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> the agent manipulates their features to achieve a desired outcome
» e.g., graduate school admission, bank loan approval
» true features and labels are not actually improved
» manipulated features can be misleading

> the learner aims at a classifier that effectively

» predicts true labels, and possibly discourages manipulation

> strategic agents # adversarial agents
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Motivation

Strategic behavior in classification

» challenge: as you learn and modify your decision rule, the agents will change how
they respond to it

> especially in online (non-distributional) settings, this leads to an informational
problem in addition to computational problem

> similar to online learning of a Stackelberg leader strategy

» challenge: as we measure performance (in this case agent's features), agents will
manipulate without necessarily improving

P question: can we minimize mistakes and manipulations together?
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Problem Overview

Online setting: at each time step t, the agent and the learner take action alternately

> agent
> observes the current classifier (y:, b;) given by x — label(x, y;, b;)

> given their feature vector A;, reports manipulated feature vector r; := r(A¢, yt, bt)

» learner
> observes the manipulated features r; = r(A¢, vz, b)

» makes a prediction Igggl(rt,yt, b;) using the current classifier (y;, b;)
> receives the true ¢; := label(A;)
> updates the classifier to (y:11, br11) based on historical data {(r-, (7, yr, br)} el

(without knowledge of true features {A;},¢[y)
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Literature

How does the agent manipulate?
Various manipulation models:
» utility maximization: max, {gain(x, y, bt) — cost(A¢, x)}

> discrete features via a manipulation graph
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Literature

How does the agent manipulate?
Various manipulation models:
» utility maximization: max, {gain(x, y, bt) — cost(A¢, x)}

> discrete features via a manipulation graph

How to evaluate the classifier's effectiveness in the strategic setting?
» mistake bound

» Stackelberg regret w.r.t. various loss functions
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Our Model

We consider the following model:
online scenario, t =1,2,...
binary classification, label(A;) € {—1,+1}

linear classifier, x — label(x, ys, bt) = sign(y, x + b,

vV v v v

agent's utility function

r(Ae, yt, bt) € arg max {|§%|(x,yt, b:) — c||x — Al }
x€Rd

» tradeoff between desired prediction outcome and manipulation cost

> assumption: cost(A;, x) resembles a distance metric = cost(A;, x) = c||x — A¢|
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Preliminaries: Agent’s response

The agent’s manipulation cost is c||x — A¢||, where ¢ & || - || are known to the learner.

Lemma

Given a classifier x — sign (yTx +b— %) the agent’s response (i.e., manipulated

feature) is given by
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The agent’s manipulation cost is c||x — A¢||, where ¢ & || - || are known to the learner.

Lemma

Given a classifier x — sign (yTx +b— M) the agent’s response (i.e., manipulated

feature) is given by

[ J
2 ylA+b ; yTA+bh _ 2
r(Ayb) = At (2 ) vy, oA <2 g
A, otherwise
A.
t=Tt.

where v(y) € O|y||«.
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Preliminaries: Prediction

In the strategic setting, what is an ideal classifier?
P a correct classifier on unmanipulated data may be incorrect on manipulated data

» an incorrect classifier on unmanipulated data may become correct

> key idea 1: shift the decision hyperplane so that IabeI(A y, b) = sign <y AtbE )

Iyl e

Tx+b 2)
[y [ c

lemma: If x — S|gn(yH e ) classifies all unmanipulated data correctly, then x s sign(%

classifies all manipulated features correctly
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Preliminaries: Proxy data

What else could go wrong with manipulated data?
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Preliminaries: Proxy data

What else could go wrong with manipulated data?

