Mistake, Manipulation and Margin Guarantees in Online Strategic Classification

Fatma Kılınç-Karzan

Carnegie Mellon University Tepper School of Business

Joint work with Lingqing Shen, Nam Ho-Nguyen, Hung Giang-Tran

UPenn Optimization Seminar

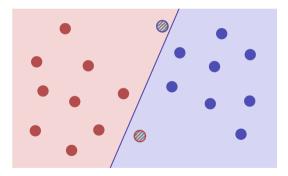
Classification

Fundamental task in many domains: image classification, loan approval, ...



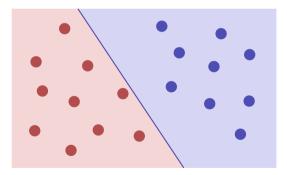
Classification

Fundamental task in many domains: image classification, loan approval, ...



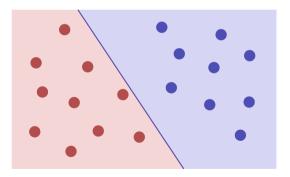
Classification

Fundamental task in many domains: image classification, loan approval, ...



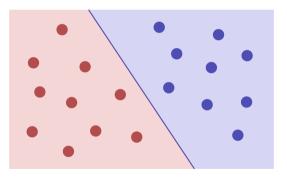
Classification

What if the data are noisy?



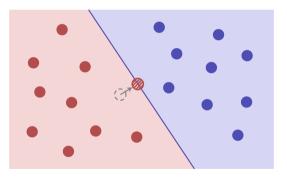
Classification

What if the data are noisy?



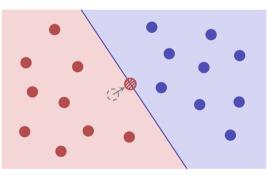
Classification

What if the data are strategic?



- binary classification as a game between an agent and a learner
- ▶ the agent manipulates their features to achieve a desired outcome

- binary classification as a game between an agent and a learner
- the agent manipulates their features to achieve a desired outcome



- binary classification as a game between an agent and a learner
- ▶ the agent manipulates their features to achieve a desired outcome
 - e.g., graduate school admission, bank loan approval
 - true features and labels are not actually improved
 - manipulated features can be misleading

- binary classification as a game between an agent and a learner
- ▶ the agent manipulates their features to achieve a desired outcome
 - e.g., graduate school admission, bank loan approval
 - true features and labels are not actually improved
 - manipulated features can be misleading
- the learner aims at a classifier that effectively
 - predicts true labels,

- binary classification as a game between an agent and a learner
- ▶ the agent manipulates their features to achieve a desired outcome
 - e.g., graduate school admission, bank loan approval
 - true features and labels are not actually improved
 - manipulated features can be misleading
- the learner aims at a classifier that effectively
 - predicts true labels, and possibly discourages manipulation

- binary classification as a game between an agent and a learner
- ▶ the agent manipulates their features to achieve a desired outcome
 - e.g., graduate school admission, bank loan approval
 - true features and labels are not actually improved
 - manipulated features can be misleading
- the learner aims at a classifier that effectively
 - predicts true labels, and possibly discourages manipulation
- strategic agents \neq adversarial agents

Strategic behavior in classification

challenge: as you learn and modify your decision rule, the agents will change how they respond to it

- challenge: as you learn and modify your decision rule, the agents will change how they respond to it
 - especially in online (non-distributional) settings, this leads to an informational problem in addition to computational problem

- challenge: as you learn and modify your decision rule, the agents will change how they respond to it
 - especially in online (non-distributional) settings, this leads to an informational problem in addition to computational problem
- similar to online learning of a Stackelberg leader strategy

- challenge: as you learn and modify your decision rule, the agents will change how they respond to it
 - especially in online (non-distributional) settings, this leads to an informational problem in addition to computational problem
- similar to online learning of a Stackelberg leader strategy
- challenge: as we measure performance (in this case agent's features), agents will manipulate without necessarily improving

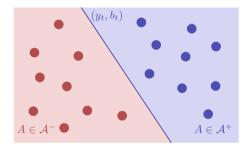
- challenge: as you learn and modify your decision rule, the agents will change how they respond to it
 - especially in online (non-distributional) settings, this leads to an informational problem in addition to computational problem
- similar to online learning of a Stackelberg leader strategy
- challenge: as we measure performance (in this case agent's features), agents will manipulate without necessarily improving
- question: can we minimize mistakes and manipulations together?

Online setting: at each time step *t*, the agent and the learner take action alternately

Online setting: at each time step t, the agent and the learner take action alternately

agent

• observes the current classifier (y_t, b_t) given by $x \mapsto label(x, y_t, b_t)$

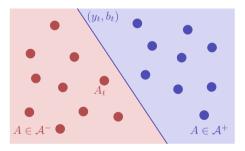


Online setting: at each time step t, the agent and the learner take action alternately

agent

• observes the current classifier (y_t, b_t) given by $x \mapsto label(x, y_t, b_t)$

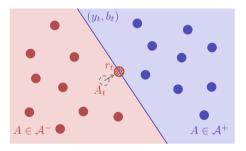
• given their feature vector A_t ,



Online setting: at each time step t, the agent and the learner take action alternately

agent

- observes the current classifier (y_t, b_t) given by $x \mapsto label(x, y_t, b_t)$
- given their feature vector A_t , reports manipulated feature vector $r_t := r(A_t, y_t, b_t)$



Online setting: at each time step t, the agent and the learner take action alternately

agent

▶ observes the current classifier (y_t, b_t) given by $x \mapsto \widetilde{\text{label}}(x, y_t, b_t)$

• given their feature vector A_t , reports manipulated feature vector $r_t := r(A_t, y_t, b_t)$

learner

• observes the manipulated features $r_t = r(A_t, y_t, b_t)$

Online setting: at each time step t, the agent and the learner take action alternately

agent

▶ observes the current classifier (y_t, b_t) given by $x \mapsto |\widetilde{abel}(x, y_t, b_t)|$

• given their feature vector A_t , reports manipulated feature vector $r_t := r(A_t, y_t, b_t)$

learner

- observes the manipulated features $r_t = r(A_t, y_t, b_t)$
- makes a prediction $\widetilde{\text{label}}(r_t, y_t, b_t)$ using the current classifier (y_t, b_t)

Online setting: at each time step t, the agent and the learner take action alternately

agent

▶ observes the current classifier (y_t, b_t) given by $x \mapsto |\widetilde{abel}(x, y_t, b_t)|$

• given their feature vector A_t , reports manipulated feature vector $r_t := r(A_t, y_t, b_t)$

learner

- observes the manipulated features $r_t = r(A_t, y_t, b_t)$
- makes a prediction $\widetilde{\text{label}}(r_t, y_t, b_t)$ using the current classifier (y_t, b_t)
- receives the true $\ell_t := \text{label}(A_t)$

Online setting: at each time step t, the agent and the learner take action alternately

agent

▶ observes the current classifier (y_t, b_t) given by $x \mapsto |\widetilde{abel}(x, y_t, b_t)|$

• given their feature vector A_t , reports manipulated feature vector $r_t := r(A_t, y_t, b_t)$

learner

- observes the manipulated features $r_t = r(A_t, y_t, b_t)$
- makes a prediction $\overline{|abel(r_t, y_t, b_t)|}$ using the current classifier (y_t, b_t)
- receives the true $\ell_t := \text{label}(A_t)$
- ▶ updates the classifier to (y_{t+1}, b_{t+1}) based on historical data {(r_τ, ℓ_τ, y_τ, b_τ)}_{τ∈[t]} (without knowledge of true features {A_τ}_{τ∈[t]})

Literature

How does the agent manipulate?

