
Sublinear Algorithms for
Hierarchical Clustering

Sanjeev Khanna
University of Pennsylvania

Joint work with Arpit Agarwal (Facebook), Huan Li (Penn), and
 Prathamesh Patil (Penn).

Hierarchical Clustering

A technique to cluster data into
a multilevel hierarchy based on
similarity.

Hierarchical Clustering

A technique to cluster data into
a multilevel hierarchy based on
similarity. It arranges data as a
rooted tree such that:
-- the root represents the entire data
set, and each leaf corresponds to a
unique data point.
-- each internal node corresponds to a
cluster containing its descendant leaves.

Hierarchical Clustering

A technique to cluster data into
a multilevel hierarchy based on
similarity. It arranges data as a
rooted tree such that:
-- the root represents the entire data
set, and each leaf corresponds to a
unique data point.
-- each internal node corresponds to a
cluster containing its descendant leaves.

Clusters data at multiple levels of
granularity simultaneously.

The Hierarchical Clustering Problem

Dasgupta (2016) introduced the following formalization:
n Input: A weighted graph whose vertices correspond to

data points and whose edges capture similarity between
the data points.

n The cost of any HC tree 𝑇 is given by

 Cost(𝑇) = ∑splits !→ !!,!" 	in	% (𝑆 ⋅ 𝑤& 𝑆', 𝑆()

where 𝑤& 𝑆', 𝑆(= total weight of edges going from 𝑆'	to 𝑆(.

Goal: Find a HC tree 𝑇	that minimizes this cost.

The Hierarchical Clustering Problem

𝑉

𝐴 𝐵

𝐶 𝐷

𝑉 .𝑤! 𝐴, 𝐵

𝐴 .𝑤! 𝐶, 𝐷 𝐵 .𝑤! 𝐸, 𝐹

𝐸 𝐹

The cost function incentivizes cutting high weight similarity
edges only deeper down the tree.

Why this Cost Function?

n Dasgupta (2016) motivates this cost function as having
several desirable properties :
n When the data consists of a collection of connected components,

an optimal hierarchical tree first separates out these components.
n When the input graph is a clique, all trees should have the same

cost – no particular cluster hierarchy should be favored.
n It recovers the desirable solution for some models of planted

cluster partitions.

n Cohen-Addad et al. (2019) take an axiomatic approach to
characterize good cost functions in general.

n We will focus on the Dasgupta objective in this talk.

The Hierarchical Clustering Problem

(𝑛	= # of vertices; 𝑚	= # of edges)

n The problem of finding an optimal HC tree is NP-hard.
n Assuming Small Set Expansion (SSE) conjecture, no
𝑂(1)–approximation possible [Charikar-Chatziafratis 17].

n A natural algorithm called recursive sparsest cut gives
𝑂(𝛼)–approximation where 𝛼 = 𝑂(log 𝑛) is the sparsest
cut approximation guarantee [Charikar-Chatziafratis 17],
[Cohen-Addad et al. 19].

Sublinear Algorithms

Can we match the best-known approximation guarantees for
hierarchical clustering via sublinear algorithms?

Based on the computing platform, we may want algorithms
that are sublinear in time, space, or communication.

We will consider optimization of all three resources.

Sublinear Space Algorithms

Streaming Model of Computation

n The graph is presented as a stream of edges.
n The algorithm has limited memory to store information

about the edges seen in the stream.
n A natural model when the input is either generated ``on the

fly’’ or is stored on a sequential access device, like a disk.
n The algorithm no longer has random access to input graph.

Goal is to design algorithms that use space that is much
smaller than the size of the graph.

Sublinear Query/Time Algorithms

Query Model of Computation
n The graph can be accessed via following queries:

n Degree queries: What is the degree of a vertex 𝑣?
n Pair queries: Is 𝑢, 𝑣 	an edge?
n Neighbor queries: Output the 𝑘!" neighbor of a vertex 𝑣?

Goal is to design algorithms that compute by performing only
a few queries – much smaller than the size of the graph.

Additional goal: minimize the time needed to process the
queries to output a good HC tree.

Sublinear Communication Algorithms

MPC Model of Computation (Massively Parallel Computation)
n The edges of the graph are partitioned across multiple

machines in an arbitrary manner.
n Each machine has small memory – much smaller than the

size of the graph.
n Computation proceeds in rounds where in each round, a

machine can send and receive limited information from
other machines (not exceeding its memory). At the end, a
designated machine (coordinator) outputs the answer.

