Uniform Optimality for Convex and Nonconvex Optimization

Guanghui (George) Lan

School of Industrial and Systems Engineering Georgia Institute of Technology Joint work with Tianjiao Li, Yuyuan Ouyang and Zhe Zhang

> Optimization Seminar Statistics and Data Science University of Pennsylvania December 7, 2023

> > <ロト <四ト <注入 <注下 <注下 <

 Background
 Smooth Convex Problems
 Small Gradients
 Strongly convex problems
 Nonconvex problems

 00000000
 000000
 0000000
 0000000
 0000000
 0000000

Background

Smooth convex optimization

- Small function value
- Small (projected) gradient
- Strongly convex problems
- Nonconvex problems
- Summary

Summary

Background Smooth Convex Problems Small Gradients OCOO Since Problems OCOO Since Probl

Problem of Interest

Consider

$$f^* := \min_{x \in X} f(x)$$

- x: decision variable
- $X \subseteq \mathbb{R}^n$: feasible set
- f: objective function
- For simplicity, assume $X = \mathbb{R}^n$

Background Smooth Convex Problems 00000000 00000

Small Gradients Strongly convex problems

Nonconvex problems Summary

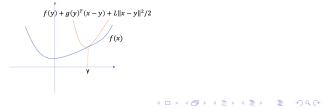
Smoothness of f: upper curvature

L-smooth (our focus)

f differentiable, for some L > 0: $f(x) < f(y) + \langle \nabla f(y), x - y \rangle + L \|x - y\|^2/2, \forall x, y.$

(α, L_{α}) -weakly smooth

f differentiable, for some $\alpha \in [0, 1)$ and $L_{\alpha} > 0$, $f(x) \leq f(y) + \langle \nabla f(y), x - y \rangle + L_{\alpha} ||x - y||^{1 + \alpha} / 2, \forall x, y.$



Background Smooth Convex Problems 00000000 00000

Small Gradients Strongly convex problems

Nonconvex problems Summary

Regularity of f: lower curvature

Convex

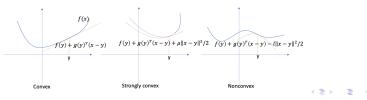
$$f(x) - f(y) - \langle \nabla f(y), x - y \rangle \geq 0.$$

μ -strongly convex

for some
$$\mu > 0$$
, $f(x) - f(y) - \langle \nabla f(y), x - y \rangle \ge \mu \|x - y\|^2/2$

I-nonconvex

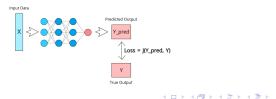
for some $l \in (0, L)$, $f(x) - f(y) - \langle \nabla f(y), x - y \rangle \ge -l ||x - y||^2/2$



 Background
 Smooth Convex Problems
 Small Gradients
 Strongly convex problems
 Nonconvex problems
 Summary

First-order methods

- Iterative methods working with $\nabla f(x)$ and f(x) only
- Wide applications in machine learning and data science
 - Each iteration is cheap
 - No need for high accuracy
- Accuracy measure
 - $f(\hat{x}) f^* \leq \varepsilon$ (for convex problems only)
 - $\|\nabla f(\hat{x})\| \leq \varepsilon$ (for both convex and nonconvex problems)
- Fundamental questions
 - How many gradient evaluations (gradient complexity)?
 - How much problem information?



Uniform Optimality

Definition (Lan 10, 11,13 (15))

First-order methods that can achieve the best possible gradient complexity without the input of any problem parameters.

- Problems parameters: *L*, α , *L* $_{\alpha}$, μ , *I*, $||x_0 x^*||$
- Defined over a global scope, hard to estimate
- Conservative estimation slows down the algorithm
- Gaps between theory and practice
 - Nonsmooth methods perform better than smooth ones
 - Non-accelerated methods run faster than accelerated ones
- A lot of tuning required for first-order methods

Background Smooth Convex Problems Small Gradients Strongly convex problems Nonconvex problems Summary

What has been done?