Various manipulation models:

• utility maximization: 1,2,3,4 max_x {gain(x, y_t, b_t) - cost(A_t, x)}

discrete features via a manipulation graph^{5,6}

 $^1[{\rm Hardt}$ el al., 2016], $^2[{\rm Dong}$ et al., 2018], $^3[{\rm Chen}$ et al., 2020], $^4[{\rm Ahmadi}$ et al., 2021], $^5[{\rm Lechner}$ and Urner, 2022], $^6[{\rm Ahmadi}$ et al., 2023]

Literature

How does the agent manipulate?

Various manipulation models:

• utility maximization: 1,2,3,4 max_x {gain(x, y_t, b_t) - cost(A_t, x)}

discrete features via a manipulation graph^{5,6}

How to evaluate the classifier's effectiveness in the strategic setting?

- ▶ mistake bound^{1,4,6}
- ► Stackelberg regret^{3,6,2} w.r.t. various loss functions

 $^1[{\rm Hardt}$ el al., 2016], $^2[{\rm Dong}$ et al., 2018], $^3[{\rm Chen}$ et al., 2020], $^4[{\rm Ahmadi}$ et al., 2021], $^5[{\rm Lechner}$ and Urner, 2022], $^6[{\rm Ahmadi}$ et al., 2023]

Our Model

We consider the following model:

- online scenario, t = 1, 2, ...
- ▶ binary classification, label(A_t) $\in \{-1, +1\}$
- ▶ linear classifier, $x \mapsto \widetilde{\text{label}}(x, y_t, b_t) = \text{sign}(y_t^\top x + b_t')$

Our Model

We consider the following model:

- online scenario, t = 1, 2, ...
- ▶ binary classification, label(A_t) $\in \{-1, +1\}$
- ▶ linear classifier, $x \mapsto \widetilde{\mathsf{label}}(x, y_t, b_t) = \mathsf{sign}(y_t^\top x + b_t')$

agent's utility function

$$r(A_t, y_t, b_t) \in rgmax_{x \in \mathbb{R}^d} \left\{ \widetilde{label}(x, y_t, b_t) - cost(A_t, x) \right\}$$

tradeoff between desired prediction outcome and manipulation cost

Our Model

We consider the following model:

- online scenario, t = 1, 2, ...
- ▶ binary classification, label(A_t) $\in \{-1, +1\}$
- ▶ linear classifier, $x \mapsto \widetilde{\mathsf{label}}(x, y_t, b_t) = \mathsf{sign}(y_t^\top x + b_t')$

agent's utility function

$$r(A_t, y_t, b_t) \in \operatorname*{arg\,max}_{x \in \mathbb{R}^d} \left\{ \widetilde{\mathsf{label}}(x, y_t, b_t) - \frac{c \|x - A_t\|}{c \|x - A_t\|} \right\}$$

- tradeoff between desired prediction outcome and manipulation cost
- ▶ assumption: $cost(A_t, x)$ resembles a distance metric $\Rightarrow cost(A_t, x) = c ||x A_t||$

Preliminaries: Agent's response

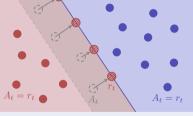
Assumption

The agent's manipulation cost is $c \|x - A_t\|$, where $c \& \|\cdot\|$ are known to the learner.

Lemma

sle

Given a classifier
$$x \mapsto \text{sign}\left(y^{\top}x + b - \frac{2\|y\|_{*}}{c}\right)$$
, the agent's response (i.e., manipulated feature) is given by^{*}



Preliminaries: Agent's response

Assumption

The agent's manipulation cost is $c \|x - A_t\|$, where $c \& \|\cdot\|$ are known to the learner.

Lemma

Given a classifier
$$x \mapsto \operatorname{sign}\left(y^{\top}x + b - \frac{2\|y\|_{*}}{c}\right)$$
, the agent's response (i.e., manipulated feature) is given by^{*}

$$\frac{r(A,y,b)}{|A|} = \begin{cases} A + \left(\frac{2}{c} - \frac{y^{\top}A + b}{\|y\|_*}\right)v(y), & \text{if } 0 \le \frac{y^{\top}A + b}{\|y\|_*} < \frac{2}{c} \\ A, & \text{otherwise} \end{cases}$$

$$A_t = r_t$$

where $v(y) \in \partial \|y\|_*$.

*Learner and agent use the same common tie-breaking rule whenever the optimal response is not unique.

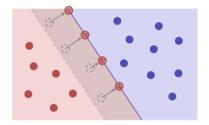
Preliminaries: Prediction

In the strategic setting, what is an ideal classifier?

Preliminaries: Prediction

In the strategic setting, what is an ideal classifier?

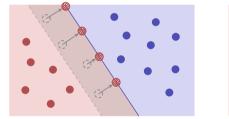
> a correct classifier on unmanipulated data may be incorrect on manipulated data

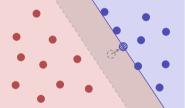


Preliminaries: Prediction

In the strategic setting, what is an ideal classifier?

- > a correct classifier on unmanipulated data may be incorrect on manipulated data
- > an incorrect classifier on unmanipulated data may become correct

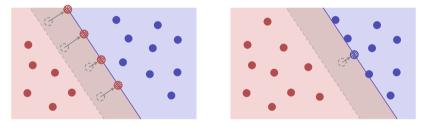




Preliminaries: Prediction

In the strategic setting, what is an ideal classifier?

