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Problem of Interest

Consider
f ∗ := min

x∈X
f (x)

x : decision variable
X ⊆ Rn: feasible set
f : objective function
For simplicity, assume X = Rn
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Smoothness of f : upper curvature

L-smooth (our focus)
f differentiable, for some L > 0:
f (x) ≤ f (y) + ⟨∇f (y), x − y⟩+ L∥x − y∥2/2,∀x , y .

(α,Lα)-weakly smooth

f differentiable, for some α ∈ [0,1) and Lα > 0,
f (x) ≤ f (y) + ⟨∇f (y), x − y⟩+ Lα∥x − y∥1+α/2, ∀x , y .
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Regularity of f : lower curvature

Convex
f (x)− f (y)− ⟨∇f (y), x − y⟩ ≥ 0.

µ-strongly convex

for some µ > 0, f (x)− f (y)− ⟨∇f (y), x − y⟩ ≥ µ∥x − y∥2/2

l-nonconvex

for some l ∈ (0,L), f (x)− f (y)− ⟨∇f (y), x − y⟩ ≥ −l∥x − y∥2/2
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First-order methods

Iterative methods working with ∇f (x) and f (x) only
Wide applications in machine learning and data science

Each iteration is cheap
No need for high accuracy

Accuracy measure
f (x̂)− f ∗ ≤ ε (for convex problems only)
∥∇f (x̂)∥ ≤ ε (for both convex and nonconvex problems)

Fundamental questions
How many gradient evaluations (gradient complexity)?
How much problem information?
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Uniform Optimality

Definition (Lan 10, 11,13 (15))
First-order methods that can achieve the best possible gradient
complexity without the input of any problem parameters.

Problems parameters: L, α, Lα, µ, l , ∥x0 − x∗∥
Defined over a global scope, hard to estimate
Conservative estimation slows down the algorithm
Gaps between theory and practice

Nonsmooth methods perform better than smooth ones
Non-accelerated methods run faster than accelerated ones

A lot of tuning required for first-order methods
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What has been done?

Focused on smooth convex optimization, and small
function value

Accelerated prox-level method (Lan 10, 11, 13))
Uniformly optimal for smooth, weakly smooth and
nonsmooth problems
Extended for unbounded case (Chen et. al. 14)
Require projection over X plus one linear constraint

Fast gradient method (Nesterov 13)
Uniformly (universally) optimal for smooth, weakly smooth
and nonsmooth problems
Simple subproblem, can deal with unbounded sets
Require a line search procedure
Require the input of target accuracy
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A forgotten paper (Chen, Lan, Ouyang, Zhang 14)

Achieved the best complexity among parameter-free
algorithms for unconstrained nonsmooth optimization

Fierce discussions in online learning and ML communities
A Matlab implementation can beat Lapack for solving
underdetermined linear systems!
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Plan for this talk

Smooth convex optimization: Small function value
Novel method: Simple subproblem, line search free

Smooth convex optimization: Small gradient
Novel method, parameter-free

Strongly convex optimization
New complexity, parameter-free

Nonconvex optimization
New complexity, parameter-free
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Overview of results
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Gradient descent

xt = argminz∈X

{
ηt⟨∇f (xt−1), z⟩+

∥xt−1−z∥2

2

}
Minimize linear model at xt−1, not moving far from xt−1
ηt depends on the (local) Lipschitz constant:
1
ηt

≥ Lt :=
2[f (xt−1)−f (xt )−⟨g(xt ),xt−1−xt ⟩]

∥g(xt )−g(xt−1)∥2
∗

But Lt is unknown when selecting ηt
require global estimate of L or line search

Can ηt be determined based on L1, . . . ,Lt−1?
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Auto-conditioned Fast Gradient Method (AC-FGM)

Trust linear model at xt−1, not far from prox-center yt−1:
zt = argminz∈X

{
ηt⟨g(xt−1), z⟩+ 1

2∥yt−1 − z∥2}
Update prox-center: yt = (1 − βt)yt−1 + βtzt

Update output: xt = (zt + τtxt−1)/(1 + τt)

13 / 34



beamer-tu-logo

Background Smooth Convex Problems Small Gradients Strongly convex problems Nonconvex problems Summary

Difference from Accelerated Gradient Descent

In contrast to Nesterov’s AGD (84):
yt = (1 − αt)xt−1 + αtzt−1,

zt = argminz∈X
{
ηt⟨g(yt), z⟩+ 1

2∥zt−1 − z∥2} ,
xt = (1 − αt)xt−1 + αtzt .

