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Motivation: Recursive Pandemics

SARS (2002-2003) Swine flu (2009-2010) Avian flu (2013)

Ebola (2014-2016) COVID19 (2019-?)
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How to model epidemic processes?

Classical models are based on the following assumptions:
▶ Population classified into compartments (healthy, sick, quarantine...)
▶ Homogeneous mixing of individuals in an unstructured population

Example: Classical Susceptible-Infected-Susceptible (SIS) model:
▶ Two compartments: Susceptible (S) and Infected (I)
▶ Two parameters: Spreading rate β and recovery rate δ.
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Epidemic Dynamics in ‘Mixed’ Populations

Classical SIS dynamics: Two dynamic variables pS(t) and pI (t)

▶ pS(t) account for the fraction of ‘healthy’ people

▶ pI (t) for the fraction of ‘sick’ people

Deterministic population dynamics:

dpI
dt

= βpSpI − δpI =
−pI

2 +
(

δ
β − 1

)
pI

β
, (1)

▶ Notice that pS(t) = 1− pI (t)

▶ Given an initial condition pI (0) ∈ (0, 1), the ODE can be solved

Control criterion: The limit of pI (t) for t → ∞ presents a bifurcation:

▶ For β > δ, pI (t) → min{1− δ/β, 1} > 0 (the disease ‘survives’)

▶ For β < δ, pI (t) → 0 (the disease is ‘eradicated!’)
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Other Models in ‘Mixed’ Populations

Additional compartments can be used to add realism to the dynamics1:

▶ E: Exposed individuals with a latent period (i.e., incubating)

▶ R: Recovered individuals with permanent immunity

▶ D: Deceased individuals

▶ H: Hospitalized in bed or in ICU

More complex transition diagrams: COVID-19

S E I R

D

Alternative model (2)

Hb

Hi

0See “Analysis and control of epidemics: A survey of epidemic processes on
complex networks” IEEE CSM 2016, for a thorough review.
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How about ‘Networked’ Populations?

Network of districts affected by the 2014 Ebola Outbreak:
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How about ‘Networked’ Populations?

An even more complex network for COVID-19:
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‘Networked’ Metapopulation Models

Network of districts:

▶ Nodes in the network are subpopulations (e.g., districts, towns)

▶ Links represent traffic between subpopulations (e.g., air, road, train)

Networked dynamic model:

▶ For each subpopulation, there is an internal compartmental dynamics

▶ These dynamics are coupled through the edges of the network
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‘Networked’ Metapopulation Dynamics (cont.)

Consider the ‘networked’ SIS metapopulation dynamics:

▶ pSi (t) and pIi (t) = pi (t) = 1− pSi (t) denote the fractions of healthy
and infected people in the subpopulation of node i at time t ≥ 0

▶ δi > 0 accounts for the average curing rate of node i
▶ αi > 0 accounts for the internal infection rate of node i
▶ βij > 0 accounts for the rate of spreading from node j to node i

Disease evolution in a networked population: For each i = 1, . . . ,N

dpi
dt

=

Intra-node infection︷ ︸︸ ︷
αip

S
i pi −

Internal recovery︷︸︸︷
δipi +

Inter-node infection︷ ︸︸ ︷∑
j ̸=i

βijp
S
i pj

substituting pSi = 1− pi and rearranging terms we obtain:

dpi
dt

=

Linear terms︷ ︸︸ ︷
αipi−δipi+

∑
j ̸=i

βijpj −

Nonpositive nonlinear terms (N.N.T.)︷ ︸︸ ︷
αipi

2−
∑
j ̸=i

βijpipj
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‘Networked’ Metapopulation Dynamics (cont.)

Question: Under what conditions is the disease ‘eradicated’? How fast?

The population dynamics can be written in matrix-vector form:

d

dt


p1
p2
...
pN

 =


α1−δ1 β12 . . . β1N

β21 α2−δ2 . . . β2N

...
...

. . .
...