Goal is to compute in a small number of rounds using only
machines with small memory.

Our Results

There are efficient sublinear algorithms for hierarchical
clustering in all three models of computation.

There are also nearly matching lower bounds that show these
algorithms are essentially best possible.

Results 0: Sublinear Space
Algorithms

Theorem 0: Given a weighted graph 𝐺 as a stream of edges,
there is an 5𝑂(𝑛)	space algorithm to find a (1 + 𝑜(1))–
approximate hierarchical clustering of 𝐺.

n The approximation guarantee above is better than
𝑂(log 𝑛) because the model allows unbounded
computation time. It is 𝑂(log 𝑛) in poly-time.

n It is also easy to show that Ω(𝑛)	space is necessary to
obtain any 5𝑂(1)-approximation.

n The algorithm also works for dynamic streams.

Results 1: Sublinear Communication
Algorithms (MPC Model)

Theorem 1: Given a weighted graph 𝐺 with edges partitioned
across machines with 5𝑂(𝑛)	memory, can find a (1 + 𝑜(1))–
approximate hierarchical clustering of 𝐺	in 2 rounds.

Theorem 2: No randomized 1-round protocol using machines
with 𝑛)/+,- memory for any 𝜖 > 0,	can output an 5𝑂(1)	–
approximate hierarchical clustering even on unweighted
graphs.

Results 2: Sublinear Query/Time
Algorithms

Theorem 3: Given an unweighted graph 𝐺 with 𝑚	edges,	there
is an algorithm that outputs a (1 + 𝑜(1))–approximate
hierarchical clustering of 𝐺	using

n 𝑂(𝑛+𝑚) queries if 𝑚 ≤ 𝑛)/+.
n 5𝑂(𝑛 +𝑚/𝛼+) queries if 𝑚 = 𝛼. 𝑛)/+	for some 𝛼 ≥ 1.

The query bound starts becoming sublinear once 𝑚 exceeds
𝑛)/+, and then drops to 5𝑂(𝑛) queries once 𝑚 ≥ 𝑛+/..

Results 2: Sublinear Query/Time
Algorithms

Theorem 4: The query complexity achieved by the algorithm
in Theorem 3 is essentially optimal for every edge density.

n For any fixed 𝜖 > 0,	we can get an	 𝑂(log 𝑛)-approximate
solution in 𝑛/0- time [Sherman 09] and [Chen, Kyng, Liu,
Peng, Probst Gutenberg, Sachdeva 22].

n We can get similar guarantees for the weighted case, if we
assume a suitable graph representation.

Related Recent Work

Assadi, Chatziafratis, Lacki, Mirrokkni, and Wang (2022)
n Focuses on estimating the HC value in sublinear in 𝑛	space,

and shows several negative results.
n Also gives algorithms for finding a Θ(1)–approximate HC

tree in the streaming and the MPC model – this is slightly
weaker than (1 + 𝑜(1))–approximation that we get.

Kapralov, Kumar, Lattanzi, Mousavifar (2022)
n Focuses on estimating the HC value in sublinear queries in

𝑘, 𝜖 -clusterable graphs: input is 𝑘	expanders with outer
conductance bounded by 𝜖.

n 𝑂(log 𝑘)–approximation in 𝑝𝑜𝑙𝑦 𝑘 . 𝑛
#
$01(-)queries.

 Sublinear Algorithms

Graph Sparsification for HC

Given any HC tree 𝑇 for a graph 𝐺, the cost of 𝑇	is given by

Cost(𝑇) = ∑splits !→ !!,!" 	in	% (𝑆 ⋅ 𝑤& 𝑆', 𝑆()

where 𝑤& 𝑆', 𝑆(= total weight of edges going from 𝑆'	to 𝑆(.

Natural idea: Work with an approximate cut sparsifier of 𝐺.

Cut Sparsifiers

Given a graph 𝐺, a 1 ± 𝜀 	-cut sparsifer is a sparse subgraph
𝐺′	of 𝐺	that preserves every cut in 𝐺 to within a 1 ± 𝜀 	factor.