Focused on smooth convex optimization, and small function value

- Accelerated prox-level method (Lan 10, 11, 13))
 - Uniformly optimal for smooth, weakly smooth and nonsmooth problems
 - Extended for unbounded case (Chen et. al. 14)
 - Require projection over X plus one linear constraint
- Fast gradient method (Nesterov 13)
 - Uniformly (universally) optimal for smooth, weakly smooth and nonsmooth problems
 - Simple subproblem, can deal with unbounded sets
 - Require a line search procedure
 - Require the input of target accuracy

Small Gradients

Background

000000000 00000

Smooth Convex Problems

- Achieved the best complexity among parameter-free algorithms for unconstrained nonsmooth optimization
 - Fierce discussions in online learning and ML communities

Strongly convex problems

 A Matlab implementation can beat Lapack for solving underdetermined linear systems!

Matrix A: $m \times n$	Matlab $A \setminus b$		FAPL method		
Matrix $A.m \wedge n$	Time	Acc.	Iter.	Time	Acc.
Uniform 2000×4000	4.41	5.48e-24	204	3.59	6.76e-23
Uniform 2000×6000	7.12	9.04e-24	155	4.10	9.73e-23
Uniform 2000×8000	9.80	9.46e-24	135	4.45	9.36e-23
Uniform 2000×10000	12.43	1.04e-23	108	4.23	7.30e-23
Gaussian 3000×5000	11.17	5.59e-25	207	6.25	7.18e-23
Gaussian 3000×6000	13.96	1.43e-24	152	5.50	9.59e-23
Gaussian 3000×8000	19.57	1.66e-24	105	4.83	8.17e-23
Gaussian 3000×10000	25.18	1.35e-24	95	5.43	5.81e-23

TABLE 5.3 Comparison to Matlab solver

Nonconvex problems

Summary

 Background
 Smooth Convex Problems
 Small Gradients
 Strongly convex problems
 Nonconvex problems
 Summary

Plan for this talk

- Smooth convex optimization: Small function value
 - Novel method: Simple subproblem, line search free
- Smooth convex optimization: Small gradient
 - Novel method, parameter-free
- Strongly convex optimization
 - New complexity, parameter-free
- Nonconvex optimization
 - New complexity, parameter-free

 Background
 Smooth Convex Problems
 Small Gradients
 Strongly convex problems
 Nonconvex problems
 Summary

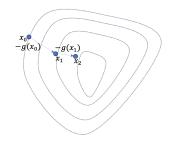
Overview of results

	Termination	Algorithms	Complexity	Parameter free	Line search free	Easy subproblem
Convex	$f(x)-f^*\leq\epsilon$	APL (Lan 10)	$\sqrt{LD^2/\epsilon}$	Yes	Yes	Not in general
Convex	$f(x)-f^*\leq\epsilon$	FGM (Nesterov 13)	$\sqrt{LD^2/\epsilon}$	Yes	No	Yes
Convex	$f(x) - f^* \le \epsilon$	AC-FGM (Li and Lan 23)	$\sqrt{LD^2/\epsilon}$	Yes	Yes	Yes
Convex	$\ \nabla f(x)\ \leq \epsilon$	AR (Lan, Ouyang and Zhang 23)	$\sqrt{LD/\epsilon}$	Yes	backtracking	Yes
Strongly convex	$\ \nabla f(x)\ \leq \epsilon$	SCAR (Lan, Ouyang and Zhang 23)	$\sqrt{\frac{L}{\mu}} \log \frac{\ \nabla f(x_0)\ }{\epsilon}$ (new)	Yes	backtracking	Yes
Nonconvex	$\ \nabla f(x)\ \le \epsilon$	NASCAR (Lan, Ouyang and Zhang 23)	$\frac{\sqrt{Ll}\left[f(x_0)-f^*\right]}{\epsilon^2}$ (new)	Yes	backtracking	Yes