βN1 βN2 . . . αN−δN


︸ ︷︷ ︸

A−D+B


p1
p2
...
pN

− N.N.T .

where A = diag(αi ), B = [βij ], and D = diag(δi ).

Theorem (Global exponential stability1)

For any initial condition p(0) ∈ (0, 1)N , the infection vector p(t) will
decay at an exponential decay rate ε > 0, if and only if,

ℜ{λi (A−D+B)} ≤ −ε for all i = 1, . . . ,N.

1See “Optimal resource allocation for network protection against spreading
processes,” IEEE TCNS, 2014.
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Problem: Preemptive Network Protection

Setup: Consider a networked SIS metapopulation model

i
j

k

aibkj

di

Available Resources: Control an epidemic outbreak using

▶ Pharma resources able to increase recovery rates δi
▶ Social distancing able to decrease internal infection rates αi

▶ Traffic control able to reduce spreading rates βij , where βij ̸= βji
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Network Protection Problem

We can invest in these resources, assuming costs:

▶ Pharma cost of tuning the recovery rates fi (δi )

▶ Social distancing cost to decrease the internal infection rates gi (αi )

▶ Traffic control cost aiming to reduce spreading rates hij(βij)

$ 
in

 so
cia

l d
ist

an
cin

g

$ 
in

 tr
af

fic
 co

nt
ro

l

ai ai bij bij

$ 
in

 p
ha

rm
a

di di

fi(di) gi(ai) hij(bij)

Problem: Find the cost-optimal allocation of epidemic-control resources
to eradicate any potential outbreak at the fastest decay rate2possible

2In DT models, the decay rate becomes the effective reproductive rate, Rt .
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Some Notation

A few definitions:

▶ Consider a weighted, directed graph G with N nodes and a
(nonnegative and asymmetric) adjacency matrix W = [wij ]

▶ λ1, λ2, . . . , λN ∈ C are the eigenvalues of W

▶ The spectral radius of W is defined as ρ = max{|λi |}Ni=1

▶ A graph is strongly connected (S.C.) if there exists a directed path
between every pair of vertices

Perron-Frobenius lemma: If G is S.C., then

▶ ρ > 0 is a simple eigenvalue of W

▶ Wu = ρu, for some eigenvector u > 0 (component-wise)

▶ ρ = inf {λ > 0: Wu < λu, u > 0}

Victor M. Preciado (preciado@seas.upenn.edu) Control of Epidemics in Networks 18



Geometric Programming

Geometric programs are quasiconvex optimization problems that can be
convexify via a logarithmic change of variables

▶ Let x1, . . . , xn > 0 denote n positive decision variables

▶ Define x = (x1, . . . , xn) ∈ Rn
++

▶ In the context of GP, a monomial m(x) is defined as
m(x) = cxa11 xa22 . . . xann with c > 0 and ai ∈ R

▶ A posynomial function q(x) is defined as a sum of monomials, i.e.,

q(x) =
∑K

k=1 ckx
a1k
1 xa2k2 . . . xankn , where ck > 0.

A Geometric Program3is an optimization problem of the form:

minimize p(x) (2)

subject to qi (x) ≤ 1, i = 1, ...,m,

mi (x) = 1, i = 1, ..., p,

where qi and p are posynomial functions, mi are monomials
3For more information about GP’s, see Boyd’s monograph “A Tutorial on

Geometric Programming”.
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Budget-Constrained Network Protection

Problem statement:

Given the following elements:

▶ A directed network of traffic links connecting subpopulations

▶ Cost functions fi (δi ), gi (αi ), and hij(βij)

▶ Box constraints δi ≤ δi ≤ δi , αi ≤ αi ≤ αi , and β
ij
≤ βij ≤ βij

▶ A total budget C to be invested in containment resources4

Find the cost-optimal joint allocation of epidemic-control resources to
maximize the exponential decay rate ε of any outbreak

