\left(\alpha_{L-1}\right)+b_{L}
\end{aligned}
$$

■ Parameters $\theta=\left(W_{1}, b_{1}, \ldots, W_{L}, b_{L}\right)$.
■ Initialized randomly $\theta \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

- Trained with gradient descent on the loss

$$
\mathcal{L}_{\lambda}(\theta)=\frac{1}{N} \sum_{i=1}^{N}\left\|f_{\theta}\left(x_{i}\right)-f^{*}\left(x_{i}\right)\right\|^{2}+\lambda\|\theta\|^{2} .
$$

■ Depth L, width $w=w_{1}=\cdots=w_{L-1}$.

L_{2}-regularization

- L_{2}-Regularization is the 'simplest' regime that exhibits sparsity / symmetry learning.

■ Bias of DNNs is explicit (low parameter norm) instead of implicit (bias of GD/GD).
■ Representation cost $R(f)=\min _{\theta: f_{\theta}=f}\|\theta\|^{2}$

$$
\min _{\theta} C\left(f_{\theta}\right)+\lambda\|\theta\|^{2}=\min _{f} C(f)+\lambda R(f) .
$$

L_{2}-regularization

- L_{2}-Regularization is the 'simplest' regime that exhibits sparsity / symmetry learning.

■ Bias of DNNs is explicit (low parameter norm) instead of implicit (bias of GD/GD).
■ Representation cost $R(f)=\min _{\theta: f_{\theta}=f}\|\theta\|^{2}$

$$
\min _{\theta} C\left(f_{\theta}\right)+\lambda\|\theta\|^{2}=\min _{f} C(f)+\lambda R(f) .
$$

■ Linear FCNN $A_{\theta}=W_{L} \cdots W_{1}: L_{p}$-Schatten norm $R(A)=L \sum_{i=1}^{\operatorname{Rank} A} s_{i}(A)^{\frac{2}{L}}$ [Dai et al., 2021].

■ Low-rank bias: learns translation symmetries $A(x+v)=A x$ for $v \in \operatorname{ker} A$.

L_{2}-regularization

- L_{2}-Regularization is the 'simplest' regime that exhibits sparsity / symmetry learning.
- Bias of DNNs is explicit (low parameter norm) instead of implicit (bias of GD/GD).
- Representation cost $R(f)=\min _{\theta: f_{\theta}=f}\|\theta\|^{2}$

$$
\min _{\theta} C\left(f_{\theta}\right)+\lambda\|\theta\|^{2}=\min _{f} C(f)+\lambda R(f) .
$$

■ Linear FCNN $A_{\theta}=W_{L} \cdots W_{1}: L_{p}$-Schatten norm $R(A)=L \sum_{i=1}^{\operatorname{Rank} A} s_{i}(A)^{\frac{2}{L}}$ [Dai et al., 2021].

- Low-rank bias: learns translation symmetries $A(x+v)=A x$ for $v \in \operatorname{ker} A$.

■ What is the rank of a nonlinear function?

Rank of nonlinear functions

There are multiple reasonable notions of rank for finite piecewise linear functions (FPLFs):

■ Jacobian Rank: $\operatorname{Rank}_{J}(f ; \Omega)=\max _{x \in \Omega} \operatorname{Rank}(\operatorname{Jf}(x))$
■ Bottleneck Rank $\operatorname{Rank}_{B N}(f ; \Omega)$: the smallest k s.t. $f=\Omega \xrightarrow{g} \mathbb{R}^{k} \xrightarrow{h} \mathbb{R}^{\text {dout }}$.

Rank of nonlinear functions

There are multiple reasonable notions of rank for finite piecewise linear functions (FPLFs):

■ Jacobian Rank: $\operatorname{Rank}_{J}(f ; \Omega)=\max _{x \in \Omega} \operatorname{Rank}(J f(x))$
■ Bottleneck Rank $\operatorname{Rank}_{B N}(f ; \Omega)$: the smallest k s.t. $f=\Omega \xrightarrow{g} \mathbb{R}^{k} \xrightarrow{h} \mathbb{R}^{\text {dout }^{\prime}}$. Both satisfy
$1 \operatorname{Rank}(f \circ g) \leq \min \{\operatorname{Rank} f, \operatorname{Rank} g\}$,
$2 \operatorname{Rank}(f+g) \leq \operatorname{Rank} f+\operatorname{Rank} g$,
$3 \operatorname{Rank}(x \mapsto A x+b)=\operatorname{Rank} A$.

