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Cyclic Block Coordinate Methods on a Finer Scale:
Tighter Bounds and New Methods

Jelena Diakonikolas (UW-Madison)

Jason's Optimization Seminar
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Outline

» Recap of coordinate methods (cyclic vs randomized)
= A new cyclic method for variational inequalities
» Generalizations

= A fun problem | am looking at (if enough time!)
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I A Quick Refresher on (Block) Coordinate Methods

» Fix a partition of the vector of variables into m blocks:
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Block 1 Block 2 Block 3 Block 4

1 3

Jelena Diakonikolas (UW-Madison) Cyclic Block Coordinate Methods on a Finer Scale



I A Quick Refresher on (Block) Coordinate Methods

» Fix a partition of the vector of variables into m blocks:

Block 1 Block 2 Block 3 Block 4
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xERd,i

first-order oracle
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I A Quick Refresher on (Block) Coordinate Methods

» Fix a partition of the vector of variables into m blocks:

Block 1 Block 2 Block 3 Block 4

1 3

» Types of methods/orderings of updates:
2 cyclic: fix an order of blocks, go through all of them in a cycle;
- randomized: pick blocks randomly, sample with replacement;
- greedy: pick the block that leads to the largest progress
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A Quick Refresher on (Block) Coordinate Methods

» Fix a partition of the vector of variables into m blocks:

Block 1 Block 2 Block 3 Block 4

3

1

= Types of methods/orderings of updates:

2 cyclic: fix an order of blocks, go through all of them in a cycle;

- randomized: pick blocks randomly, sample with replacement;

. greedy: pick the block that leads to the largest progress
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Theory vs Practice?

= Randomized methods [Strohmer & Vershynin’08], [Nesterov'12]:

2 almost always faster than full gradient methods, assuming the problem is (block)
coordinate friendly [Nesterov'12] + a lot of follow-up work;

o generally the best theoretical guarantees among block coordinate methods;

: can relate the partial gradient to the full one by taking the expectation,
helps much of the analysis carry over from full gradient methods

» Cyclic methods [Kaczmarz'37], [Ortega & Rheinboldt'70]:

2 often preferred in practice over randomized methods (e.g., in GLMNet, SparseNet);
2 much more challenging to analyze; hard to relate partial gradients to full ones;

2 complexity guarantees generally worse than even for full gradient methods and
smooth cvx opt, by dimension-dependent factors [Beck-Tetruashvili"13]; this is tight
for cyclic gradient descent-type method [Sun-Ye'19]
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State of the Art for Cyclic Methods (Prior to This Work) @

» Essentially no non-asymptotic results for min-max opt/variational inequalities

a Exception: [Chow-\Wu-Yin'17], but requires cocoercivity and the rate is 1/vVk

» For (non-accelerated) smooth convex optimization, number of full gradient queries

mLD?

(assuming coordinate-friendly) of the order O ( ) at best (worse by a factor

m =# of blocks than gradient descent; m = d for coordinate descent)

The only exception are convex quadratic problems [GUrbuzbalaban et al., 2017], [Lee & Wright, 2019]

= *All analyses based on relating the partial gradient to the full one

*as far as | can tell, please correct me if wrong
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Cyclic Coordinate Dual Averaging with Extrapolation
(CODER)

Setup and Results



Joint Wo rk Wlth Chaobing Song (Huawei)

C. Song, J. Diakonikolas, "Cyclic Coordinate Dual Averaging with Extrapolation,
SIAM Journal on Optimization, vol. 33, no. 4, pp. 2935-2961, 2023.
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Problem Setup @

(Pco) ;Tel]g}l f(x) + g(x)

(GMVI) Find x* € R4 s.t. Vx, (F(x),x —x*)+ g(x) —g(x*) =0

\ (Pyvm) mxin max ®(x, y)

y

= Assumptions:

o There is a fixed partition of coordinates into m blocks;
a F:R* > R%js

> "(block) coordinate-friendly” according to that partition; Il focus on the cyclic coordinate

o monotone: Vx,y: (F(x) —F(y),x —vy)=0; case (m = d), for simplicity

o Lipschitz: 3L < o0 s.t.Vx,y: ||[F(x) — F(y)| < Ll||x — y||
a g:R¥—> Ris

o block-separable over the given partition: g(x) = 7%, g7 (x/) ;

0 prOXng(xj) = arg min {gf(y) + i”y — xf||2} is easily computable, Vj € {1, ...,m};
yERdj 2T

o possibly strongly convex, with modulus y = 0 and lower semicontinuous
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Coordinate Lipschitz Assumption?