[Benczúr-Karger ’96] Any graph has a 1 ± 𝜀 -cut sparsifier that
contains Ο(4 567 48$) edges, and is computable in 5𝑂(𝑛+𝑚) time.

Cut Sparsifiers

n A cut sparsifier for 𝐺	clearly suffices to find a good top-
level partition of the vertex set.

n But what we really need is something more general:
cut sparsifiers for vertex-induced subgraphs of 𝐺	that arise
as problem instances at intermediate nodes!

n Concretely, suppose we have a set 𝑆	of vertices at some
intermediate node and we wish to know the cost of
partitioning 𝑆 into two sets 𝑆', 𝑆(: this depends only on
edges between 𝑆'	and	𝑆(.

Graph Sparsification for HC

For any pair of disjoint sets	𝑆', 𝑆(, we can express 𝑤& 𝑆', 𝑆(in
terms of cuts in 𝐺:

𝑤& 𝑆', 𝑆(= /
.
. (𝑤& 𝑆', I𝑆' +𝑤& 𝑆(, I𝑆(−𝑤& 𝑆' ∪ 𝑆(, 𝑆' ∪ 𝑆().

Problem: Expressing 𝑤& 𝑆', 𝑆(as difference of approximately
preserved values, can result in unbounded error.

𝑆'

𝑤& 𝑆', 𝑆(

𝑆(𝑆' ∪ 𝑆(

Graph Sparsification for HC

𝑤& 𝑆', 𝑆(= /
.
. (𝑤& 𝑆', I𝑆' +𝑤& 𝑆(, I𝑆(−𝑤& 𝑆' ∪ 𝑆(, 𝑆' ∪ 𝑆().

Observation: If we fix any HC tree, the negative term at any
node appears with a strictly larger positive coefficient at the
parent of the node.

𝐴

𝐵

𝐸

𝐴 . !
"
. (𝑤# 𝐵, '𝐵 + 𝑤# 𝐶, ̅𝐶 − 𝑤# 𝐴, �̅�)

𝐵 . !
"
. (𝑤# 𝐷, /𝐷 + 𝑤# 𝐸, '𝐸 − 𝑤# 𝐵, '𝐵)

𝐷

𝐶

Note that 𝐴 > |B|.

Graph Sparsification for HC

Upshot: The cost of any tree 𝑇	can be expressed as a non-
negative weighted combination of cuts in the original graph.

 ∑splits #→ #!,#" 	in	' 	
(
)
. (|𝑆*|. 𝑤+ 𝑆,, .𝑆, + |𝑆,|. 𝑤+ 𝑆*, .𝑆*) + ∑-𝑤+(𝑣, �̅�))

We get a blackbox reduction to cut sparsifiers!

To get a (1 + 𝑜(1))-approximate hierarchical clustering, it
suffices to construct a (1 + 𝑜(1))–approximate cut sparsifier.

Now we can just focus on accomplishing this task in various
models of computation.

Immediate Applications

Follows from [Ahn, Guha, McGregor 12].
Corollary (Thm 0): There is an 5𝑂(𝑛) space dynamic streaming
algorithm that outputs a (1 + 𝑜(1))	–approximate
hierarchical clustering of a weighted graph.

The linear sketching scheme used in [Ahn, Guha, McGregor 12]
can be adapted to show the following as well.

Corollary (Thm 1): There is a 2-round MPC algorithm with 5𝑂(𝑛)
space per machine that outputs a (1 + 𝑜(1))–approximate
hierarchical clustering of a weighted graph.

Application to Sublinear Time?

Unfortunately, constructing a cut sparsifier necessarily
requires Ω(𝑛 +𝑚)	queries (even for testing connectivity).

To get around this, we will work with a relaxed notion of cut
sparsifiers that will prove much easier to construct, and will
turn out to be sufficient for our purpose.

A Relaxed Notion of Cut Sparsifiers

A graph 𝐻(𝑉, 𝐸′)	is an (𝜖, 𝛿)-sparsifier of a graph 𝐺(𝑉, 𝐸)	if for
any cut 𝑆, ̅𝑆 , we have

1 − 𝜖 𝑤& 𝑆 ≤ 𝑤9 𝑆 ≤ 1 + 𝜖 𝑤& 𝑆 + 𝛿.min{ 𝑆 , ̅𝑆 }

The usual notion of cut sparsifiers is an (𝜖, 0)-sparsifier.