Gradient descent

•
$$x_t = \arg\min_{z \in X} \left\{ \eta_t \langle \nabla f(x_{t-1}), z \rangle + \frac{\|x_{t-1} - z\|^2}{2} \right\}$$

- Minimize linear model at x_{t-1}, not moving far from x_{t-1}
- η_t depends on the (local) Lipschitz constant: $\frac{1}{\eta_t} \ge L_t := \frac{2[f(x_{t-1}) - f(x_t) - \langle g(x_t), x_{t-1} - x_t \rangle]}{\|g(x_t) - g(x_{t-1})\|_*^2}$
- But L_t is unknown when selecting η_t
 - require global estimate of L or line search
- Can η_t be determined based on L_1, \ldots, L_{t-1} ?



ロトメロトメモトメモト

Auto-conditioned Fast Gradient Method (AC-FGM)

Strongly convex problems

- Trust linear model at x_{t-1} , not far from prox-center y_{t-1} : $z_t = \arg \min_{z \in X} \left\{ \eta_t \langle g(x_{t-1}), z \rangle + \frac{1}{2} \| y_{t-1} - z \|^2 \right\}$
- Update prox-center: $y_t = (1 \beta_t)y_{t-1} + \beta_t z_t$

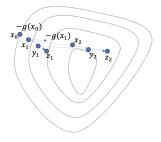
Small Gradients

• Update output: $x_t = (z_t + \tau_t x_{t-1})/(1 + \tau_t)$

Background

000000000 00000

Smooth Convex Problems



Nonconvex problems

Summarv

Difference from Accelerated Gradient Descent

Strongly convex problems

Small Gradients

- In contrast to Nesterov's AGD (84): $y_t = (1 - \alpha_t)x_{t-1} + \alpha_t z_{t-1},$ $z_t = \arg \min_{z \in X} \{ \eta_t \langle g(y_t), z \rangle + \frac{1}{2} \| z_{t-1} - z \|^2 \},$ $x_t = (1 - \alpha_t)x_{t-1} + \alpha_t z_t.$
- AGD uses {z_t} as prox-centers, while AC-FGM uses the sequence {y_t}, a moving average of {z_t} as prox-centers.
- AGD builds model at {*y_t*} rather than the output solutions {*x_t*}, while AC-FGM computes model at {*x_t*}.
- Interpretation of AGD

Smooth Convex Problems

Background

- Earlier AGD with nice geometric interpretation: Nemirovski and Yudin, 79(83a), 83b
- Game interpretation: Lan and Zhou, 2015

Nonconvex problems

Summary

Game interpretation of AC-FGM

Smooth Convex Problems

00000

Background

• A buyer-seller game $\min_x \max_g \{ \langle x, g \rangle - f^*(g) \}$:

Small Gradients

- Buyer: to determine order quantity to minimize cost
- Seller: to determine price to maximize profit, *f** being the production cost

Strongly convex problems

Buyer determines order z_t, based on price g_{t-1}, but not too far away from y_{t-1} (i.e., a moving average of z_t).

•
$$z_t = \arg \min_{z \in X} \left\{ \eta_t \langle g_{t-1}, z \rangle + \frac{1}{2} \| y_{t-1} - z \|^2 \right\}$$

•
$$\mathbf{y}_t = (\mathbf{1} - \beta_t)\mathbf{y}_{t-1} + \beta_t \mathbf{z}_t$$

 Seller determines the prize g_t, based on the demand z_t, but not too far away from the previous price g_{t-1}.