AGD uses {zt} as prox-centers, while AC-FGM uses the
sequence {yt}, a moving average of {zt} as prox-centers.
AGD builds model at {yt} rather than the output solutions
{xt}, while AC-FGM computes model at {xt}.
Interpretation of AGD

Earlier AGD with nice geometric interpretation: Nemirovski
and Yudin, 79(83a), 83b
Game interpretation: Lan and Zhou, 2015
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Game interpretation of AC-FGM

A buyer-seller game minx maxg {⟨x ,g⟩ − f ∗(g)}:
Buyer: to determine order quantity to minimize cost
Seller: to determine price to maximize profit, f ∗ being the
production cost

Buyer determines order zt , based on price gt−1, but not too
far away from yt−1 (i.e., a moving average of zt ).

zt = argminz∈X
{
ηt⟨gt−1, z⟩+ 1

2∥yt−1 − z∥2
}

yt = (1 − βt)yt−1 + βtzt

Seller determines the prize gt , based on the demand zt ,
but not too far away from the previous price gt−1.

gt = argmaxg {⟨zt ,g⟩ − f ∗(g)− τtV (gt−1,g)}
V (gt−1,g) := f ∗(g)− [f ∗(gt−1) + ⟨[f ∗]′(gt−1),g − gt−1⟩]
Reduces to compute ∇f (xt) at xt = (zt + τtxt−1)/(1 + τt)
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Convergence rate of AC-FGM

Theorem. Suppose τ1 = 0, τt =
t
2 for t ≥ 2, β ∈ (0,1 −

√
3

2 ],
and the stepsize ηt follows the rule:

ηt = min{ t
t−1ηt−1,

β(t−1)
8Lt−1

} t ≥ 4,

with ηt , t ≤ 3, being properly specified. Then we have for t ≥ 2,

f (xk )− f (x∗) ≤ O(1)L
k(k+1)∥z0 − x∗∥2.

Note: (a) ηt only depends on L1, . . . ,Lt−1, no need for line
search; (b) Optimal rate of convergence.

16 / 34



beamer-tu-logo

Background Smooth Convex Problems Small Gradients Strongly convex problems Nonconvex problems Summary

Why should we care about gradients

Previous studies focuses on termination criterion
f (x̂)− f (x∗) ≤ ε

f ∗ unknown, difficult to check
Easy to check whether ∥∇f (x̂)∥ ≤ ε
∥∇f (x̂)∥ ≤ ε is a stronger criterion: by
∥∇f (x̂)∥2/(2L) ≤ f (x̂)− f ∗ ≤ ∥∇f (x̂)∥∥x̂ − x∗∥,

ε-gradient implies ε-function gap.
ε-function gap implies

√
ε-gradient.

Turns out to be very important to design uniformly optimal
algorithms for strongly convex and nonconvex problems
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What is the status to drive gradients small?

For a long period of time, only exist suboptimal methods
Worse than the lower gradient complexity bound
O(

√
L∥x0 − x∗∥/ε) by a logarithmic factor.

This lower bound is recently achieved by an optimized
gradient method (Kim and Fessler 2021, Nesterov et. al.
2021, Diakonikolas et. al. 2022, Lee at. al. 2021).

Computer assisted algorithm design, empirically “solving” a
nonconvex semidefinite programming
Combining two algorithms: the first one computes small
function value and the second one drives gradient small
Lack intuitive interpretation
Require total number of iterations N given in advance. Do
not actually use ∥∇f (x̂)∥ ≤ ϵ to terminate the algorithm

No existence of parameter-free methods
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A blackbox reduction to make gradient small

Algorithm Accumulative regularization for gradient minimization

Input: strictly increasing {σs}S
s=0 with σ0 = 0; x0 := x0.

for s = 1, . . . ,S do
Set xs = (1 − γs)xs−1 + γsxs−1 with γs = 1 − σs−1/σs.
Compute an approximate solution xs of

x∗
s := arg min

x∈Rn
{fs(x) := f (x) +

σs

2
∥x − xs∥2}

by running an optimal algorithm A for smooth convex opti-
mization (e.g., AC-FGM).
end for

19 / 34



beamer-tu-logo

Background Smooth Convex Problems Small Gradients Strongly convex problems Nonconvex problems Summary

Convergence for accumulative regularization

Adaptive selection of
prox-centers (again!) in the
proximal point method.
Sublinear convergence of A, i.e.,
fs(xs)− fs(x∗

s ) ≤ cAL̂
k2

s
∥xs−1 − x∗

s ∥2

after ks steps. Here cA is a
universal constant, and L̂ ≤ L.