Lemma: If 𝐻	is an (𝜖, 𝛿)-sparsifier of a graph 𝐺	then for any HC
tree 𝑇, we have
1 − 𝜖 𝑐𝑜𝑠𝑡& 𝑇 ≤ 𝑐𝑜𝑠𝑡9 𝑇 ≤ 1 + 𝜖 𝑐𝑜𝑠𝑡& 𝑇 + 𝑂(𝛿. 𝑛.)

High-level Plan for Sublinear Time

We will focus on unweighted graphs.

n Show that larger the 𝛿, the easier it is to compute an
(𝜖, 𝛿)-sparsifier.

n But how large can we make 𝛿	to still get a (1 + 𝑜(1))	–
approximation to hierarchical clustering?

n Identify an easy to compute lower bound 𝐶	for optimal HC
cost, and set 𝛿 = 𝑜 :

4$ 	to get (1 + 𝑜(1))–approximation.

High-level Plan for Sublinear Time

Lemma: The cost of hierarchical clustering on any unweighted

graph 𝐺	with 𝑛	vertices and 𝑚	edges is Ω(;
$

4).

Example: Suppose 𝐺 is any graph with 𝑚 ≫	𝑛+/.	edges, then
optimal HC tree cost is ≫	𝑛..	
So if we set 𝛿 = 𝑂 1 , then the 𝑂 𝛿. 𝑛. 	additive error term is
negligible because optimal tree cost is ≫	𝑛..

Let’s focus on this density regime, (i.e. 𝑚 ≫	𝑛+/.) and we will
design a 5𝑂(𝑛/𝜀.) query algorithm to get a (𝜖, 𝑂(1))-sparsifier.

Constructing an (𝜖, 𝑂(1))-sparsifier

[Spielman-Srivastava 11]
One way to construct an	(𝜖, 0)-sparsifier of 𝐺:
sample 𝑂 𝑛	log	𝑛/𝜖. 	times an edge 𝑒 = (𝑢, 𝑣)	with
probability	𝑝<	proportional to 𝑅(𝑢, 𝑣)	= effective resistance
between 𝑢	and 𝑣.

Difficulty: How to estimate effective resistances in sublinear
time?

Fix: Add a constant degree expander 𝐺′	to 𝐺	(choose 𝐺′	to be
a random graph of constant degree).

Constructing an (𝜖, 𝑂(1))-sparsifier

Observation: Any (𝜖, 0)-sparsifier for the graph 𝐻 = 𝐺 ∪ 𝐺′
is an (𝜖, 𝑂(1))-sparsifier for the graph 𝐺.

For any cut 𝑆, ̅𝑆 , its size in any (𝜖, 0)-sparsifier of 𝐻	

n is at least 1 − 𝜖 𝑤& 𝑆 , and
n at most 1 + 𝜖 𝑤& 𝑆 + 1 + 𝜖 . 𝑂(𝑚𝑖𝑛 𝑆 , ̅𝑆).

New Goal: Construct an (𝜖, 0)-sparsifier of the graph 𝐻.

An (𝜖, 0)-sparsifier of the Graph 𝐻	

What have we gained by shifting the focus to 𝐻	instead of 𝐺?

Claim: For any edge 𝑒 = (𝑢, 𝑣), its effective resistance
𝑅(𝑢, 𝑣)	in 𝐻	satisfies

1
min{	𝑑9 𝑢 , 𝑑9 𝑣 }

≤ 𝑅 𝑢, 𝑣 ≤
𝑂(log 𝑛)

min{	𝑑9 𝑢 , 𝑑9 𝑣 }

Addition of expander 𝐺′ narrows down the resistance of each
edge to within a narrow band that only depends on the
degrees of its end-points!

An (𝜖, 0)-sparsifier of the Graph 𝐻	

In a constant degree expander, we can connect for any 2 sets
𝑋	and 𝑌, there are ≈ min 𝑋 , 𝑌 	edge-disjoint paths of
𝑂(log 𝑛) length between 𝑋	and 𝑌 [Frieze 01].
So 𝑢	and 𝑣	are connected by min{	𝑑9 𝑢 , 𝑑9 𝑣 } paths of
𝑂(log 𝑛) length.