•
$$g_t = \arg \max_g \left\{ \langle z_t, g \rangle - f^*(g) - \tau_t V(g_{t-1}, g) \right\}$$

- $V(g_{t-1},g) := f^*(g) [f^*(g_{t-1}) + \langle [f^*]'(g_{t-1}), g g_{t-1} \rangle]$
- Reduces to compute $\nabla f(x_t)$ at $x_t = (z_t + \tau_t x_{t-1})/(1 + \tau_t)$

Nonconvex problems

Summary

ms Small Gradients

Strongly convex problems

Nonconvex problems Summary

Convergence rate of AC-FGM

Theorem. Suppose $\tau_1 = 0$, $\tau_t = \frac{t}{2}$ for $t \ge 2$, $\beta \in (0, 1 - \frac{\sqrt{3}}{2}]$, and the stepsize η_t follows the rule:

$$\eta_t = \min\{\frac{t}{t-1}\eta_{t-1}, \frac{\beta(t-1)}{8L_{t-1}}\} t \ge 4,$$

with η_t , $t \leq 3$, being properly specified. Then we have for $t \geq 2$,

$$f(x_k) - f(x^*) \leq \frac{\mathcal{O}(1)L}{k(k+1)} ||z_0 - x^*||^2.$$

Note: (a) η_t only depends on L_1, \ldots, L_{t-1} , no need for line search; (b) Optimal rate of convergence.

Background Smooth Convex Problems

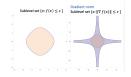
Small Gradients

Strongly convex problems

Nonconvex problems Summary

Why should we care about gradients

- Previous studies focuses on termination criterion
 f(x̂) − f(x*) ≤ ε
 - f* unknown, difficult to check
- Easy to check whether $\|\nabla f(\hat{x})\| \leq \varepsilon$
- $\|\nabla f(\hat{x})\| \leq \varepsilon$ is a stronger criterion: by $\|\nabla f(\hat{x})\|^2/(2L) \leq f(\hat{x}) - f^* \leq \|\nabla f(\hat{x})\| \|\hat{x} - x^*\|,$
 - ε -gradient implies ε -function gap.
 - ε -function gap implies $\sqrt{\varepsilon}$ -gradient.
- Turns out to be very important to design uniformly optimal algorithms for strongly convex and nonconvex problems



・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

What is the status to drive gradients small?

- For a long period of time, only exist suboptimal methods
 - Worse than the lower gradient complexity bound $\mathcal{O}(\sqrt{L||x_0 x^*||/\varepsilon})$ by a logarithmic factor.
- This lower bound is recently achieved by an optimized gradient method (Kim and Fessler 2021, Nesterov et. al. 2021, Diakonikolas et. al. 2022, Lee at. al. 2021).
 - Computer assisted algorithm design, empirically "solving" a nonconvex semidefinite programming
 - Combining two algorithms: the first one computes small function value and the second one drives gradient small
 - Lack intuitive interpretation
 - Require total number of iterations N given in advance. Do not actually use ||∇f(x̂)|| ≤ ϵ to terminate the algorithm
- No existence of parameter-free methods

Summarv

A blackbox reduction to make gradient small

Algorithm Accumulative regularization for gradient minimization

Input: strictly increasing $\{\sigma_s\}_{s=0}^S$ with $\sigma_0 = 0$; $\overline{x}_0 := x_0$. for s = 1, ..., S do Set $\overline{x}_s = (1 - \gamma_s)\overline{x}_{s-1} + \gamma_s x_{s-1}$ with $\gamma_s = 1 - \sigma_{s-1}/\sigma_s$. Compute an approximate solution x_s of

$$x_{s}^{*} := \arg\min_{x \in \mathbb{R}^{n}} \{f_{s}(x) := f(x) + \frac{\sigma_{s}}{2} \|x - \overline{x}_{s}\|^{2} \}$$

by running an optimal algorithm ${\cal A}$ for smooth convex optimization (e.g., AC-FGM).

end for

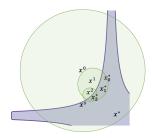
Strongly convex problems

Nonconvex problems

Summary

Convergence for accumulative regularization

- Adaptive selection of prox-centers (again!) in the proximal point method.
- Sublinear convergence of \mathcal{A} , i.e., $f_s(x_s) - f_s(x_s^*) \leq \frac{c_A \hat{L}}{k_s^2} ||x_{s-1} - x_s^*||^2$ after k_s steps. Here c_A is a universal constant, and $\hat{L} \leq L$.