Theorem. If σs = 4s−2ε/D and S = 1 + ⌈log4(LD/ε)⌉, where
D ≥ minx∗∈X∗ ∥x0 − x∗∥, then the number of gradient
evaluations to have ∥∇f (xS)∥ ≤ ε is bounded by O(1)

√
LD/ε.
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Parameters L and D in accumulative regularization

D can be handled by a doubling trick, but not needed for
strongly convex and nonconvex problems.
Subproblems are solved by a uniformly optimal method.
Only need local Lipschitz constant of f at xs

Algorithm M=Backtracking(h, σ, x , M0)

for j = 0,1, . . . , do
Set x++ = x − (1/(2(Mj + σ)))∇g(x).
If h(x++) − h(x) − ⟨∇h(x), x++ − x⟩ ≤ Mj+σ

2 ∥x++ − x∥2,
then terminate with M = Mj .

Otherwise, set Mj+1 = 2Mj .
end for
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Parameter-free accumulative regularization

Algorithm Accumulative regularization (AR) without input of L

function (x̂ ,M) = AR(f , x0, σ1,M0)
for s = 1,2, . . . do

Compute an approximate solution xs of the proximal
subproblem by running A with initial point xs−1.

Set Ms = Backtracking (fs, σs, xs, Ms−1/2).
If σs ≥ Ms, then terminate with x̂ = xs and M = Ms .

end for
end function

Convergence: A similar gradient complexity bound as before,
in addition to log4(M/M0) function evaluations in backtracking.
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What is the current status?

AGD finds ∥∇f (x̂)∥ ≤ ε within O(1)
√

L/µ log(L/(µε))
gradient evaluations.
The strong convexity modulus µ defined over a global
scope is notoriously hard to estimate.
Can we improve the gradient complexity to an optimal one:
O(1)

√
L/µ log(1/ε)?

Can we achieve such complexity without the input of µ?
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Basic Ideas

For any input argument σ1 > 0, the AR method outputs a
point x̂ with ∥∇f (x̂)∥ ≤ 5σ1∥x0 − x∗∥.
Setting σ1 = µ/10 and using the strong convexity of f , we
have ∥∇f (x̂)∥ ≤ µ∥x0 − x∗∥/2 ≤ ∥∇f (x0)∥/2.
The gradient norm is now reduced by half and we may
restart the AR method.
This results in an O(1)

√
L/µ log(1/ε) optimal complexity.

When µ is not available, set σ1 = µ̃/10 with a guess µ̃.
A guess-and-check implementation to search correct µ̃
since ∥∇f (x̂)∥ can be computed.
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Parameter-free optimal algorithm

Algorithm Strongly convex accumulative regularization (SCAR)

function (x̂ , M̂ ) = SCAR(f , ε, y0, µ0, M0)
for t = 1,2, . . . do

Set (yt ,Mt) = AR(f , yt−1,
µt−1
10 ,Mt−1).

If ∥∇f (yt)∥ >
∥∇f (yt−1)∥

2 then µt =
µt−1

4 and yt = yt−1.
If ∥∇f (yt)∥ ≤ ε, terminate with x̂ = yt and M̂ = Mt .

end for
end function

Initial selection: µ0 = M0 = ∥∇f (y0)−∇f (z0)∥/∥y0 − z0∥
Complexity: O(1)

{√
L/µ log(∥∇f (x0)∥/ε) + log(µ0/µ)

√
L/µ

}
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Current status in nonconvex optimization

Let l be lower curvature. Starting with x0 ∈ Rn, set

x i = arg min
x∈Rn

{Fi(x) := f (x) + l∥x − x i−1∥2}.

By optimality condition: Fi(xi) +
l
2∥xi−1 − xi∥2 ≤ Fi(xi−1),

implying f (x i−1)− f (x i) ≥ 3∥∇f (x i)∥2/(8l).