𝑋 = 𝑁(𝑢) 𝑌 = 𝑁(𝑣)

𝑂(log 𝑛)

Constructing an (𝜖, 𝑂(1))-sparsifier

We now have a very simple algorithm to construct an (𝜖, 0)-
sparsifier for the graph 𝐻 = 𝐺 ∪ 𝐺′.

Repeat the following for 5𝑂 𝑛/𝜖. 	steps:
n sample a random vertex 𝑣.
n sample a random edge incident on 𝑣, and add it to the

sparsifier.

Thus in 5𝑂 𝑛/𝜖. 	queries, we get a sparsified graph that gives
a (1 + 𝜖)–approximation to hierarchical clustering whenever
the input graph contains 𝑚 ≫	𝑛+/.	edges.

General Case: An (𝜖, 𝛿)-sparsifier

Add constant degree expander 𝐺′	with edges of weight 𝛿.

Observation: For any edge (𝑢, 𝑣)	in 𝐻 = 𝐺 ∪ 𝐺′, we have

1
min{	𝑑. 𝑢 , 𝑑. 𝑣 }

≤ 𝑅 𝑢, 𝑣 ≤
𝑂(log 𝑛)

min 	𝑑. 𝑢 , 𝑑. 𝑣
.
1
𝛿

Now construct an (𝜖, 0)-sparsifier for the graph 𝐻 = 𝐺 ∪ 𝐺= by
sampling as before for 5𝑂 𝑛/𝛿𝜖. 	steps.

A variation of this expander idea was used by [Lee 14] for
efficiently answering a single cut query with bounded additive
error – we need this guarantee to hold for all cut queries.

 Lower Bounds

Query Lower Bounds

Theorem: There is a family of unweighted graphs such that
any randomized algorithm that outputs an 5𝑂(1)–approximate
hierarchical clustering for graphs in this family, needs at least:
n 𝑚/,>(/) queries as 𝑚	increases from 𝑛	to 𝑛)/+; and

n when 𝑚 = 𝑛
%
&0?for 𝛿 ∈ (0,1/6), it requires ;

#'((#)

?& queries.

(Thus the lower bound gradually decreases from 𝑛//123(()	to 𝑛(23(()	as
𝑚	increases from 𝑛//1 to 𝑛1/).)

We will illustrate the lower bound idea for 𝑚 = 𝑛
%
&, and show

a lower bound of 𝑛)/+,>(/) queries.

𝑛!/#$%(')	Query Lower Bound for 𝑚 = 𝑛!/#

Kn1/3 Kn1/3

no(1) edges

Kn1/3 Kn1/3

...

Kn1/3 Kn1/3

𝑛)/1	randomly matched
pairs of cliques

An Optimal Tree

G(V,E)

Kn1/3 Kn1/3

n/2

· · · Kn1/3 Kn1/3

· · ·

2n1/3

Kn1/3 Kn1/3

· · ·Kn1/3 Kn1/3

2n1/3 2n1/3 2n1/3

Kn1/3 Kn1/3

Kn1/3 Kn1/3

n/2

Kn1/3 Kn1/3 · · · Kn1/3 Kn1/3

Kn1/3 Kn1/3

· · ·

· · ·

Kn1/3 Kn1/3

Kn1/3 Kn1/3

Kn1/3 Kn1/3

Optimal clustering cost: Θ(𝑛A/C)

Lower Bound Idea

Consider any 5𝑂(1)	–approximation algorithm 𝐴.
n Assume w.l.o.g. that the top-level partition is roughly

balanced in the solution output by 𝐴.
n 𝐴	must not cut too many clique matching edges at the top

partition since penalty for each edge cut is 𝑛. So 𝐴 must
``discover’’ most of the meta-matching among the cliques.

n It takes about 𝑛./+,>(/) queries to discover match of a
given clique under 𝑀.

n We need to discover Ω(𝑛./+)	matches in 𝑀, giving us an
𝑛)/+,>(/)query lower bound.

Concluding Remarks

n We designed near-optimal sublinear algorithms for
hierarchical clustering in the query model, streaming, and
MPC model.

n The main algorithmic ingredient:
n a relaxed notion of cut sparsifiers that is easy to compute in various

computational models.

n We also establish lower bounds that almost match the
performance guarantees of our algorithms.

n An interesting direction is to understand if there is a
separation between the queries needed to estimate the
value and finding a clustering in general graphs.

 Thank you !