P> agent’s responses can be inseparable even if unmanipulated data are separable

[ ) o @ ®
° ° L4 ° .o°
® o ® o o o ©
( .. () ..O/ °

> key idea 2: construct a proxy s(A¢, v+, bt) that approximates A; using
only the information we have, i.e., r¢, £¢, vi, bt

9/33
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Preliminaries: Proxy data

Lemma

Given a classifier x — sign (yTx +b— M) and agent’s response r(A,y, b), the

proxy data is computed as
() o

[ J
[ J
r(Ay,b) - 2u(y), ifrAnbiee 2 ° o o °
s(Ay.b) = and label(A) = -1, ® o ©
A, otherwise. ° ® .
([ J
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Preliminaries: Proxy data

Lemma

Given a classifier x — sign (yTx +b— M) and agent’s response r(A,y, b), the

proxy data is computed as
() o

[ J
r(A,y,b)+b ® ()
r(A,y,b) — 2v(y), /f%—% L4 () ()
s(Ay.b) = and label(A) = — ° . o ©
A, otherwise.
[ J [ J )
([ J

Lemma (correctness)

A response r(A, y, b) is misclassified by x — sign(yTx + b — 2||y|l+/c) = label(x, y, b)
<= its proxy s(A,y, b) is misclassified by x + sign(y " x + b).
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Preliminaries: Margin

Unmanipulated data {(A¢,label(A;¢))} are separable, with a max margin classifier
(v«, bx) achieving a margin of d, > 0.
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Preliminaries: Margin

Unmanipulated data {(A¢,label(A¢))} are separable, with a max margin classifier
(v«, bx) achieving a margin of d, > 0.

Proxy data s(A, y, b) depends on classifier (y, b). As we learn and revise classifiers
(vt, bt), how can we ensure that proxy data remains separable?
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Preliminaries: Margin

Unmanipulated data {(A¢,label(A¢))} are separable, with a max margin classifier
(v«, bx) achieving a margin of d, > 0.

Lemma

Suppose (y, b), (v, b) € RY\ {0} x R are such that y"v(y) > 0. Then,
> label(A) - (y"s(A,y, b) + b) > label(A) - (" A+ b) for all A;
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Preliminaries: Margin

Unmanipulated data {(A¢,label(A¢))} are separable, with a max margin classifier
(v«, by) achieving a margin of d, > 0.

Lemma

Suppose (y, b), (v, b) € RY\ {0} x R are such that y"v(y) > 0. Then,
> label(A) - (7"s(A,y,b) + b) > label(A) - (7T A+ b) for all A;

» thus, minac4 {IabeI(A) . W} > minaca {IabeI(A) : yﬂ;}r:[’};

That is, under separability assumption on unmanipulated data, for every y € R9 \ {0}
satisfying v v(y) > 0, we have proxy data s(A,y, b) are separable with margin at
least d..
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Algorithms

Generate and use classifiers (y:, bt) that ensure separability of the proxy data
s(At, yt, br) and work with the proxy data

What works in the non-strategic setting?

» perceptron P> margin maximization
> update by y;11 < yr + label(A;) - A, >
whenever A, is misclassified max _ min, {label(A;) - (y " A + b)}
> finite mistake bound, but no margin llyll-<1,b€R

» maximal margin classifier

uarantee . .
& > computationally expensive

» computationally cheap
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Strategic Perceptron: Algorithm

Projected strategic perceptron (S-perceptron)

Select a closed convex cone . C RY x R. Initialize by (yo, bg) = 0.
At iteration t =1,2,... -
Step 1. Receive manipulated data r; and predict by label(rt, yt, b).

T
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Step 1. Receive manipulated data r; and predict by label(rt, yt, b).

Step 2. Receive label(A;) and compute the proxy s(A¢, yt, bt)
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Strategic Perceptron: Algorithm

Projected strategic perceptron (S-perceptron)’

Select a closed convex cone L. C R? x R. Initialize by (yo, bg) = 0.
At iteration t =1,2,... -
Step 1. Receive manipulated data r; and predict by label(r:, yt, bt).

Step 2. Receive label(A;) and compute the proxy s(Ag, yt, bt)
Step 3. Update by (yt+1, bry+1) = Projj (ze+1) where

(vt, br) + label(A¢) - ( s(A¢, yt, br) , 1), if A is misclassified,
Zt41 = )
(vt, bt), otherwise.