- > a correct classifier on unmanipulated data may be incorrect on manipulated data
- > an incorrect classifier on unmanipulated data may become correct

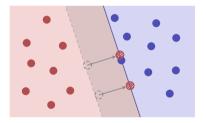


▶ key idea 1: shift the decision hyperplane so that $|abel(A, y, b) = sign\left(\frac{y^\top A + b}{\|y\|_*} - \frac{2}{c}\right)$

► lemma: If $x \mapsto \text{sign}(\frac{y^{\top}x+b}{\|y\|_*})$ classifies all unmanipulated data correctly, then $x \mapsto \text{sign}(\frac{y^{\top}x+b}{\|y\|_*} - \frac{2}{c})$ classifies all *manipulated* features correctly

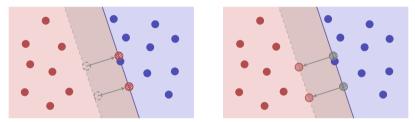
What else could go wrong with manipulated data?

> agent's responses can be inseparable even if unmanipulated data are separable



What else could go wrong with manipulated data?

> agent's responses can be inseparable even if unmanipulated data are separable



key idea 2: construct a proxy $s(A_t, y_t, b_t)$ that approximates A_t using only the information we have, i.e., r_t , ℓ_t , y_t , b_t

Lemma

Given a classifier $x \mapsto \text{sign}\left(y^{\top}x + b - \frac{2\|y\|_{*}}{c}\right)$, and agent's response r(A, y, b), the proxy data is computed as $s(A, y, b) = \begin{cases} r(A, y, b) - \frac{2}{c}v(y), & \text{if } \frac{y^{\top}r(A, y, b) + b}{\|y\|_{*}} = \frac{2}{c} \\ & \text{and label}(A) = -1, \\ A, & \text{otherwise.} \end{cases}$

Lemma

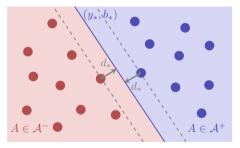
Given a classifier $x \mapsto \operatorname{sign} \left(y^{\top} x + b - \frac{2\|y\|_{*}}{c} \right)$, and agent's response r(A, y, b), the proxy data is computed as $s(A, y, b) = \begin{cases} r(A, y, b) - \frac{2}{c}v(y), & \text{if } \frac{y^{\top}r(A, y, b) + b}{\|y\|_{*}} = \frac{2}{c} \\ & \text{and label}(A) = -1, \\ A, & \text{otherwise.} \end{cases}$

Lemma (correctness)

A response r(A, y, b) is misclassified by $x \mapsto \text{sign}(y^{\top}x + b - 2||y||_*/c) = |\widetilde{abel}(x, y, b)$ \iff its proxy s(A, y, b) is misclassified by $x \mapsto \text{sign}(y^{\top}x + b)$.

Assumption (separability)

Unmanipulated data $\{(A_t, \text{label}(A_t))\}$ are separable, with a max margin classifier (y_*, b_*) achieving a margin of $d_* > 0$.



Assumption (separability)

Unmanipulated data $\{(A_t, \text{label}(A_t))\}$ are separable, with a max margin classifier (y_*, b_*) achieving a margin of $d_* > 0$.

Question

Proxy data s(A, y, b) depends on classifier (y, b). As we learn and revise classifiers (y_t, b_t) , how can we ensure that proxy data remains separable?

Assumption (separability)

Unmanipulated data $\{(A_t, \text{label}(A_t))\}$ are separable, with a max margin classifier (y_*, b_*) achieving a margin of $d_* > 0$.

Lemma (classifier alignment)

Suppose $(y, b), (\bar{y}, \bar{b}) \in \mathbb{R}^d \setminus \{0\} \times \mathbb{R}$ are such that $\bar{y}^{\top}v(y) \ge 0$. Then,

► label(A) $\cdot (\bar{y}^{\top}s(A, y, b) + \bar{b}) \ge label(A) \cdot (\bar{y}^{\top}A + \bar{b})$ for all A;

Assumption (separability)

Unmanipulated data $\{(A_t, \text{label}(A_t))\}$ are separable, with a max margin classifier (y_*, b_*) achieving a margin of $d_* > 0$.

Lemma (classifier alignment)

Suppose $(y, b), (\bar{y}, \bar{b}) \in \mathbb{R}^d \setminus \{0\} \times \mathbb{R}$ are such that $\overline{y}^\top v(y) \ge 0$. Then, label(A) $\cdot (\bar{y}^\top s(A, y, b) + \bar{b}) \ge label(A) \cdot (\bar{y}^\top A + \bar{b})$ for all A; thus, $\min_{A \in \mathcal{A}} \left\{ label(A) \cdot \frac{\bar{y}^\top s(A, y, b) + \bar{b}}{\|\bar{y}\|_*} \right\} \ge \min_{A \in \mathcal{A}} \left\{ label(A) \cdot \frac{\bar{y}^\top A + \bar{b}}{\|\bar{y}\|_*} \right\};$

Assumption (separability)

Unmanipulated data $\{(A_t, \text{label}(A_t))\}$ are separable, with a max margin classifier (y_*, b_*) achieving a margin of $d_* > 0$.

Lemma (classifier alignment)

Suppose $(y, b), (\bar{y}, \bar{b}) \in \mathbb{R}^d \setminus \{0\} \times \mathbb{R}$ are such that $\bar{y}^\top v(y) \ge 0$. Then, $|abel(A) \cdot (\bar{y}^\top s(A, y, b) + \bar{b}) \ge |abel(A) \cdot (\bar{y}^\top A + \bar{b}) \text{ for all } A;$ $thus, \min_{A \in \mathcal{A}} \left\{ |abel(A) \cdot \frac{\bar{y}^\top s(A, y, b) + \bar{b}}{\|\bar{y}\|_*} \right\} \ge \min_{A \in \mathcal{A}} \left\{ |abel(A) \cdot \frac{\bar{y}^\top A + \bar{b}}{\|\bar{y}\|_*} \right\};$ That is, under separability assumption on unmanipulated data, for every $y \in \mathbb{R}^d \setminus \{0\}$

That is, under separability assumption on unmanipulated data, for every $y \in \mathbb{R}^d \setminus \{0\}$ satisfying $y_*^\top v(y) \ge 0$, we have proxy data s(A, y, b) are separable with margin at least d_* .

Algorithms

Main Idea

Generate and use classifiers (y_t, b_t) that ensure separability of the proxy data $s(A_t, y_t, b_t)$ and work with the proxy data

Algorithms

Main Idea

Generate and use classifiers (y_t, b_t) that ensure separability of the proxy data $s(A_t, y_t, b_t)$ and work with the proxy data

What works in the non-strategic setting?

perceptron

- ► update by y_{t+1} ← y_t + label(A_t) · A_t whenever A_t is misclassified
- finite mistake bound, but no margin guarantee
- computationally cheap

Algorithms

Main Idea

Generate and use classifiers (y_t, b_t) that ensure separability of the proxy data $s(A_t, y_t, b_t)$ and work with the proxy data

What works in the non-strategic setting?