Rank of nonlinear functions

There are multiple reasonable notions of rank for finite piecewise linear functions (FPLFs):
■ Jacobian Rank: $\operatorname{Rank}_{J}(f ; \Omega)=\max _{x \in \Omega} \operatorname{Rank}(J f(x))$

- Bottleneck Rank $\operatorname{Rank}_{B N}(f ; \Omega)$: the smallest k s.t. $f=\Omega \xrightarrow{g} \mathbb{R}^{k} \xrightarrow{h} \mathbb{R}^{d_{\text {out }}}$. Both satisfy
$1 \operatorname{Rank}(f \circ g) \leq \min \{\operatorname{Rank} f, \operatorname{Rank} g\}$,
$2 \operatorname{Rank}(f+g) \leq \operatorname{Rank} f+\operatorname{Rank} g$,
$3 \operatorname{Rank}(x \mapsto A x+b)=\operatorname{Rank} A$.
$\Rightarrow \operatorname{Rank} f \leq \min \left\{d_{\text {in }}, d_{\text {out }}\right\}$
$\Rightarrow \operatorname{Rank} \phi \circ f \circ \psi=\operatorname{Rank} f$ for bijections ϕ, ψ.

Infinite Depth Limit

The infinite depth representation cost $R^{(0)}(f ; \Omega):=\lim _{L \rightarrow \infty} \frac{R(f ; \Omega, L)}{L}$ is a notion of rank

Theorem (Jacot 2023a)

For a bounded $\Omega, R^{(0)}$ satisfies properties $(1,2,3)$ and

$$
\operatorname{Rank}_{J}(f ; \Omega) \leq R^{(0)}(f ; \Omega) \leq \operatorname{Rank}_{B N}(f ; \Omega)
$$

Infinite Depth Limit

The infinite depth representation cost $R^{(0)}(f ; \Omega):=\lim _{L \rightarrow \infty} \frac{R(f ; \Omega, L)}{L}$ is a notion of rank

Theorem (Jacot 2023a)

For a bounded $\Omega, R^{(0)}$ satisfies properties $(1,2,3)$ and

$$
\operatorname{Rank}_{J}(f ; \Omega) \leq R^{(0)}(f ; \Omega) \leq \operatorname{Rank}_{B N}(f ; \Omega)
$$

Conjecture: $R^{(0)}(f ; \Omega)=\operatorname{Rank}_{B N}(f ; \Omega)$.
Proven for functions $f=\phi \circ A \circ \psi$ for bijections ϕ, ψ.
■ Symmetries lead to low BN-rank: $f^{*}: \Omega \rightarrow \Omega / G \rightarrow \mathbb{R}^{d_{\text {out }}} \Rightarrow$ $\operatorname{Rank}_{B N}\left(f^{*} ; \Omega\right) \leq \operatorname{dim}^{\Omega} / G$.
■ Functions with symmetries require a small parameter norm.

Sketch of proof: Bottleneck Structure

Upper bound: For f of the form $\mathbb{R}^{d_{i n}} \xrightarrow{g} \mathbb{R}_{+}^{k} \xrightarrow{h} \mathbb{R}^{d_{\text {out }}}$ represent f as:
$1 L_{g}$ layers representing g.
$2 L-L_{g}-L_{h}$ representing the identity on \mathbb{R}_{+}^{k}.
$3 L_{h}$ layers representing h.

Sketch of proof: Bottleneck Structure

Upper bound: For f of the form $\mathbb{R}^{d_{\text {in }}} \xrightarrow{g} \mathbb{R}_{+}^{k} \xrightarrow{h} \mathbb{R}^{d_{\text {out }}}$ represent f as:
$1 L_{g}$ layers representing g.
$2 L-L_{g}-L_{h}$ representing the identity on \mathbb{R}_{+}^{k}.
$3 L_{h}$ layers representing h.
The identity layers each have parameter norm $\left\|W_{\ell}\right\|^{2}=k$:

$$
\frac{\|\theta\|^{2}}{L}=\frac{\left\|\theta_{g}\right\|^{2}+\left\|\theta_{h}\right\|^{2}+\left(L-L_{g}-L_{h}\right) k}{L} \xrightarrow{L \rightarrow \infty} k .
$$