» Why projection onto a cone?

» To capture a priori information on y. or by, e.g., bx =0 or y« € ]Ri, etc.
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Strategic Perceptron: Results

Let M = # of mistakes throughout the algorithm.

Theorem (informal)

S-perceptron algorithm is guaranteed to have a finite mistake bound ...

» whenever d, > % but no prior knowledge on (y*, b*) exists:

L|3+62 D2
select L = RY x R to get [M| < Hy||}‘/‘f||§ (df—;/1c:)2 ’
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Let M = # of mistakes throughout the algorithm.

Theorem (informal)

S-perceptron algorithm is guaranteed to have a finite mistake bound ...

» whenever d, > % but no prior knowledge on (y*, b*) exists:

L|5+b2 D2
select L = R? x R to get |M| < Hy||}‘,‘2||2 (df_ﬁ/lc)zr

» whenever b, = 0 is known a priori and || - H is ¢ norm":
select L = R? x {0} to get IM| < 241 D2 *1

> whenever y* € RY is known a priori and || - H is any £, norm:
«|13+b2 H2
select L =RY x R to get |M| < %}*%,

Kiling-Karzan Guarantees in Online Strategic Classification 14 /33



Strategic Perceptron: Summary

Projected strategic perceptron
(+) computationally cheap

(+) finite mistake bound
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) update only when making a mistake
)

not guaranteed to converge to (yu, by); no margin guarantee
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Strategic Perceptron: Summary

Projected strategic perceptron
(+) computationally cheap
(+) finite mistake bound
(=) update only when making a mistake
(=) not guaranteed to converge to (y«, bi); no margin guarantee
Question: How can we improve?
> strategic perceptron uses only information from current iteration in its update

> idea: make use of all historical data: {(rr, ¢+, yr, br)} ey
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Strategic Max Margin: Algorithm

Strategic max-margin (SMM) algorithm
Call initialization subroutine. At iteration t =1,2,...
Step 1. Receive manipulated data r; and predict by label(r:, yt, bt).

Step 2. Receive label(A;) and compute the proxy s(A, yt, bt).

Step 3. Update to (yt+1, bry1) by solving the proxy margin maximization problem

Vet B0 € SR iy {'abe|(AT)' (yTs(AT,yT, br) + b)}. (Py)
llyll«<1,beR T€[]
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Strategic Max Margin: Results

SMM algorithm is guaranteed to have

> a finite mistake bound; and
» a finite manipulation bound whenever d, > %

{At}ten are i.i.d. samples from a probability distribution with support A, and the max
margin classifier on {(A,label(A)) : A € A} is (ys, bs) achieving a margin of d. > 0.

If d, > 2, SMM algorithm guarantees (y¢, b;) converges to (ys, b.)/||ys|« almost
surely.
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Strategic Max Margin: Proof Highlights
» Recall the proxy margin maximization problem

in < label(A;) - (v s(Ar, yr b))+ b) b P
Hy||gal>,<b€mrg'[g]{a el(Ar) (y s(Ar, yr, br) + )} (P:)
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Strategic Max Margin: Proof Highlights
» Recall the proxy margin maximization problem
max _ min {IabeI(AT) ~ (yTs(AT,yT, b-) + b)} . (P:)

llyll«<1,b€R T€(t]

> Define Af = {s(A.,ys,b,;): 7 € [t] s.t. label(A,) = +1} and also A; .
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Strategic Max Margin: Proof Highlights

» Recall the proxy margin maximization problem

in < label(A;) - (v s(Ar, yr b))+ b) b P
Hy||gal,xb€mrg'[g]{a el(Ar) (y s(Ar, yr, br) + )} (P:)