- perceptron
 - ► update by y_{t+1} ← y_t + label(A_t) · A_t whenever A_t is misclassified
 - finite mistake bound, but no margin guarantee
 - computationally cheap

margin maximization

- $\max_{\|y\|_* \leq 1, b \in \mathbb{R}} \min_t \left\{ \mathsf{label}(A_t) \cdot (y^\top A_t + b) \right\}$
- maximal margin classifier
- computationally expensive

Projected strategic perceptron (S-perceptron)[†]

Select a closed convex cone $\mathbb{L} \subset \mathbb{R}^d \times \mathbb{R}$. Initialize by $(y_0, b_0) = 0$. At iteration t = 1, 2, ...Step 1. Receive manipulated data r_t and predict by $\widetilde{label}(r_t, y_t, b_t)$. Step 2. Receive $label(A_t)$ and compute the proxy $s(A_t, y_t, b_t)$ Step 3. Update by $(y_{t+1}, b_{t+1}) = \operatorname{Proj}_{\mathbb{L}}(z_{t+1})$ where $z_{t+1} = \begin{cases} (y_t, b_t) + label(A_t) \cdot (s(A_t, y_t, b_t), 1), & \text{if } A_t \text{ is misclassified,} \\ (y_t, b_t), & \text{otherwise.} \end{cases}$

Why projection onto a cone?

• To capture a priori information on y_* or b_* , e.g., $b_*=0$ or $y_*\in\mathbb{R}^d_+$, etc.

Projected strategic perceptron (S-perceptron)[†]

Select a closed convex cone $\mathbb{L} \subset \mathbb{R}^d \times \mathbb{R}$. Initialize by $(y_0, b_0) = 0$. At iteration t = 1, 2, ...Step 1. Receive manipulated data r_t and predict by $|abel(r_t, y_t, b_t)$. Step 2. Receive $|abel(A_t)$ and compute the proxy $s(A_t, y_t, b_t)$ Step 3. Update by $(y_{t+1}, b_{t+1}) = \operatorname{Proj}_{\mathbb{L}}(z_{t+1})$ where $z_{t+1} = \begin{cases} (y_t, b_t) + |abel(A_t) \cdot (s(A_t, y_t, b_t), 1), & \text{if } A_t \text{ is misclassified} \\ (y_t, b_t), & \text{otherwise.} \end{cases}$

Why projection onto a cone?

 \blacktriangleright To capture a priori information on y_* or b_* , e.g., $b_*=0$ or $y_*\in \mathbb{R}^d_+$, etc.

Projected strategic perceptron (S-perceptron)[†]

Select a closed convex cone $\mathbb{L} \subset \mathbb{R}^d \times \mathbb{R}$. Initialize by $(y_0, b_0) = 0$. At iteration t = 1, 2, ...

- Step 1. Receive manipulated data r_t and predict by $label(r_t, y_t, b_t)$.
- Step 2. Receive label(A_t) and compute the proxy $s(A_t, y_t, b_t)$
- Step 3. Update by $(y_{t+1}, b_{t+1}) = \operatorname{Proj}_{\mathbb{L}}(z_{t+1})$ where $z_{t+1} = \begin{cases} (y_t, b_t) + \operatorname{label}(A_t) \cdot (\underbrace{s(A_t, y_t, b_t)}_{(y_t, b_t)}, 1), & \text{if } A_t \text{ is misclassified}, \\ (y_t, b_t), & \text{otherwise.} \end{cases}$

Why projection onto a cone?

• To capture a priori information on y_* or b_* , e.g., $b_*=0$ or $y_*\in\mathbb{R}^d_+$, etc.

Projected strategic perceptron (S-perceptron)[†]

Select a closed convex cone $\mathbb{L} \subset \mathbb{R}^d \times \mathbb{R}$. Initialize by $(y_0, b_0) = 0$. At iteration t = 1, 2, ...

- Step 1. Receive manipulated data r_t and predict by $label(r_t, y_t, b_t)$.
- Step 2. Receive label(A_t) and compute the proxy $s(A_t, y_t, b_t)$
- Step 3. Update by $(y_{t+1}, b_{t+1}) = \operatorname{Proj}_{\mathbb{L}}(z_{t+1})$ where $z_{t+1} = \begin{cases} (y_t, b_t) + \operatorname{label}(A_t) \cdot (\underbrace{s(A_t, y_t, b_t)}_{(y_t, b_t)}, 1), & \text{if } A_t \text{ is misclassified}, \\ (y_t, b_t), & \text{otherwise.} \end{cases}$

Why projection onto a cone?

▶ To capture a priori information on y_* or b_* , e.g., $b_* = 0$ or $y_* \in \mathbb{R}^d_+$, etc.

Projected strategic perceptron (S-perceptron)[†]

Select a closed convex cone $\mathbb{L} \subset \mathbb{R}^d \times \mathbb{R}$. Initialize by $(y_0, b_0) = 0$. At iteration t = 1, 2, ...

- Step 1. Receive manipulated data r_t and predict by label (r_t, y_t, b_t) .
- Step 2. Receive label(A_t) and compute the proxy $s(A_t, y_t, b_t)$

Step 3. Update by
$$(y_{t+1}, b_{t+1}) = \operatorname{Proj}_{\mathbb{L}}(z_{t+1})$$
 where

$$z_{t+1} = \begin{cases} (y_t, b_t) + \operatorname{label}(A_t) \cdot (\underbrace{s(A_t, y_t, b_t)}_{(y_t, b_t)}, 1), & \text{if } A_t \text{ is misclassified}, \\ (y_t, b_t), & \text{otherwise.} \end{cases}$$

Why projection onto a cone?

▶ To capture a priori information on y_* or b_* , e.g., $b_* = 0$ or $y_* \in \mathbb{R}^d_+$, etc.

 $^{^\}dagger Captures$ the strategic perceptron algorithm of [Ahmadi et al., 2021] for ℓ_2 -based manipulation costs.

Strategic Perceptron: Results

Let $\mathcal{M}=\#$ of mistakes throughout the algorithm.

Theorem (informal)

sk

S-perceptron algorithm is guaranteed to have a finite mistake bound

▶ whenever
$$d_* > \frac{2}{c}$$
, but no prior knowledge on (y^*, b^*) exists:
select $\mathbb{L} = \mathbb{R}^d \times \mathbb{R}$ to get $|\mathcal{M}| \leq \frac{\|y_*\|_2^2 + b_*^2}{\|y_*\|_*^2} \frac{\tilde{D}^2 + 1}{(d_* - 2/c)^2}$;

Strategic Perceptron: Results

Let $\mathcal{M}=\#$ of mistakes throughout the algorithm.

Theorem (informal)

S-perceptron algorithm is guaranteed to have a finite mistake bound

whenever
$$b_* = 0$$
 is known a priori and $\|\cdot\|$ is ℓ_2 norm
select $\mathbb{L} = \mathbb{R}^d \times \{0\}$ to get $|\mathcal{M}| \leq \frac{\tilde{D}^2 + 1}{d_*^2}$;

*Recovers mistake bounds from [Ahmadi et al., 2021] given for this case.