Sketch of proof: Bottleneck Structure

Upper bound: For f of the form $\mathbb{R}^{d_{i n}} \xrightarrow{g} \mathbb{R}_{+}^{k} \xrightarrow{h} \mathbb{R}^{d_{\text {out }}}$ represent f as:
$1 L_{g}$ layers representing g.
$2 L-L_{g}-L_{h}$ representing the identity on \mathbb{R}_{+}^{k}.
$3 L_{h}$ layers representing h.
The identity layers each have parameter norm $\left\|W_{\ell}\right\|^{2}=k$:

$$
\frac{\|\theta\|^{2}}{L}=\frac{\left\|\theta_{g}\right\|^{2}+\left\|\theta_{h}\right\|^{2}+\left(L-L_{g}-L_{h}\right) k}{L} \xrightarrow{L \rightarrow \infty} k .
$$

Lower bound: For all $x \in \Omega$ let $L \rightarrow \infty$ in

$$
\|J f(x)\|_{2 / L}^{2 / L}=\left\|W_{L} D_{L-1}(x) \cdots D_{1}(x) W_{1}\right\|_{2 / L}^{2 / L} \leq \frac{\left\|W_{L}\right\|_{F}^{2}+\cdots+\left\|W_{1}\right\|_{F}^{2}}{L}=\frac{\|\theta\|^{2}}{L}
$$

First correction

Theorem (Jacot 2023b)

At any point x where $\operatorname{Rank} J f(x)=R^{(0)}(f ; \Omega)$,

$$
2 \log |J f(x)|_{+} \leq R^{(1)}(f ; \Omega)
$$

$1 R^{(0)}(f \circ g)=R^{(0)} f=R^{(0)} g \Rightarrow R^{(1)}(f \circ g) \leq R^{(1)} f+R^{(1)} g$,
$2 R^{(0)}(f+g)=R^{(0)} f+R^{(0)} g \Rightarrow R^{(1)}(f+g) \leq R^{(1)} f+R^{(1)} g$,
3 Under some cond. on $\Omega, R^{(1)}(x \mapsto A x+b)=2 \log |A|_{+}$.

First correction

Theorem (Jacot 2023b)

At any point x where RankJf(x) $=R^{(0)}(f ; \Omega)$,

$$
2 \log |J f(x)|_{+} \leq R^{(1)}(f ; \Omega)
$$

$1 R^{(0)}(f \circ g)=R^{(0)} f=R^{(0)} g \Rightarrow R^{(1)}(f \circ g) \leq R^{(1)} f+R^{(1)} g$,
$2 R^{(0)}(f+g)=R^{(0)} f+R^{(0)} g \Rightarrow R^{(1)}(f+g) \leq R^{(1)} f+R^{(1)} g$,
3 Under some cond. on $\Omega, R^{(1)}(x \mapsto A x+b)=2 \log |A|_{+}$.
Balance between dimension reduction $R^{(0)}$ and regularity $R^{(1)}$:

$$
\min _{f} C(f(X))+\lambda L R^{(0)}(f)+\lambda R^{(1)}(f) .
$$

Parameter norm and depth

(a) Parameter norm and depth

(b) Bottleneck structure at different depths.

Impact of the Output Dim.

■ General symmetries $\sim: f^{*}(x)=f^{*}(y)$ for all $x \sim y$.
■ $\operatorname{Rank}_{B N}\left(f^{*} ; \Omega\right) \leq \operatorname{dim} \Omega / \sim$.
■ Full Bottleneck $\operatorname{dim} \Omega / \sim<\min \left\{d_{\text {in }}, d_{\text {out }}\right\}$:

- Inner dimension is smaller than input and output.
- Non-generic: measure zero amongst functions.

Impact of the Output Dim.

■ General symmetries $\sim: f^{*}(x)=f^{*}(y)$ for all $x \sim y$.
■ $\operatorname{Rank}_{B N}\left(f^{*} ; \Omega\right) \leq \operatorname{dim} \Omega / \sim$.
■ Full Bottleneck $\operatorname{dim} \Omega / \sim<\min \left\{d_{\text {in }}, d_{\text {out }}\right\}$:

- Inner dimension is smaller than input and output.
- Non-generic: measure zero amongst functions.

■ Half bottleneck $\operatorname{dim} \Omega / \sim \geq d_{\text {out }}$:
■ 'Full symmetry' $x \sim_{\text {full }} y \Longleftrightarrow f^{*}(x)=f^{*}(y)$ vs ‘True symetry' $(\sim) \prec\left(\sim_{\text {full }}\right)$.