> Define Af = {s(A.,ys,b,;): 7 € [t] s.t. label(A,) = +1} and also A; .
» Then (P¢) is

max h ,b;jﬂj—
lylle<1,beR (v, b AL, AL)

where  h(y, b; A, A7) = min { min {yTx—i— b}, min {—yTx — b}} :

x€AS xEAL
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Strategic Max Margin: Proof Highlights
h(y, b; At, A7) = min { r:g+ {yTx + b}, rglzrl {—yTX - b}}

Lemma (witness points, classifier alignment)
Suppose ﬂ*, A- CcR? separable with positive margin. Then,
> (7,b) € argmax, <1 per h(y, bs AT, A7) satisfy |7 = 1,
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Lemma (witness points, classifier alignment)
Suppose ﬂ*, A- cR? separable with positive margin. Then,
> (7,b) carg max (|, <1,6er N(Y; b; At A7) satisfy ||7]« = 1;
> 3 witness points %t € conv(AT) and %~ € conv(A™) s.t.
yTET —57)= %" =x7|| - 7]+, and

d|7ll« =75 +b=-y"%x" —b;

Kiling-Karzan Guarantees in Online Strategic Classification 19/33
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h(y, b; A*, A7) = min { rg;{l+ {yTx + b}, rglzrl {—yTX - b}}

Lemma (witness points, classifier alignment)
Suppose ﬂ*, A- cR? separable with positive margin. Then,
> (7,b) € argmax, <1 per h(y, bs AT, A7) satisfy |7 = 1,

> 3 witness points %t € conv(AT) and %~ € conv(A™) s.t.
yT(xt =x7) = |&" =7 - |7l., and

d|7ll« =75 +b=-y"%x" —b;

» whenever || - || and its dual norm || - || are strictly convex,
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h(y, b; A*, A7) = min { rg;{l+ {yTx + b}, rglzrl {—yTX - b}}

Lemma (witness points, classifier alignment)
Suppose ﬂ*, A- cR? separable with positive margin. Then,
> (7,b) carg max (|, <1,6er N(Y; b; At A7) satisfy ||7]« = 1;
> 3 witness points %t € conv(AT) and %~ € conv(A™) s.t.
yTET —57)= %" =x7|| - 7]+, and

d|7ll« =75 +b=-y"%x" —b;

» whenever || - || and its dual norm || - || are strictly convex,

» (¥, b) is unique; and
> any (¥, b) satisfying h ()7, b; /TJF,JZ_) > d > 0 satisfies y ' v(y) > (d/d) > 0.
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Suppose separability and strict convexity of the norms hold.

> At time t, SMM generates (y;, b;) with margin d;. Then, for all t
> v, will be well-aligned with y., i.e., y,J v(y:) > ||y*||*‘ZT*; >0;
> dt+1 2 d*;

> if label(A:)[y, s(A¢, yt, be) + b] < allyt||« holds for a < d,, then diy1 < k(a, d., D)d,.
(n(a, d, D) € (0,1) is a parameter based on the geometry of the problem, margin and size of data)

= # of mistakes M satisfies |[M| < % < 00;

—> # of manipulations of negative data N'~, (as well as N'* whenever d, > 2/c) satisfy

log(di/ds)
log <1/F€ (O, dx, D))

log(d1/d-)

s o8 (1 (2/c,4-.5))

<oo,  NTFIL

< 00;
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Strategic Max Margin: Proof Highlights

Lemma (uniform convergence)

Let AfcAfc...C AL cR?
A CA A

S C...

If both sets ﬂ;fo and .Zgo are bounded, then h:(y, b) := h (y, b; A, .Zt_) converge uniformly
to hoo(y, b) := h (y, b; ﬂ;,ﬂ;) over any compact domain D C R? x R.
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Lemma (uniform convergence)

Let AfcAfc...C AL cR?
A CA A

S C...

If both sets ,Zgo and .Zgo are bounded, then h:(y, b) := h (y, b; A, .Zt_) converge uniformly
to hoo(y, b) := h (y, b; ﬂ;,ﬂ;}) over any compact domain D C R? x R.