Strategic Perceptron: Results

Let $\mathcal{M}=\#$ of mistakes throughout the algorithm.

Theorem (informal)

S-perceptron algorithm is guaranteed to have a finite mistake bound

▶ whenever
$$d_* > \frac{2}{c}$$
, but no prior knowledge on (y^*, b^*) exists
select $\mathbb{L} = \mathbb{R}^d \times \mathbb{R}$ to get $|\mathcal{M}| \leq \frac{\|y_*\|_2^2 + b_*^2}{\|y_*\|_*^2} \frac{\tilde{D}^2 + 1}{(d_* - 2/c)^2}$;

▶ whenever $b_* = 0$ is known a priori and $\|\cdot\|$ is ℓ_2 norm^{*}: select $\mathbb{L} = \mathbb{R}^d \times \{0\}$ to get $|\mathcal{M}| \leq \frac{\tilde{D}^2 + 1}{d_2^2}$;

▶ whenever
$$y^* \in \mathbb{R}^d_+$$
 is known a priori and $\|\cdot\|$ is any ℓ_p norm:
select $\mathbb{L} = \mathbb{R}^d_+ \times \mathbb{R}$ to get $|\mathcal{M}| \leq \frac{\|y_*\|_2^2 + b_*^2}{\|y_*\|_2^2} \frac{\tilde{D}^2 + 1}{d_*^2}$.

*Recovers mistake bounds from [Ahmadi et al., 2021] given for this case.

Projected strategic perceptron

- (+) computationally cheap
- (+) finite mistake bound

Projected strategic perceptron

- (+) computationally cheap
- (+) finite mistake bound
- (-) update only when making a mistake
- (-) not guaranteed to converge to (y_*, b_*) ; no margin guarantee

Projected strategic perceptron

- (+) computationally cheap
- (+) finite mistake bound
- (-) update only when making a mistake
- (-) not guaranteed to converge to (y_*, b_*) ; no margin guarantee

Question: How can we improve?

Projected strategic perceptron

- (+) computationally cheap
- (+) finite mistake bound
- (-) update only when making a mistake
- (-) not guaranteed to converge to (y_*, b_*) ; no margin guarantee

Question: How can we improve?

- strategic perceptron uses only information from current iteration in its update
- idea: make use of all historical data: $\{(r_{\tau}, \ell_{\tau}, y_{\tau}, b_{\tau})\}_{\tau \in [t]}$

Strategic max-margin (SMM) algorithm

- Call initialization subroutine. At iteration t = 1, 2, ...
- Step 1. Receive manipulated data r_t and predict by $|abel(r_t, y_t, b_t)|$.
- Step 2. Receive label(A_t) and compute the proxy $s(A_t, y_t, b_t)$.

Step 3. Update to (y_{t+1}, b_{t+1}) by solving the proxy margin maximization problem

$$(y_{t+1}, b_{t+1}) \in \operatorname*{arg\,max}_{\|y\|_* \leq 1, b \in \mathbb{R}} \min_{\tau \in [t]} \left\{ \mathsf{label}(A_\tau) \cdot \left(y^\top s(A_\tau, y_\tau, b_\tau) + b \right) \right\}. \quad (\mathsf{P}_t)$$

Strategic max-margin (SMM) algorithm

Call initialization subroutine. At iteration t = 1, 2, ...

Step 1. Receive manipulated data r_t and predict by $label(r_t, y_t, b_t)$.

Step 2. Receive label(A_t) and compute the proxy $s(A_t, y_t, b_t)$.

Step 3. Update to (y_{t+1}, b_{t+1}) by solving the proxy margin maximization problem

$$(y_{t+1}, b_{t+1}) \in \operatorname*{arg\,max}_{\|y\|_* \leq 1, b \in \mathbb{R}} \min_{\tau \in [t]} \left\{ \mathsf{label}(A_\tau) \cdot \left(y^\top s(A_\tau, y_\tau, b_\tau) + b \right) \right\}. \quad (\mathsf{P}_t)$$

Strategic Max Margin: Results

Theorem (informal)

SMM algorithm is guaranteed to have

- a finite mistake bound; and
- a finite manipulation bound whenever $d_* > \frac{2}{c}$.

Assumption (distributional separability)

 $\{A_t\}_{t\in\mathbb{N}}$ are i.i.d. samples from a probability distribution with support A, and the max margin classifier on $\{(A, label(A)) : A \in A\}$ is (y_*, b_*) achieving a margin of $d_* > 0$.

Theorem (informal)

If $d_* > \frac{2}{c}$, SMM algorithm guarantees (y_t, b_t) converges to $(y_*, b_*)/||y_*||_*$ almost surely.

Recall the proxy margin maximization problem

$$\max_{\|y\|_* \le 1, b \in \mathbb{R}} \min_{\tau \in [t]} \left\{ \operatorname{label}(A_{\tau}) \cdot \left(y^\top s(A_{\tau}, y_{\tau}, b_{\tau}) + b \right) \right\}.$$
 (P_t)

Recall the proxy margin maximization problem

$$\max_{\|y\|_* \le 1, b \in \mathbb{R}} \min_{\tau \in [t]} \left\{ \operatorname{label}(A_{\tau}) \cdot \left(y^\top s(A_{\tau}, y_{\tau}, b_{\tau}) + b \right) \right\}.$$
 (P_t)

$$\blacktriangleright \text{ Define } \widetilde{\mathcal{A}}_t^+ := \{s(\mathcal{A}_\tau, y_\tau, b_\tau): \ \tau \in [t] \text{ s.t. } \text{ label}(\mathcal{A}_\tau) = +1\} \text{ and also } \widetilde{\mathcal{A}}_t^-.$$

Recall the proxy margin maximization problem

$$\max_{\|y\|_* \le 1, b \in \mathbb{R}} \min_{\tau \in [t]} \left\{ \operatorname{label}(A_{\tau}) \cdot \left(y^\top s(A_{\tau}, y_{\tau}, b_{\tau}) + b \right) \right\}.$$
 (P_t)

$$\max_{\|y\|_* \le 1, b \in \mathbb{R}} h(y, b; \widetilde{\mathcal{A}}_t^+, \widetilde{\mathcal{A}}_t^-)$$

where $h(y, b; \widetilde{\mathcal{A}}_t^+, \widetilde{\mathcal{A}}_t^-) := \min \left\{ \min_{x \in \widetilde{\mathcal{A}}_t^+} \left\{ y^\top x + b \right\}, \min_{x \in \widetilde{\mathcal{A}}_t^-} \left\{ -y^\top x - b \right\} \right\}.$

$$h(y, b; \widetilde{\mathcal{A}}^+, \widetilde{\mathcal{A}}^-) = \min \left\{ \min_{x \in \widetilde{\mathcal{A}}^+} \left\{ y^\top x + b \right\}, \min_{x \in \widetilde{\mathcal{A}}^-} \left\{ -y^\top x - b \right\} \right\}$$