Theorem. If $\sigma_s = 4^{s-2}\varepsilon/D$ and $S = 1 + \lceil \log_4(LD/\varepsilon) \rceil$, where $D \ge \min_{x^* \in X^*} ||x_0 - x^*||$, then the number of gradient evaluations to have $||\nabla f(x_S)|| \le \varepsilon$ is bounded by $\mathcal{O}(1)\sqrt{LD/\varepsilon}$.

Parameters *L* and *D* in accumulative regularization

- *D* can be handled by a doubling trick, but not needed for strongly convex and nonconvex problems.
- Subproblems are solved by a uniformly optimal method.
- Only need local Lipschitz constant of f at x_s

Algorithm M=Backtracking(h, σ, x, M_0)

for
$$j = 0, 1, ..., do$$

Set $x^{++} = x - (1/(2(M_j + \sigma)))\nabla g(x)$.
If $h(x^{++}) - h(x) - \langle \nabla h(x), x^{++} - x \rangle \le \frac{M_j + \sigma}{2} ||x^{++} - x||^2$,
then **terminate** with $M = M_j$.
Otherwise, set $M_{j+1} = 2M_j$.
end for

Parameter-free accumulative regularization

Algorithm Accumulative regularization (AR) without input of L

function
$$(\hat{x}, M) = AR(f, x_0, \sigma_1, M_0)$$

for s = 1, 2, ... do

Compute an approximate solution x_s of the proximal subproblem by running A with initial point x_{s-1} .

Set M_s = Backtracking (f_s , σ_s , x_s , $M_{s-1}/2$). If $\sigma_s \ge M_s$, then **terminate** with $\hat{x} = x_s$ and $M = M_s$.

end for

end function

Convergence: A similar gradient complexity bound as before, in addition to $\log_4(M/M_0)$ function evaluations in backtracking.

What is the current status?

Background Smooth Convex Problems

• AGD finds $\|\nabla f(\hat{x})\| \le \varepsilon$ within $\mathcal{O}(1)\sqrt{L/\mu}\log(L/(\mu\varepsilon))$ gradient evaluations.

Small Gradients

- The strong convexity modulus μ defined over a global scope is notoriously hard to estimate.
- Can we improve the gradient complexity to an optimal one: $\mathcal{O}(1)\sqrt{L/\mu}\log(1/\varepsilon)$?

Strongly convex problems

000

Nonconvex problems

Summary

Can we achieve such complexity without the input of μ?

Background Smooth Convex Problems Small Gradients Strongly convex problems Nonconvex problems Summary

- For any input argument σ₁ > 0, the AR method outputs a point x̂ with ||∇f(x̂)|| ≤ 5σ₁ ||x₀ − x^{*}||.
- Setting $\sigma_1 = \mu/10$ and using the strong convexity of f, we have $\|\nabla f(\hat{x})\| \le \mu \|x_0 x^*\|/2 \le \|\nabla f(x_0)\|/2$.
- The gradient norm is now reduced by half and we may restart the AR method.
- This results in an $O(1)\sqrt{L/\mu}\log(1/\varepsilon)$ optimal complexity.
- When μ is not available, set $\sigma_1 = \tilde{\mu}/10$ with a guess $\tilde{\mu}$.
- A guess-and-check implementation to search correct μ̃ since ||∇f(x̂)|| can be computed.