» When data A; is bounded, i.e., ||A¢]| < D, we get uniform conv. to ho(y, b)

» When d, > 2/c, = finitely many mistakes and manipulations = 3t; € N s.t.
r(Ah_yt’ bt) = S(At’yih bt) = At for all t Z tp a.s.
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Strategic Max Margin: Proof Highlights

Lemma (uniform convergence)

Let A

A

Af Cc...C AL cR?

A AL C R

=+
N
N

N

=
N
N

N

If both sets ,Zjo and .Zgo are bounded, then h:(y, b) := h (y, b; A, .Zt_) converge uniformly
to hoo(y, b) := h (y, b; VZ;,,Z;)) over any compact domain D C R? x R.

» When data A; is bounded, i.e., ||A¢]| < D, we get uniform conv. to ho(y, b)

» When d, > 2/c, = finitely many mistakes and manipulations = 3t; € N s.t.
r(Ah_yt’ bt) = S(At’yih bt) = At for all t Z tp a.s.

» Distributional separability will ensure {A; : t > tp} is dense in A a.s.
» (yi, bi) maximizes h,, a.s. (recall also that h., has a unique maximizer)
» Then, uniform conv. of hy — h, implies (v, bt) — (y«, bx) almost surely.
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Strategic Max Margin: Summary

Strategic max-margin algorithm
(+) finite mistake and manipulation bounds

(+) convergence to the max margin classifier (yx, bx)
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Strategic Max Margin: Summary

Strategic max-margin algorithm
(+) finite mistake and manipulation bounds
(+) convergence to the max margin classifier (yx, bx)

(=) requires solving an optimization problem at each iteration
Question: Can we reduce the computation cost?

P idea: Joint estimation-optimization

» given a sequence of optimization problems that converges to a target problem

» perform one update (e.g., one step of gradient descent) based on the problem
defined by the current data

Kiling-Karzan Guarantees in Online Strategic Classification 22/33



Gradient-based SMM: Algorithm

Gradient-based strategic max-margin algorithm (Gradient SMM)

Call initialization subroutine. Select stepsizes {7;}. At iteration t =1,2,...
Step 1. Receive manipulated data r; and predict by label(r;, yt, by).

Step 2. Receive label(A;) and compute the proxy s(A, yt, bt).
Step 3. Update to (yt+1, br+1) by

s € arg njaxzt—rs, s; € argmin z's, zy1= ProjBH_H2 (zt +7e(si — s;))
seAf s€A,

D reftin) V2 1 .
and yey = =TT = 2 min ylys 4+ max yls )
Z-re[tH] I 2 \sea SEA

> key idea:
.

h(y, b; .Z‘*‘,,Z‘) = % (minxej+ yTx — max . i yTX) - ’b+ % (minxa&r yTx+ max . z-y X
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Gradient-based SMM: Algorithm

Gradient-based strategic max-margin algorithm (Gradient SMM)

Step 3. Update to (yt+1, br+1) by

s; € arg njaxzt—rs, s; € argmin z's, zy1= ProjBH_H2 (zt +7e(si — s;))
seAf s€A,

ETG[tJrl] YrZr 1 (
~ > btyi=-—2

and ypi1 =
Z-re[tﬂ] T

min y;_:_15+ max ytT,_ls .
sCAf SEA;

> key idea:

h(y, b; .Z'*',.Z_) = % (minxefpr yTx— max, . 7 yTX) — ’b—s— % (minXa‘Pr yTx+ max, . 7- yTx)‘ .
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Gradient-based SMM: Results

{At}ten are i.i.d. samples from a probability distribution with support A, and the max
margin classifier on {(A,label(A)) : A € A} is (y«, bs) achieving a margin of d, > 0.