Lemma (witness points, classifier alignment)

$$\blacktriangleright \quad (\tilde{y}, \tilde{b}) \in \arg \max_{\|y\|_* \leq 1, b \in \mathbb{R}} h(y, b; \widetilde{\mathcal{A}}^+, \widetilde{\mathcal{A}}^-) \text{ satisfy } \|\tilde{y}\|_* = 1;$$

$$h(y, b; \widetilde{\mathcal{A}}^+, \widetilde{\mathcal{A}}^-) = \min \left\{ \min_{x \in \widetilde{\mathcal{A}}^+} \left\{ y^\top x + b \right\}, \min_{x \in \widetilde{\mathcal{A}}^-} \left\{ -y^\top x - b \right\} \right\}$$

Lemma (witness points, classifier alignment)

$$\blacktriangleright \quad (\tilde{y}, \tilde{b}) \in \arg \max_{\|y\|_* \leq 1, b \in \mathbb{R}} h(y, b; \widetilde{\mathcal{A}}^+, \widetilde{\mathcal{A}}^-) \text{ satisfy } \|\tilde{y}\|_* = 1;$$

► ∃ witness points
$$\tilde{x}^+ \in \operatorname{conv}(\widetilde{\mathcal{A}}^+)$$
 and $\tilde{x}^- \in \operatorname{conv}(\widetilde{\mathcal{A}}^-)$ s.t.
 $\tilde{y}^\top (\tilde{x}^+ - \tilde{x}^-) = \|\tilde{x}^+ - \tilde{x}^-\| \cdot \|\tilde{y}\|_*$, and
 $\tilde{d}\|\tilde{y}\|_* = \tilde{y}^\top \tilde{x}^+ + \tilde{b} = -\tilde{y}^\top \tilde{x}^- - \tilde{b}$

$$h(y, b; \widetilde{\mathcal{A}}^+, \widetilde{\mathcal{A}}^-) = \min \left\{ \min_{x \in \widetilde{\mathcal{A}}^+} \left\{ y^\top x + b \right\}, \min_{x \in \widetilde{\mathcal{A}}^-} \left\{ -y^\top x - b \right\} \right\}$$

Lemma (witness points, classifier alignment)

$$\blacktriangleright \quad (\tilde{y}, \tilde{b}) \in \arg \max_{\|y\|_* \leq 1, b \in \mathbb{R}} h(y, b; \widetilde{\mathcal{A}}^+, \widetilde{\mathcal{A}}^-) \text{ satisfy } \|\tilde{y}\|_* = 1;$$

► ∃ witness points
$$\tilde{x}^+ \in \operatorname{conv}(\widetilde{\mathcal{A}}^+)$$
 and $\tilde{x}^- \in \operatorname{conv}(\widetilde{\mathcal{A}}^-)$ s.t.
 $\tilde{y}^\top (\tilde{x}^+ - \tilde{x}^-) = \|\tilde{x}^+ - \tilde{x}^-\| \cdot \|\tilde{y}\|_*$, and
 $\tilde{d}\|\tilde{y}\|_* = \tilde{y}^\top \tilde{x}^+ + \tilde{b} = -\tilde{y}^\top \tilde{x}^- - \tilde{b}$

$$h(y, b; \widetilde{\mathcal{A}}^+, \widetilde{\mathcal{A}}^-) = \min \left\{ \min_{x \in \widetilde{\mathcal{A}}^+} \left\{ y^\top x + b \right\}, \min_{x \in \widetilde{\mathcal{A}}^-} \left\{ -y^\top x - b \right\} \right\}$$

Lemma (witness points, classifier alignment)

$$\blacktriangleright \quad (\tilde{y}, \tilde{b}) \in \arg \max_{\|y\|_* \leq 1, b \in \mathbb{R}} h(y, b; \widetilde{\mathcal{A}}^+, \widetilde{\mathcal{A}}^-) \text{ satisfy } \|\tilde{y}\|_* = 1;$$

► ∃ witness points
$$\tilde{x}^+ \in \operatorname{conv}(\widetilde{\mathcal{A}}^+)$$
 and $\tilde{x}^- \in \operatorname{conv}(\widetilde{\mathcal{A}}^-)$ s.t.
 $\tilde{y}^\top (\tilde{x}^+ - \tilde{x}^-) = \|\tilde{x}^+ - \tilde{x}^-\| \cdot \|\tilde{y}\|_*$, and
 $\tilde{d}\|\tilde{y}\|_* = \tilde{y}^\top \tilde{x}^+ + \tilde{b} = -\tilde{y}^\top \tilde{x}^- - \tilde{b}$

$$h(y, b; \widetilde{\mathcal{A}}^+, \widetilde{\mathcal{A}}^-) = \min \left\{ \min_{x \in \widetilde{\mathcal{A}}^+} \left\{ y^\top x + b \right\}, \min_{x \in \widetilde{\mathcal{A}}^-} \left\{ -y^\top x - b \right\} \right\}$$

Lemma (witness points, classifier alignment)

$$\blacktriangleright \quad (\tilde{y}, \tilde{b}) \in \arg \max_{\|y\|_* \le 1, b \in \mathbb{R}} h(y, b; \widetilde{\mathcal{A}}^+, \widetilde{\mathcal{A}}^-) \text{ satisfy } \|\tilde{y}\|_* = 1;$$

► ∃ witness points
$$\tilde{x}^+ \in \operatorname{conv}(\widetilde{\mathcal{A}}^+)$$
 and $\tilde{x}^- \in \operatorname{conv}(\widetilde{\mathcal{A}}^-)$ s.t.
 $\tilde{y}^\top (\tilde{x}^+ - \tilde{x}^-) = \|\tilde{x}^+ - \tilde{x}^-\| \cdot \|\tilde{y}\|_*, \text{ and}$
 $\tilde{d}\|\tilde{y}\|_* = \tilde{y}^\top \tilde{x}^+ + \tilde{b} = -\tilde{y}^\top \tilde{x}^- - \tilde{b}$

Suppose separability and strict convexity of the norms hold.