= What is standard in convex optimization:
jth standard basis vector

IV/f(x) —V/f(x +hle])| < Ljlnl, vxe RLheR
scalar

= For VIs unclear how to make useful. Take bilinear games min max x’ Ay. Then
Xy

() =1 olbl=[,

so F/ ([;D = Aj.y for j in the block belonging to the x-player. In particular,
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A Difterent Coordinate Lipschitz Condition?

» Going back to the bilinear case, for any [;] , [;C],] and any j in the x-part,

(D)= () - w0

* From there, we can conclude:

(G-~ (5]

quadratic form

[x — x’]T 0 0 T' [x — x’]
y—y'l [0 Apdjfly —y']
symmetric
PSD matrix

2

= ldea: generalize to other (possibly nonlinear) operators F
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New Lipschitz Condition @

There exist symmetric positive semidefinite matrices Q1, 0%, ..., Q¢ such that for any z,z’ € R%,

IFi(2) = Fi@z)|* < (z—2))TQJ(z - ).

= Can be trivially satisfied with Q7 = LI, but can generally choose better

= Define: 1,2,..,j—1

= Summary Lipschitz constant:

)
|

d
2.0
j=1
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Main Result W

= This is the same as for full-vector update methods, but with L replaced by L
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How Large is L? )

= \Worst case:

d d d
i={|> @fls Dlels )i <LV
triangle 0/ < QJ 0/ < LI
inequality

Even for the special case of smooth convex optimization, the resulting bound is better by a factor vd
than what was known for any (unaccelerated) cyclic coordinate method.

For variational inequalities, the obtained complexity result is state-of-the-art, even compared to

randomized methods [Kotsalis et al., 2022] (it is actually better by a factor Vd in the worst case).

It is also the first cyclic method for general variational inequalities with monotone operators with
provable convergence guarantees.
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How Large is L?

o

= |n practice, L is no larger than L, usually smaller (constants below are for min-max SVM)

- Real data sets:

Dataset a9a australia | madelon | colon mnist
L 15389.6 340.5 1992.4 9.0 24410.5
L 10358.8 238.1 1269.7 D7 15236.1

o Synthetic (standard Gaussian) data; fixed dataset size n or fixed dimension d, respectively

Lipschitz Parameters
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I Algorithm

Algorithm 3.1 Cyclic cOordinate Dual avEraging with extRapolation (CODER)

. Input: x_; = g € dom(g),vy > 0,L>0,m, {8t,...,8™}
. Initialization: py = F(xg),290 =0, ag = Ag =0

_ 14+~vAk 1 _
ar = T,Ak = Ap_1+ ag

J_
k

1, mi_l, - a;',’gn_l) «———— partial “gradient” at intermediate point

L2 (Fj (wk_l) = pi:—l) +—— partial “gradient” extrapolation

j) } dual averaging step with extrapolated gradient
z
k

1

2

3: for k=1to K do

4.

5. for 7=1tomdo
6: B =S o ol
T =Pt

8: z] = z]_, + axq,
9: mfc = ProxX 4, 4i (a:f) —
10: end for

11: end for

~ 1 K
12: return g = V. Zk:l ATk, TK

Similar gradient extrapolation
in [Hamedani & Aybat., 2018]
and [Kotsalis et al., 2022]
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How the Analysis Works

(GMVI) Find x* € R% s.t. Vx, (F(x),x —x*) + g(x) —g(x*) =0

= We can only solve this approximately to error € > 0, so equivalently want to

find x; € R s.t. Vx, (F(x),x —x2)+ g(x) — g(x}) = —€

m

which is the same as find xf € R? s.t. Vx, |[Gap(x,x}) = (F(x), x} —x) — g(x) + g(x}) <

= So we may try to bound Gap(x, x;) for iterations k = 1, 2, ...