4Alternatively, we could impose a constraint on the a desired decay rate, instead of
a budget C . For more details, see “Optimal resource allocation for network protection
against spreading processes” IEEE TCNS, 2014.
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Budget-Constrained Network Protection

Mathematical formulation: A = diag(αi ), B = [βij ], and D = diag(δi )

maximize
ε,A,B,D

ε (3)

subject to ℜ{λi (A−D+B)} ≤ −ε for all i , (4)∑
i gi (αi ) +

∑
i fi (δi ) +

∑
i,j hij (βij) ≤ C, (5)

αi ≤ αi ≤ αi and δi ≤ δi ≤ δi for all i , (6)

β
ij
≤ βij ≤ βij for all (i , j), (7)

In what follows, we solve this allocation problem for directed networks
using geometric programming5

For clarity in our exposition, we will only consider non-pharma actions
(i.e., the recovery rates, δi , are out of our control)

5For undirected networks and cost functions satisfying a mild convexity constraint,
the problem can be solved using SDP; see “Optimal Vaccine Allocation to Control
Epidemic Outbreaks in Arbitrary Networks” IEEE CDC, 2013.
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Sketch of our Approach (informal6)

The main difficulty stems from the spectral condition (3) in the optimization
program. We transform Condition (3) by following these steps:

1. Define ∆ = max {δi : i = 1, . . . ,N}; hence,

ℜ{λi (A− D + B)} ≤ −ε ⇐⇒ ℜ{λi (A+∆IN − D︸ ︷︷ ︸
Dc

+ B)} ≤ ∆− ε︸ ︷︷ ︸
εc

. (8)

2. We have that A+ Dc + B ≥ 0; hence, according to Perron-Frobenius

(8) for all i ⇐⇒ ρ (A+ Dc + B) ≤ εc . (9)

3. Using the variational result in the P.F. lemma, we obtain

(9) ⇐⇒ inf {λ > 0: (A+ Dc + B) u < λu, u > 0} ≤ εc .

4. The vector inequality (A+ Dc + B) u < λu can be written,
component-wise, as

αiui + δci ui +
∑N

j=1 βijuj < λui for all i = 1, . . . ,N

which is equivalent to the following set of posynomial inequalities:

λ−1αi + λ−1δci + λ−1 ∑N
j=1 βiju

−1
i uj < 1 for all i = 1, . . . ,N

5More details in “Optimal resource allocation for network protection against
spreading processes,” IEEE TCNS, 2014.
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Optimal Non-Pharmaceutical Intervention

Main Result: Budget-constrained allocation (non-pharma actions)

Assuming that gi and hij are posynomial cost functions7, solve the
following Geometric Program:

minimize
λ,{ui ,αi}i ,{βij}i,j

λ

subject to λ−1αi + λ−1δci + λ−1 ∑
j βijui

−1uj ≤ 1 for all i ,∑
i gi (αi ) +

∑
i,j hij (βij) ≤ C,

βij ≤ βij and βij
−1 ≤ β

ij
for all (i , j) ,

αi ≤ αi and αi
−1 ≤ αi for all i .

The optimal decay rate of the epidemics with a budget C is given by
ε⋆ = ∆− λ⋆.

7More generally, gi and hij have to be convex in log-log scale, i.e.,
Gi (y) = log(gi (exp(y))) and Hij (y) = log(hij (exp(y))) are convex functions of y.
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Numerical Illustration: Air Transportation Network

Find the cost-optimal non-pharmaceutical strategy against an SIS-type
pandemic propagating through the air transportation network:

7Disclaimer: These following simulations were run before the current COVID-19
outbreak and were conceived as an academic illustration in 2014. The optimal
distribution of resources shown below does not apply to COVID-19.
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Numerical Illustration: Setup

Setup: We consider the following elements

▶ World-wide air traffic network: airports (nodes) and traffic (weighted links)

▶ Fixed recovery rates δi (non-pharma actions only)

▶ Cost of social distancing gi (αi ) and traffic control hij (βij ) (shown below)