Theorem
Suppose || - || is the £» norm and ~; = ~0/+/t. Then, gradient SMM algorithm is
guaranteed to

» make finitely many mistakes a/most surely,

» induce finite manipulations whenever d, > % and

2
> converge to (ys, b.)/||y«||2 almost surely whenever d, > <.
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Theoretical Guarantees: Summary

» Suppose || - || is the £2 norm. Then,
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Theoretical Guarantees: Summary

» Suppose || - || is the £2 norm. Then,
Algorithm | Mistake Manipulation Margin
S-perceptron | finite bound® - -
SMM | finite bound finite bound convergence
Gradient SMM | finite finite convergence
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Computational Study - Setting

» Bank loan application data from [8] (collected by an online platform Prosper):
» d = 6 continuous features (bank card utilization, credit history length, etc.)

» 20,222 data points (41.70% have +1 labels)

» Preprocessed to ensure separability and a margin of at least p > 0

Kiling-Karzan Guarantees in Online Strategic Classification 26 /33



Computational Study - Setting

» Bank loan application data from [8] (collected by an online platform Prosper):
» d = 6 continuous features (bank card utilization, credit history length, etc.)

» 20,222 data points (41.70% have +1 labels)

» Preprocessed to ensure separability and a margin of at least p > 0

» Tested the impact of
> Margin p € {0.01,0.02,0.04},
» Cost of manipulation 2/c € {0.9, 1.0, 1.1} - p, and

> Noise in agent responses: learner observes r(A;, y:, b;) + €, where e, ~ N(0, 0%14)
is i.i.d. Gaussian noise with o € {0,1073,1072}.
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Performance Comparison

» No noise (o = 0), performance metric: convergence to max-margin classifier
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Performance Comparison

» No noise (o = 0), performance metric: # of mistakes
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Performance Comparison

» No noise (o = 0), performance metric: # of manipulations
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Performance Comparison

» No noise (o = 0), performance metric: solution time (seconds)
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Performance Comparison: Noisy Response

> learner observes r(A;, v, b:) + &¢, where &, ~ N(0,021,) is i.i.d. Gaussian noise with &
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> learner observes r(A;, v, b:) + &¢, where &, ~ N(0,021,) is i.i.d. Gaussian noise with &

> varying noise level in agent responses: o € {0, 1073, 1072}
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Performance Comparison: Noisy Response

> learner observes r(A;, y;, bt) + &¢, where &, ~ N(0,021y) is i.i.d. Gaussian noise with &
> varying noise level in agent responses: o € {0, 103, 1072}

» performance metric: convergence to max-margin classifier
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Computational Study - Summary

» Summary of numerical performance (no noise):

Algorithm ‘ Margin Mistake Manipulation Time

S-perceptron | (=/+) (=) (==) (++)
SMM | (++4) (++) (++) (=-)
Gradient SMM | (+-) (+) (=) (+)

» SMM performs the best in terms of all metrics except solution time.

» Gradient-based SMM does better than strategic perceptron in terms of convergence
and # of mistakes, and eventually in terms of # manipulations as well.
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Computational Study - Summary

» Summary of numerical performance (no noise):

Algorithm ‘ Margin Mistake Manipulation Time

S-perceptron | (=/+) (=) (==) (++)
SMM | (++4) (++) (++) (=-)
Gradient SMM | (+-) (+) (=) (+)

» SMM performs the best in terms of all metrics except solution time.

» Gradient-based SMM does better than strategic perceptron in terms of convergence
and # of mistakes, and eventually in terms of # manipulations as well.

» SMM is robust to low magnitude of noise, but not high noise.

» Gradient SMM and S-perceptron appear to be quite robust to noise.
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Conclusion
Summary

» New algorithms for classification in strategic setting with theoretical guarantees
on # of mistakes, # of manipulations and margin
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Conclusion

Summary

» New algorithms for classification in strategic setting with theoretical guarantees
on # of mistakes, # of manipulations and margin

Future outlook

» model variants

> alternative manipulation models (other cost structures, discrete features via manipulation
graph, ... )

» unknown utility function

P strategic classification for nonlinear classifiers

» connections with Stackelberg games more generally

» more tools to handle strategic behavior effectively
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Thank youl!

fkilinc@andrew.cmu.edu
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