» The key step:
Gap(x, xi) = (F(x), x — x) — g(x) + g(x) this part defines the

< (F(xy),x, —x)—g(x)+ g(x;) step, bytaking a max

1 1
=(qk, xx — x) — g(x) + g(xi) —5llx = xp |15t 5 llx = xp |15

HF () — Qo X = X) | e art of choosing gy is for
controlling this term




Numerical Experiments SVM with LASSO or ridge,

on ala LibSVM dataset

(Illustration) (d = 123,n = 1605)

SVM with LASSO SVM with LASSO and Ridge
10° 1°
—@— RAPD —&— RAPD
CODER CODER
VR-CODER VR-CODER
10t } —4&— PCCM 107} —&— PCCM
—W— PRCM —W¥— PRCM

f-f*
f-f*

0 5.00x10° 1.00x10* 1.50x10° 2.00x10° 2.50x] 0 5.00x10° 1.00x10*
#Data Passes #Data Passes
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Further Developments

Two Examples: Bilinear Extensive Form Games and Shuffled SGD
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Q: Are cyclic methods always slower than full vector update methods in the worst case?

A: No, and they may have advantages. A specific example (the first of its kind!) to follow.



. . Darshan Chakrabarti Christian Kroer
JOl Nt VVO rl( Wlth: (Columbia University) (Columbia University)

D. Chakrabarti, J. Diakonikolas, C. Kroer “Block Coordinate Methods and Restarting for Solving
Extensive Form Games,” in Proc. NeurlPS 2023. (af ordering of authors)

Jelena Diakonikolas (UW-Madison) Cyclic Block Coordinate Methods on a Finer Scale 23



Problem: Bilinear Extensive Form Games (EFGs) @

= A general class of game-theoretic models that capture both simultaneous and sequential
moved, private/imperfect information, and stochasticity

» |n optimization language, we have a bilinear min-max problem:

sequence form polytopes: treeplexes
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xl/ x2/+ X3 _|\x4\|.\x5

Treeplex?
X1
Xe X7 [+ xg\+ Xo

Jelena Diakonikolas (UW-Madison)
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I Why Cyclic Updates are OK

1

x7/+ x8+x = x;

x15 + x1

~{ i

X15 X166
o &> — + — =

N

Jelena Diakonikolas (UW-Madison)

x1/ By | R _|\x4\|.\x5

1
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Main Result @

A method (ECyclicPDA) that for any € > 0 outputs a solution with primal-dual gap at most e
with iteration complexity that is no worse than the iteration complexity of full-vector update
methods like Mirror-Prox.

This is the first example (that | know of) of a cyclic method with no scaling with the number of

blocks in the worst case.
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Q: Do these ideas extend beyond basic cyclic coordinate methods?

A: Yes. They extend to the incremental gradient method and shuffled SGD.



. . Xufeng Cai Eric (Cheuk-Yin) Lin
JOlnt WOrk Wlth: (UW-Madison) (UW-Madison)

X. Cai, C-Y. Lin, J. Diakonikolas, “Empirical Risk Minimization with Shuffled SGD: A Primal-Dual
Perspective and Improved Bounds,” arXiv preprint, arXiv:2306.12498, 2023.
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Problem Setup @

Empirical Risk Minimization problems over data {a4, a,, ..., a,,;}

are (in practice) usually solved by incremental/shuffled SGD methods, which make updates

_ T
Xki+1 = Xgi —NVEi(a; X ;)

going through all the data vectors in a cyclic manner, possibly permuting the order at the
beginning of a cycle.