Telescopic sum: min
i=1,...,N

∥∇f (x i)∥2 ≤ 8l(f (x0)−f∗)
3N .

But x i can only be computed approximately (e.g., by AGD).

Find ∥∇f (x̂)∥ ≤ ε within O(1)
√

Ll(f (x0)−f∗)
ϵ2 log L

lε gradient
evaluations.
Can we improve further the gradient complexity?
Can we achieve such complexity without the input of l?
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Suppose l is given

Apply SCAR to minFi(x). If ∥∇F (i)(x i)∥ ≤ ε
4 but

∥∇f (x i)∥ ≥ ε, then ∥∇f (x i)∥2 ≤ 10l[f (x i−1)− f (x i)].
To bound the total number of gradient evaluations,
formulate an optimization problem (with yi = ∥∇f (x i)∥):

max
y1,...,yN∈R

{
N∑

i=1

log2
yi

ε
:

N∑
i=1

y2
i ≤ ∆; yi ≥ ε, ∀i

}
.

Obtain the desired O(1)
√

Ll
ϵ2 [f (x0)− f (x∗)] gradient

complexity, the best-known complexity that has not been
achieved before.
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What if l is unknown?

Fi may be nonconvex if l is underesitmated
We need to modify SCAR to handle plausible strong
convexity modulus µ̃ (SCAR-PM).

Subroutine A in AR terminates when k ≥ 8
√

2Lk
s/σs.

function (x̂ , M̂,ERR)=SCAR-PM(f , ε, y0, µ̃, M0)
for t = 1,2, . . . do

Set (yt ,Mt) = AR(f , yt−1, µ̃/10,Mt−1).
If ∥∇f (yt)∥ > ∥∇f (yt−1)∥/2, then terminate with x̂ =

y0, M̂ = Mt , and ERR=TRUE.
If ∥∇f (yt)∥ ≤ ε, then terminate with x̂ = yt , M̂ = Mt

and ERR=FALSE.
end for

end function
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Nonconvex acceleration through strongly convex
accumulative regularization (NASCAR)

function x̂ = NASCAR(x0, ε, M0)
Set M0 = ∥∇f (x0)−∇f (z0)∥/∥x0−z0∥, l0 = Initialize(M0).
for i = 1, . . . , do

Set F (i)(x) := f (x) + li−1∥x − x i−1∥2.
(x i , Mi , ERRi ) = SCAR-PM(F (i), ε/4, x i−1, li−1, Mi−1).
If ∥∇f (x i)∥ ≤ ε, then terminate with x̂ := x i .
If ERRi =TRUE or ∥∇f (x i)∥2 > 10li(f (x i−1) − f (x i)),

then replace li and x i by 4li and x i−1, respectively.
end for

end function

Note ∥∇F (i)(x i)∥ ≤ ε/4 but ∥∇f (x i)∥2 > 10̃l(f (x i−1)− f (x i))
implies our guess li < l .
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Initial estimation of l0

Algorithm Find an estimation of l0 ≤ l or terminate NASCAR

function l̃ = INITIALIZE(ε, M0)
Set l̃ = M0.
for i = 1, . . . , do

Set F (0)(x) := f (x) + l̃∥x − x0∥2.
(x̃0, M1, ERR) = SCAR-PM(F (i)

0 , ε/4, x0, l̃ , M0).
If ERR=TRUE or ∥∇f (x1)∥2 > 10̃l(f (x0) − f (x1)) then

terminate with l̃ .
If ∥∇f (x1)∥ ≤ ε, then terminate NASCAR.
Set l̃ = l̃/2.

end for
end function
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Complexity of NASCAR

Number of gradient evaluations in Initialization:

O(1)
√

L(f (x0)−f∗)
ϵ log M0

ϵ .
Number of gradient evaluations in main algorithm:

O(1)
√

Ll(f (x0)−f (x∗))

ε2 .
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Algorithm Tree
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Summary

AC-FGM: uniformly optimal without line search
An intuitive game interpretation

AR: parameter-free optimal method to drive gradient small
Simple black-box reduction, no computer-aided design

SCAR: parameter-free optimal method for strongly convex
problems

New complexity bounds reported
NASCAR: parameter-free method for nonconvex problems

New complexity bounds reported
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