- DNN learn $(\sim$ full $)$ instead of (\sim) in the bottleneck.

■ The true symmetry could be learned before the bottleneck.

Implications: Classification

- Class boundaries of a rank k classifier are topologically akin to dim. k classifications.
- When $k=1$, no tripoints (intersection of three classes)

Figure: Classification on 4 classes for two depths with L_{2}-regularization.

Symmetry overfitting?

■ Finite data: always possible to fit with rank $1 \Rightarrow$ rank underestimation!
■ Learns 'spurious symmetries'.
■ Rank understimation is rare in practice. Why?

Symmetry overfitting?

■ Finite data: always possible to fit with rank $1 \Rightarrow$ rank underestimation!
■ Learns 'spurious symmetries'.
■ Rank understimation is rare in practice. Why?

Theorem (A.J., 2023a)

Given f^{*} with $\operatorname{Rank}_{J}\left(f^{*} ; \Omega\right)=k^{*}>1$, then for all ϵ there is a constant c_{ϵ} such that for any BN-rank 1 function \hat{f} that fits $\hat{f}\left(x_{i}\right)=f^{*}\left(x_{i}\right)$ a dataset x_{1}, \ldots, x_{N} sampled i.i.d. from a distribution p with support Ω, we have $R^{(1)}\left(\hat{f} ; \Omega, \sigma_{a}, L\right)>2\left(1-\frac{1}{k^{*}}\right) \log N+c_{\epsilon}$ with prob. at least $1-\epsilon$.

Minima stability

Another possible explanation is that rank underestimating minima are unstable under reasonable learning rates $\eta \sim L^{-1}$:

Theorem (A.J., 2023b)

Given f^{*} with $\operatorname{Rank}_{J}\left(f^{*} ; \Omega\right)=k^{*}>1$, then with high probability over the sampling of a training set x_{1}, \ldots, x_{N} (sampled from a distribution with support Ω), we have that for any parameters θ of a deep enough network that represent a BN-rank 1 function f_{θ} that fits the training set $f_{\theta}\left(x_{i}\right)=f^{*}\left(x_{i}\right)$ with norm $\|\theta\|^{2}=L+c_{1}$ then there is a point $x \in \Omega$ where

$$
\left\|J_{\theta} f_{\theta}(x)\right\|_{F}^{2} \geq c^{\prime \prime} L e^{-c_{1}} N^{4-\frac{4}{k^{*}}}
$$

GD with learning rate η cannot converge to a minima with $\frac{2}{N}\left\|J_{\theta} f_{\theta}\left(x_{i}\right)\right\|_{o p}^{2} \geq \eta^{-1}$.

Representation geodesics

■ Representations $\alpha_{\ell}(x)=\left(\left(W_{\ell} \cdot+b_{\ell}\right) \circ \sigma \circ \cdots \circ \sigma \circ\left(W_{1} \cdot+b_{1}\right)\right)(x)$
■ Infinite depth convergence of $\ell \mapsto \Sigma_{\ell}(x, y)=\alpha_{\ell}(x)^{\top} \alpha_{\ell}(y)$?

- Linear networks: $\Sigma_{\ell}(x, y)=x^{\top}\left(A^{T} A\right)^{\frac{\ell}{2}} y$ 'straight line in log space'.

Representation geodesics

■ Representations $\alpha_{\ell}(x)=\left(\left(W_{\ell} \cdot+b_{\ell}\right) \circ \sigma \circ \cdots \circ \sigma \circ\left(W_{1} \cdot+b_{1}\right)\right)(x)$
■ Infinite depth convergence of $\ell \mapsto \Sigma_{\ell}(x, y)=\alpha_{\ell}(x)^{T} \alpha_{\ell}(y)$?

- Linear networks: $\Sigma_{\ell}(x, y)=x^{T}\left(A^{T} A\right)^{\frac{\ell}{L}} y$ 'straight line in log space'.