▶ A total budget C

Investment in social distancing Investment in traffic control

gi(ai)
hi(bi)

0

1

0

1
bij=bi x Tij

ai ai bi bi

Objective: Find the cost-optimal allocation of non-pharma resources to maximize the
exponential decay rate of a disease with a given budget
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Numerical Illustration: Results

Investments on traffic control vs social distancing over airports:

Figure: (Left) a scatter plot with the investment for each airport vs. the
incoming traffic (in MPPY), and (right) a scatter plot with the investment
versus PageRank centralities of the airport.
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Extension 1: Generalized epidemic models

We can analyze epidemic models with a variety of intermediate states:

▶ Exposed to the disease (i.e., incubating without symptoms),

▶ Vigilant about the spread (i.e., informed and careful), etc.

An optimal allocation of resources, including educational campaigns, can
be found via Geometric Programming in the SEIV model8.

8See “Optimal resource allocation for control of networked epidemic models,” IEEE
TCNS, 2016.
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Extension 2: Time-Switching Networks

In real life, epidemic processes take place in time-varying networks:

Temporal Network (24-h window) and aggregated static graph9.

▶ Aggregrated static graphs induce strong biases in the epidemics.

▶ In [Ogura and P., 2015a]10, we develop a framework to analyze and
control epidemic processes in time-varying networks.

10Figure from Perra et al., 2012.
10See “Stability of spreading processes over time-varying large-scale networks,”

IEEE TNSE, 2015.
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Extension 3: Data-Driven Control

In practice, the spreading and recovery rates of the systems are not
explicitly given. Instead, we usually have access to (unreliable) data11:

▶ In [Hayhoe et al., 2023] we developed a metalearning approach and in
[Han et al., 2015] a data-driven formulation based on conic GP.

11Figure and data from CSSE@jhu
Victor M. Preciado (preciado@seas.upenn.edu) Control of Epidemics in Networks 31



Questions? A few references below...

▶ V.M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie, and G. Pappas, “Optimal vaccine
allocation to control epidemic outbreaks in arbitrary networks,” IEEE CDC, 2013.

▶ V.M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie, and G. Pappas, “Optimal Resource
Allocation for Network Protection Against Spreading Processes,” IEEE TCNS, 2014.

▶ S. Han, V.M. Preciado, C. Nowzari, and G. Pappas, “Data-Driven Network Allocation for
Controlling Spreading Processes,” IEEE TNSE, 2015.

▶ M. Ogura and V.M. Preciado, “Stability of Spreading Processes over Time-Varying
Large-Scale Networks,” IEEE TNSE, 2016

▶ C. Nowzari, V.M. Preciado, and G. Pappas, “Analysis and Control of Epidemics: A Survey
of Spreading Processes on Complex Networks,” IEEE CSM, 2016.

▶ M. Ogura and V.M. Preciado, “Stability of spreading processes over time-varying large-scale
networks,” IEEE TNSE, 2016.

▶ M. Ogura and V.M. Preciado, “Epidemic processes over adaptive state-dependent
networks,” PRE, 2016.

▶ C. Nowzari, V.M. Preciado, and G. Pappas, “Optimal Resource Allocation for Control of
Networked Epidemic Models,” IEEE TCNS, 2017.

▶ M. Ogura, V.M. Preciado, and N. Masuda, “Optimal Containment of Epidemics over
Temporal Activity-Dependent Networks,” SIAM Journal on Applied Mathematics, 2019.

▶ N. Masuda, M. Ogura, and V.M. Preciado, “Analysis of the susceptible-infected-susceptible
epidemic dynamics in networks via the non-backtracking matrix,” The IMA Journal of
Applied Mathematics, 2020.

▶ M. Ogura and V.M. Preciado, “Stability of SIS Epidemic Processes in Networks with
Non-Markovian Transmission and Recovery,” IEEE TCNS, 2020.

Victor M. Preciado (preciado@seas.upenn.edu) Control of Epidemics in Networks 32