Convergence guarantees: not understood until recently [GUrbuzbalaban et al., 2021], [Shamir,
2016], [Haochen & Sra, 2019], [Nagaraj et al., 2019], [Rajput et al., 2020], [Ahn et al., 2020],
[Mishchenko et al., 2020], [Nguyen et al., 2021], [Cha et al., 2023]
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Main Insight @

= We can view incremental gradient/shuffled SGD as a primal-dual method
with cyclic updates on the dual side

Algorithm 1 Shuffled SGD (Primal-Dual View)

1: Input: Initial point &y € R¢, batch size b > 0, step size {nx} > 0, number of epochs K > 0
2: for k=1 to K do
3:  Generate any permutation 7(*) of [n] (either deterministic or random)

4 Tp—11 = Tg—1
5 fori=1tom do
: : r - :
6: yl(:) = arg max, cgo {yTAg‘)wk—l,i — ijl fﬂ_(,(g) | (yJ)}
b(i—1)+j
e
7 |11 = argmax,ega (Y AL T + 52 ||z — @1}
8: end Ior -
1 2
9: LTk = Tk—1,m+1, Y = (y;i ),y,(c ), e ,y;(cm))
10: end for

11: Return: xx = Ele nkwk/ Zszl Nk
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Main Results
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How Tighter in Practice?

DATASET #FEATURES (d) #DartapoinNTs (n) L/L log, L/L
AlA 123 1605 5.50 0.231
A9A 123 32561 5.49 0.164
BBBCO005 361920 19201 18.3 0.295
BBBCO010 361920 201 7.04 0.368
CIFAR10 3072 50000 10.0 0.213
| DUKE 129 44 38.0 0.962 |
E2006TRAIN 150360 16087 5.35 0.173
GISETTE 5000 6000 3.52 0.145
| LEU 7129 38 32.8 0.960 |
MNIST 780 60000 19.1 0.268
NEWS20 1355191 19996 42.1 0.378
RCV1 47236 20242 111 0.475
| REAL-SIM 20958 72309 194 0.471 |
SONAR 60 208 6.26 0.344
T™C2007 30438 21519 10.9 0.239
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Other Extensions | Did Not Talk About

» Variance reduction for cyclic methods [Song, D, 2021], [Lin, Song, D, ICML 2023],
[Cai, Song, Wright, D, ICML 2023]

= Acceleration in smooth convex optimization [Lin, Song, D, ICML 2023]
= Nonconvex optimization [Cai, Song, Wright, D, [CML 2023]

» Incremental gradient methods and continual learning [Cai, D, forthcoming]
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A Toy Project | am Excited About

and it is for a “real” application!
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lce Cube Neutrino Detector

IceCube Lab

T 600
N S - IceTop >
e W T = _— 81 stations/ 162 tanks 200 |-
s :\—-.“'-‘_-’_: - 324 optical sensors
: 200
10 l
| ‘ | o ®
| | | IceCube In-Ice Array o £ Rt
86 strings including DeepCore 0 ©®
1 ‘ 5160 optical sensors 200 |-
400 |-
-600
600

1450 m
DeepCore

8 strings optimized for lower energies +

7 standard central strings
480 + 420 optical sensors
> —_|

Eiffel Tower
324 m

2450 m
2820 m
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lce Cube Neutrino Detector
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Neutrino Detection & Non-negative Least Squares

w
w
'

Physics models for detected photon waveforms:

e f(t)=A (6_% + etbio)

N w
w o

N
o
' '

Amplitude (mV)
= =
o w

t—x t—ag

¢ ft)=A (Cee . +eT)

54
0.

=20 0 20 40 60 80 100 120

Problem can be formulated as a regularized non-negative least-square problem:

min | Ax — b} + r(x)

where A is non-negative, highly sparse and structured, and the desired form of regularization r(x) is
unclear.
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Summary

= We should still care about and study cyclic methods!
* We just need to be more careful about how we look at them

= \What next?

2 For what classes of problems are cyclic methods particularly effective and why?

2 What kind of cyclic methods should we use in practice?

Questions?

jelena@cs.wisc.edu
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