■ Limiting representations $K_{p}=\lim _{L \rightarrow \infty} \Sigma_{\ell}$ with $\frac{\ell}{L} \rightarrow p \in(0,1)$ satisfy

$$
\begin{aligned}
& R^{(0)}(f ; \Omega)=R^{(0)}\left(i d \rightarrow K_{p} ; \Omega\right)=R^{(0)}\left(K_{p} \rightarrow f ; \Omega\right), \\
& R^{(1)}(f ; \Omega)=R^{(1)}\left(i d \rightarrow K_{p} ; \Omega\right)+R^{(1)}\left(K_{p} \rightarrow f ; \Omega\right) .
\end{aligned}
$$

■ At any ratio $p \in(0,1)$ with a continuous limit:

$$
\begin{aligned}
& R^{(0)}\left(K_{p} \rightarrow K_{p} ; \Omega\right)=R^{(0)}(f ; \Omega), \\
& R^{(1)}\left(K_{p} \rightarrow K_{p} ; \Omega\right)=0 .
\end{aligned}
$$

Identity cost

- $\operatorname{Rank}(i d ; \Omega)$ defines a notion of dimension of Ω.
- $\operatorname{Rank}_{J}(i d ; \Omega)$ is maximum local dimension.

■ $\operatorname{Rank}_{B N}(i d ; \Omega)$ is embedding dimension.

Identity cost

■ $\operatorname{Rank}(i d ; \Omega)$ defines a notion of dimension of Ω.
■ $\operatorname{Rank}_{J}(i d ; \Omega)$ is maximum local dimension.
■ $\operatorname{Rank}_{B N}(i d ; \Omega)$ is embedding dimension.

Proposition

For a domain Ω with $\operatorname{Rank}_{J}(i d ; \Omega)=\operatorname{Rank}_{B N}(i d ; \Omega)=k$, then $R^{(1)}(i d ; \Omega)=0$ if and only if Ω is k-planar and completely positive.

■ Piecewise continuous limit $\Sigma_{p} \Rightarrow k$-planar repr. at almost every ratio p.

Identity cost

■ $\operatorname{Rank}(i d ; \Omega)$ defines a notion of dimension of Ω.
■ $\operatorname{Rank}_{J}(i d ; \Omega)$ is maximum local dimension.
■ $\operatorname{Rank}_{B N}(i d ; \Omega)$ is embedding dimension.

Proposition

For a domain Ω with $\operatorname{Rank}_{J}(i d ; \Omega)=\operatorname{Rank}_{B N}(i d ; \Omega)=k$, then $R^{(1)}(i d ; \Omega)=0$ if and only if Ω is k-planar and completely positive.

■ Piecewise continuous limit $\Sigma_{p} \Rightarrow k$-planar repr. at almost every ratio p.
■ But Σ_{ℓ} does not converge in general!

Bottleneck Structure on the Weights

The weights of almost all layers are approximately rank k :

Theorem

Given parameters θ of a depth L network, with $\|\theta\|^{2} \leq k L+c_{1}$ and a point x such that $\operatorname{Rank} J_{\theta}(x)=k$, then there are $w_{\ell} \times k$ (semi-)orthonormal V_{ℓ} such that

$$
\sum_{\ell=1}^{L}\left\|W_{\ell}-V_{\ell} V_{\ell+1}^{T}\right\|_{F}^{2} \leq c_{1}-2 \log \left|J t_{\theta}(x)\right|_{+}
$$

thus for any $p \in(0,1)$ there are at least $(1-p) L$ layers ℓ with

$$
\left\|W_{\ell}-V_{\ell} V_{\ell-1}^{T}\right\|_{F}^{2} \leq \frac{c_{1}-2 \log \left|J f_{\theta}(x)\right|_{+}}{p L} .
$$

Convergence of the representations

The representations $\alpha_{\ell}(x)$ of almost all layers converge, assuming a stable network (so that GD with learning rate $\eta \sim L^{-1}$ can converge to it):

Theorem

If furthermore $\left\|J_{\theta} f_{\theta}(x)\right\|_{F}^{2} \leq c L$, then $\sum_{\ell=1}^{L}\left\|\alpha_{\ell-1}(x)\right\|_{2}^{2} \leq \frac{c L e^{\frac{2}{k} c_{1}}}{k\left|J J_{\theta}(x)\right|_{+}^{2 / k}}$ and thus for all $p \in(0,1)$ there are at least $(1-p) L$ layers such that

$$
\left\|\alpha_{\ell-1}(x)\right\|_{2}^{2} \leq \frac{1}{p} \frac{c e^{\frac{2}{k} c_{1}}}{k\left|J f_{\theta}(x)\right|_{+}^{2 / k}} .
$$

\Longrightarrow Symmetries are learned in the first $o(L)$ layers as $L \rightarrow \infty$.