Parameter-free optimal algorithm

Algorithm Strongly convex accumulative regularization (SCAR)

function $(\hat{x}, \hat{M}) = \text{SCAR}(f, \varepsilon, y_0, \mu_0, M_0)$ for t = 1, 2, ... do Set $(y_t, M_t) = \text{AR}(f, y_{t-1}, \frac{\mu_{t-1}}{10}, M_{t-1})$. If $\|\nabla f(y_t)\| > \frac{\|\nabla f(y_{t-1})\|}{2}$ then $\mu_t = \frac{\mu_{t-1}}{4}$ and $y_t = y_{t-1}$. If $\|\nabla f(y_t)\| \le \varepsilon$, terminate with $\hat{x} = y_t$ and $\hat{M} = M_t$. end for end function

Initial selection: $\mu_0 = M_0 = \|\nabla f(y_0) - \nabla f(z_0)\| / \|y_0 - z_0\|$ Complexity: $\mathcal{O}(1) \left\{ \sqrt{L/\mu} \log(\|\nabla f(x_0)\| / \varepsilon) + \log(\mu_0/\mu) \sqrt{L/\mu} \right\}$

Current status in nonconvex optimization

Small Gradients

Background

Smooth Convex Problems

Let *I* be lower curvature. Starting with $x^0 \in \mathbb{R}^n$, set

$$x^{i} = \arg\min_{x\in\mathbb{R}^{n}} \{F_{i}(x) := f(x) + I \|x - x^{i-1}\|^{2} \}.$$

Strongly convex problems

Nonconvex problems

00000

Summarv

- By optimality condition: $F_i(x_i) + \frac{1}{2} ||x_{i-1} x_i||^2 \le F_i(x_{i-1})$, implying $f(x^{i-1}) f(x^i) \ge 3 ||\nabla f(x^i)||^2 / (8l)$.
- Telescopic sum: $\min_{i=1,\dots,N} \|\nabla f(x^i)\|^2 \leq \frac{8l(f(x^0)-f^*)}{3N}$.
- But *xⁱ* can only be computed approximately (e.g., by AGD).
- Find ||∇f(x̂)|| ≤ ε within O(1) √(L(f(x⁰)) f^{*}) log L/lε gradient evaluations.
- Can we improve further the gradient complexity?
- Can we achieve such complexity without the input of /?

Background Smooth Convex Problems Small Gradients Strongly convex problems Nonconvex problems Summary 000000000 00

Suppose / is given

- Apply SCAR to min $F_i(x)$. If $\|\nabla F^{(i)}(x^i)\| \leq \frac{\varepsilon}{4}$ but $\|\nabla f(x^i)\| \geq \varepsilon$, then $\|\nabla f(x^i)\|^2 \leq 10/[f(x^{i-1}) f(x^i)]$.
- To bound the total number of gradient evaluations, formulate an optimization problem (with y_i = ||∇f(xⁱ)||):

$$\max_{y_1,\ldots,y_N\in\mathbb{R}}\left\{\sum_{i=1}^N\log_2\frac{y_i}{\varepsilon}:\ \sum_{i=1}^Ny_i^2\leq\Delta;\ y_i\geq\varepsilon,\ \forall i\right\}.$$

• Obtain the desired $\mathcal{O}(1)\frac{\sqrt{Ll}}{\epsilon^2}[f(x^0) - f(x^*)]$ gradient complexity, the best-known complexity that has not been achieved before.

What if / is unknown?

- F_i may be nonconvex if I is underesitmated
- We need to modify SCAR to handle plausible strong convexity modulus μ̃ (SCAR-PM).
- Subroutine \mathcal{A} in AR terminates when $k \ge 8\sqrt{2L_s^k/\sigma_s}$.

function $(\hat{x}, \hat{M}, \text{ERR})$ =SCAR-PM $(f, \varepsilon, y_0, \tilde{\mu}, M_0)$ for t = 1, 2, ... do Set $(y_t, M_t) = \text{AR}(f, y_{t-1}, \tilde{\mu}/10, M_{t-1})$. If $\|\nabla f(y_t)\| > \|\nabla f(y_{t-1})\|/2$, then terminate with $\hat{x} = y_0$, $\hat{M} = M_t$, and ERR=TRUE. If $\|\nabla f(y_t)\| \le \varepsilon$, then terminate with $\hat{x} = y_t$, $\hat{M} = M_t$ and ERR=FALSE. end for end function