• At time t, SMM generates (y_t, b_t) with margin d_t . Then, for all t

- At time t, SMM generates (y_t, b_t) with margin d_t . Then, for all t
 - ▶ y_t will be well-aligned with y_* , i.e., $y_*^\top v(y_t) \ge \|y_*\|_* \frac{d_*}{d_t} > 0$;

- At time t, SMM generates (y_t, b_t) with margin d_t . Then, for all t
 - y_t will be well-aligned with y_* , i.e., $y_*^\top v(y_t) \ge ||y_*||_* \frac{d_*}{d_t} > 0$;

•
$$d_{t+1} \geq d_*;$$

- At time t, SMM generates (y_t, b_t) with margin d_t . Then, for all t
 - ▶ y_t will be well-aligned with y_* , i.e., $y_*^\top v(y_t) \ge ||y_*||_* \frac{d_*}{d_t} > 0$;
 - $\blacktriangleright \ d_{t+1} \geq d_*;$
 - ▶ if $label(A_t)[y_t^{\top}s(A_t, y_t, b_t) + b_t] \le a ||y_t||_*$ holds for $a < d_*$, then $\frac{d_{t+1} \le \kappa(a, d_*, \tilde{D})d_t}{(\kappa(a, d_*, \tilde{D}) \in (0, 1))}$ is a parameter based on the geometry of the problem, margin and size of data)

- At time t, SMM generates (y_t, b_t) with margin d_t . Then, for all t
 - ▶ y_t will be well-aligned with y_* , i.e., $y_*^\top v(y_t) \ge ||y_*||_* \frac{d_*}{d_t} > 0$;
 - $\blacktriangleright \ d_{t+1} \geq d_*;$
 - ▶ if $|abel(A_t)[y_t^{\top}s(A_t, y_t, b_t) + b_t] \le a||y_t||_*$ holds for $a < d_*$, then $\frac{d_{t+1} \le \kappa(a, d_*, \tilde{D})d_t}{(\kappa(a, d_*, \tilde{D}) \in (0, 1))}$ is a parameter based on the geometry of the problem, margin and size of data)

$$\implies \# \text{ of mistakes } \mathcal{M} \text{ satisfies } |\mathcal{M}| \leq \frac{\log(d_1/d_*)}{\log(1/\kappa(0,d_*,\tilde{D}))} < \infty;$$

Suppose separability and strict convexity of the norms hold.

- At time t, SMM generates (y_t, b_t) with margin d_t . Then, for all t
 - ▶ y_t will be well-aligned with y_* , i.e., $y_*^\top v(y_t) \ge ||y_*||_* \frac{d_*}{d_t} > 0$;
 - $\blacktriangleright \ d_{t+1} \geq d_*;$
 - ▶ if $|abel(A_t)[y_t^{\top}s(A_t, y_t, b_t) + b_t] \le a ||y_t||_*$ holds for $a < d_*$, then $\frac{d_{t+1} \le \kappa(a, d_*, \tilde{D})d_t}{(\kappa(a, d_*, \tilde{D}) \in (0, 1))}$ is a parameter based on the geometry of the problem, margin and size of data)

$$\implies \# \text{ of mistakes } \mathcal{M} \text{ satisfies } |\mathcal{M}| \leq \frac{\log(d_1/d_*)}{\log(1/\kappa(0,d_*,\tilde{D}))} < \infty;$$

 $\implies \ \#$ of manipulations of negative data \mathcal{N}^- , (as well as \mathcal{N}^+ whenever $d_*>2/c)$ satisfy

$$|\mathcal{N}^-| \leq rac{\log(d_1/d_*)}{\log\left(1/\kappa\left(0,d_*, ilde{D}
ight)
ight)} < \infty, \qquad |\mathcal{N}^+| \leq rac{\log(d_1/d_*)}{\log\left(1/\kappa\left(2/c,d_*, ilde{D}
ight)
ight)} < \infty;$$

Lemma (uniform convergence)

Let
$$\widetilde{\mathcal{A}}_1^+ \subseteq \widetilde{\mathcal{A}}_2^+ \subseteq \ldots \subseteq \widetilde{\mathcal{A}}_\infty^+ \subset \mathbb{R}^d$$

 $\widetilde{\mathcal{A}}_1^- \subseteq \widetilde{\mathcal{A}}_2^- \subseteq \ldots \subseteq \widetilde{\mathcal{A}}_\infty^- \subset \mathbb{R}^d.$

If both sets $\widetilde{\mathcal{A}}_{\infty}^+$ and $\widetilde{\mathcal{A}}_{\infty}^-$ are bounded, then $h_t(y, b) := h\left(y, b; \widetilde{\mathcal{A}}_t^+, \widetilde{\mathcal{A}}_t^-\right)$ converge uniformly to $h_{\infty}(y, b) := h\left(y, b; \widetilde{\mathcal{A}}_{\infty}^+, \widetilde{\mathcal{A}}_{\infty}^-\right)$ over any compact domain $\mathcal{D} \subset \mathbb{R}^d \times \mathbb{R}$.

Lemma (uniform convergence)

Let
$$\widetilde{\mathcal{A}}_1^+ \subseteq \widetilde{\mathcal{A}}_2^+ \subseteq \ldots \subseteq \widetilde{\mathcal{A}}_\infty^+ \subset \mathbb{R}^d$$

 $\widetilde{\mathcal{A}}_1^- \subseteq \widetilde{\mathcal{A}}_2^- \subseteq \ldots \subseteq \widetilde{\mathcal{A}}_\infty^- \subset \mathbb{R}^d.$

If both sets $\widetilde{\mathcal{A}}_{\infty}^+$ and $\widetilde{\mathcal{A}}_{\infty}^-$ are bounded, then $h_t(y, b) := h\left(y, b; \widetilde{\mathcal{A}}_t^+, \widetilde{\mathcal{A}}_t^-\right)$ converge uniformly to $h_{\infty}(y, b) := h\left(y, b; \widetilde{\mathcal{A}}_{\infty}^+, \widetilde{\mathcal{A}}_{\infty}^-\right)$ over any compact domain $\mathcal{D} \subset \mathbb{R}^d \times \mathbb{R}$.

▶ When data A_t is bounded, i.e., $||A_t|| \le D$, we get uniform conv. to $h_{\infty}(y, b)$.

Lemma (uniform convergence)

Let
$$\widetilde{\mathcal{A}}_1^+ \subseteq \widetilde{\mathcal{A}}_2^+ \subseteq \ldots \subseteq \widetilde{\mathcal{A}}_\infty^+ \subset \mathbb{R}^d$$

 $\widetilde{\mathcal{A}}_1^- \subseteq \widetilde{\mathcal{A}}_2^- \subseteq \ldots \subseteq \widetilde{\mathcal{A}}_\infty^- \subset \mathbb{R}^d.$

If both sets $\widetilde{\mathcal{A}}_{\infty}^+$ and $\widetilde{\mathcal{A}}_{\infty}^-$ are bounded, then $h_t(y, b) := h\left(y, b; \widetilde{\mathcal{A}}_t^+, \widetilde{\mathcal{A}}_t^-\right)$ converge uniformly to $h_{\infty}(y, b) := h\left(y, b; \widetilde{\mathcal{A}}_{\infty}^+, \widetilde{\mathcal{A}}_{\infty}^-\right)$ over any compact domain $\mathcal{D} \subset \mathbb{R}^d \times \mathbb{R}$.