Convolutional Networks

■ Inputs x and activations $\alpha_{\ell}(x)$ are $n \times n$ images with w_{ℓ} channels.
$■$ Weights W_{ℓ} are multi-channel convolutions.

- Can represent a general translation equivariant functions f_{θ}.

Convolutional Networks

\square Inputs x and activations $\alpha_{\ell}(x)$ are $n \times n$ images with w_{ℓ} channels.
$■$ Weights W_{ℓ} are multi-channel convolutions.
■ Can represent a general translation equivariant functions f_{θ}.
■ Bottleneck structure:
■ The singular $s_{\omega, i}\left(W_{\ell}\right)$ are indexed by frequency $\omega \in[0, n-1]^{2}$ and channel i.
■ In the bottleneck, only a few singular values are close to 1 .

Learning Newtonian Mechanics

(a) Learning the trajectory of a 'ball' under gravity.

(b) Singular values of W_{ℓ} colored by frequency. The network keeps position and velocity in two freq. 1 pairs.

Conclusion

■ Botleneck structure appears in L_{2}-regularized DNNs.

- Relations between:
- Dimensionality inside the bottleneck.
- Large depth L parameter norm.

■ Dimensionality of the symmetries of the task.

- To show: This breaks the curse of dimensionality!

Bibliography I

Emmanuel Abbe, Enric Boix-Adserà, Matthew Stewart Brennan, Guy Bresler, and Dheeraj Mysore Nagaraj. The staircase property: How hierarchical structure can guide deep learning. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=fj6rFciApc.
Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. High-dimensional limit theorems for SGD: Effective dynamics and critical scaling. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=Q38D6xxrKHe.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. The Journal of Machine Learning Research, 18(1):629-681, 2017.
Zhen Dai, Mina Karzand, and Nathan Srebro. Representation costs of linear neural networks: Analysis and design. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=3oQyjABdbC8.
Arthur Jacot. Implicit bias of large depth networks: a notion of rank for nonlinear functions. In The Eleventh International Conference on Learning Representations, 2023a. URL https://openreview.net/forum?id=6iDHce-OB-a.
Arthur Jacot. Bottleneck structure in learned features: Low-dimension vs regularity tradeoff, 2023b.
Stéphane Mallat. Group invariant scattering. Communications on Pure and Applied Mathematics, 65(10):1331-1398, 2012.

Implications: Summary Statistics

■ Complex system: $\partial_{t} x(t)=F(x(t))$.
■ 'Macroscopic description': $u: \mathbb{R}^{P} \rightarrow \mathbb{R}^{D}$ for $D \ll P$ s.t.

$$
\partial_{t} u(x(t)) \approx G(u(x(t)))
$$

Implications: Summary Statistics

- Complex system: $\partial_{t} x(t)=F(x(t))$.

■ 'Macroscopic description': $u: \mathbb{R}^{P} \rightarrow \mathbb{R}^{D}$ for $D \ll P$ s.t.

$$
\partial_{t} u(x(t)) \approx G(u(x(t))) .
$$

- Rank 1 Matrix Factorization $\mathcal{L}(\theta)=\left\|w w^{T}-\theta \theta^{T}\right\|_{F}^{2}$.
- Invariant under rotation of θ around w.
- Summary statistics [Arous et al., 2022]: $u(\theta)=\left(\left|w^{\top} \theta\right|,\left\|\left(I-w w^{\top}\right) \theta\right\|\right)$.

Implications: Summary Statistics

Use a depth $L=25$ DNN to learn:

$$
\theta_{0} \mapsto\left(\mathcal{L}\left(\theta_{0}\right), \mathcal{L}\left(\theta_{1}\right), \ldots, \mathcal{L}\left(\theta_{T}\right)\right)
$$

Implications: Summary Statistics

Use a depth $L=25$ DNN to learn:

$$
\theta_{0} \mapsto u\left(\theta_{0}\right) \mapsto\left(\mathcal{L}\left(\theta_{0}\right), \mathcal{L}\left(\theta_{1}\right), \ldots, \mathcal{L}\left(\theta_{T}\right)\right)
$$

(i) Singular values of $\alpha_{\ell}(X)$.

(j) Singular values of W_{ℓ}.

Summary Statistics

(k) PCA of Z_{6}.

(I) PCA of Z_{15}.