Nonconvex acceleration through strongly convex accumulative regularization (NASCAR)

function $\hat{x} = \text{NASCAR}(x^0, \varepsilon, M_0)$ Set $M_0 = \|\nabla f(x^0) - \nabla f(z^0)\| / \|x^0 - z^0\|$, $I_0 = Initialize(M_0)$. for i = 1, ..., doSet $F^{(i)}(x) := f(x) + I_{i-1} ||x - x^{i-1}||^2$. $(x^{i}, M_{i}, \text{ERR}_{i}) = \text{SCAR-PM}(F^{(i)}, \varepsilon/4, x^{i-1}, I_{i-1}, M_{i-1}).$ If $\|\nabla f(x^i)\| \leq \varepsilon$, then terminate with $\hat{x} := x^i$. If ERR_i =TRUE or $\|\nabla f(x^i)\|^2 > 10I_i(f(x^{i-1}) - f(x^i)),$ then replace I_i and x^i by $4I_i$ and x^{i-1} , respectively. end for end function

Note $\|\nabla F^{(i)}(x^i)\| \leq \varepsilon/4$ but $\|\nabla f(x^i)\|^2 > 10\tilde{I}(f(x^{i-1}) - f(x^i))$ implies our guess $I_i < I$.

Initial estimation of *l*₀

Algorithm Find an estimation of $I_0 \leq I$ or terminate NASCAR

function $\tilde{l} = \text{INITIALIZE}(\varepsilon, M_0)$ Set $\tilde{I} = M_0$. for i = 1, ..., doSet $F^{(0)}(x) := f(x) + \tilde{I} ||x - x^0||^2$. $(\tilde{x}^0, M_1, \text{ERR}) = \text{SCAR-PM}(F_0^{(i)}, \varepsilon/4, x^0, \tilde{l}, M_0).$ If ERR=TRUE or $\|\nabla f(x^1)\|^2 > 10\tilde{l}(f(x^0) - f(x^1))$ then terminate with \tilde{l} If $\|\nabla f(x^1)\| \leq \varepsilon$, then **terminate** NASCAR. Set I = 1/2. end for end function

Nonconvex problems Summary

Complexity of NASCAR

Background Smooth Convex Problems

• Number of gradient evaluations in Initialization: $\mathcal{O}(1) \frac{\sqrt{L(f(x^0) - f^*)}}{\epsilon} \log \frac{M_0}{\epsilon}.$

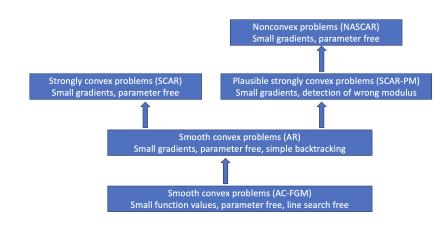
Small Gradients

Strongly convex problems

• Number of gradient evaluations in main algorithm: $\mathcal{O}(1) \frac{\sqrt{Ll(f(x^0) - f(x^*))}}{\varepsilon^2}.$

NASCAR

Algorithm Tree



- AC-FGM: uniformly optimal without line search
 - An intuitive game interpretation
- AR: parameter-free optimal method to drive gradient small
 - Simple black-box reduction, no computer-aided design
- SCAR: parameter-free optimal method for strongly convex problems
 - New complexity bounds reported
- NASCAR: parameter-free method for nonconvex problems
 - New complexity bounds reported

- T. Li and G. Lan, A simple uniformly optimal method without line search for convex optimization, arXiv preprint arXiv:2310.10082, 10/2023.
- G. Lan, Y. Ouyang, and Z. Zhang, Optimal and parameter-free gradient minimization methods for convex and nonconvex optimization, arXiv preprint arXiv:2310.12139, 10/2023.