- ▶ When data A_t is bounded, i.e., $||A_t|| \le D$, we get uniform conv. to $h_{\infty}(y, b)$.
- ▶ When $d_* > 2/c$, \implies finitely many mistakes and manipulations $\implies \exists t_0 \in \mathbb{N}$ s.t. $r(A_t, y_t, b_t) = s(A_t, y_t, b_t) = A_t$ for all $t \ge t_0$ a.s.

Lemma (uniform convergence)

Let
$$\widetilde{\mathcal{A}}_1^+ \subseteq \widetilde{\mathcal{A}}_2^+ \subseteq \ldots \subseteq \widetilde{\mathcal{A}}_\infty^+ \subset \mathbb{R}^d$$

 $\widetilde{\mathcal{A}}_1^- \subseteq \widetilde{\mathcal{A}}_2^- \subseteq \ldots \subseteq \widetilde{\mathcal{A}}_\infty^- \subset \mathbb{R}^d.$

If both sets $\widetilde{\mathcal{A}}_{\infty}^+$ and $\widetilde{\mathcal{A}}_{\infty}^-$ are bounded, then $h_t(y, b) := h\left(y, b; \widetilde{\mathcal{A}}_t^+, \widetilde{\mathcal{A}}_t^-\right)$ converge uniformly to $h_{\infty}(y, b) := h\left(y, b; \widetilde{\mathcal{A}}_{\infty}^+, \widetilde{\mathcal{A}}_{\infty}^-\right)$ over any compact domain $\mathcal{D} \subset \mathbb{R}^d \times \mathbb{R}$.

- ▶ When data A_t is bounded, i.e., $||A_t|| \le D$, we get uniform conv. to $h_{\infty}(y, b)$.
- ▶ When $d_* > 2/c$, \implies finitely many mistakes and manipulations $\implies \exists t_0 \in \mathbb{N}$ s.t. $r(A_t, y_t, b_t) = s(A_t, y_t, b_t) = A_t$ for all $t \ge t_0$ a.s.
- ▶ Distributional separability will ensure $\{A_t : t \ge t_0\}$ is dense in A a.s.
- ▶ (y_*, b_*) maximizes h_∞ a.s. (recall also that h_∞ has a unique maximizer)
- ▶ Then, uniform conv. of $h_t \to h_\infty$ implies $(y_t, b_t) \to (y_*, b_*)$ almost surely.

Strategic max-margin algorithm

- (+) finite mistake and manipulation bounds
- (+) convergence to the max margin classifier (y_*, b_*)

Strategic max-margin algorithm

- (+) finite mistake and manipulation bounds
- (+) convergence to the max margin classifier (y_*, b_*)
- (-) requires solving an optimization problem at each iteration

Strategic max-margin algorithm

- (+) finite mistake and manipulation bounds
- (+) convergence to the max margin classifier (y_*, b_*)
- (-) requires solving an optimization problem at each iteration

Question: Can we reduce the computation cost?

Strategic max-margin algorithm

- (+) finite mistake and manipulation bounds
- (+) convergence to the max margin classifier (y_*, b_*)
- (-) requires solving an optimization problem at each iteration
- Question: Can we reduce the computation cost?
 - idea: Joint estimation-optimization⁷
 - given a sequence of optimization problems that converges to a target problem
 - perform one update (e.g., one step of gradient descent) based on the problem defined by the current data

Gradient-based SMM: Algorithm

Gradient-based strategic max-margin algorithm (Gradient SMM)

Call initialization subroutine. Select stepsizes $\{\gamma_t\}$. At iteration t = 1, 2, ...Step 1. Receive manipulated data r_t and predict by $\widetilde{\text{label}}(r_t, y_t, b_t)$.

- Step 2. Receive label(A_t) and compute the proxy $s(A_t, y_t, b_t)$.
- Step 3. Update to (y_{t+1}, b_{t+1}) by

$$\begin{split} s_t^+ &\in \operatorname*{arg\,max}_t z_t^\top s, \quad s_t^- \in \operatorname*{arg\,min}_{s \in \widetilde{\mathcal{A}}_t^-} z_t^\top s, \quad z_{t+1} = \operatorname{Proj}_{B_{\|\cdot\|_2}} \left(z_t + \gamma_t (s_t^+ - s_t^-) \right) \\ \text{and} \quad y_{t+1} = \frac{\sum_{\tau \in [t+1]} \gamma_\tau z_\tau}{\sum_{\tau \in [t+1]} \gamma_\tau}, \quad b_{t+1} = -\frac{1}{2} \left(\min_{s \in \widetilde{\mathcal{A}}_t^+} y_{t+1}^\top s + \max_{s \in \widetilde{\mathcal{A}}_t^-} y_{t+1}^\top s \right). \end{split}$$

$$key idea: h(y,b; \tilde{\mathcal{A}}^+, \tilde{\mathcal{A}}^-) = \frac{1}{2} \left(\min_{x \in \tilde{\mathcal{A}}^+} y^\top x - \max_{x \in \tilde{\mathcal{A}}^-} y^\top x \right) - \left| b + \frac{1}{2} \left(\min_{x \in \tilde{\mathcal{A}}^+} y^\top x + \max_{x \in \tilde{\mathcal{A}}^-} y^\top x \right) \right|.$$

Gradient-based SMM: Algorithm

Gradient-based strategic max-margin algorithm (Gradient SMM)

Call initialization subroutine. Select stepsizes $\{\gamma_t\}$. At iteration t = 1, 2, ...Step 1. Receive manipulated data r_t and predict by $|abel(r_t, y_t, b_t)|$.

Step 2. Receive label(A_t) and compute the proxy $s(A_t, y_t, b_t)$.

Step 3. Update to (y_{t+1}, b_{t+1}) by

$$\begin{split} s_t^+ &\in \operatorname*{arg\,max}_t z_t^\top s, \quad s_t^- \in \operatorname*{arg\,min}_{s \in \widetilde{\mathcal{A}}_t^-} z_t, \quad z_{t+1} = \operatorname{Proj}_{B_{\|\cdot\|_2}} \left(z_t + \gamma_t (s_t^+ - s_t^-) \right) \\ \text{and} \quad y_{t+1} &= \frac{\sum_{\tau \in [t+1]} \gamma_\tau z_\tau}{\sum_{\tau \in [t+1]} \gamma_\tau}, \quad b_{t+1} = -\frac{1}{2} \left(\min_{s \in \widetilde{\mathcal{A}}_t^+} y_{t+1}^\top s + \max_{s \in \widetilde{\mathcal{A}}_t^-} y_{t+1}^\top s \right). \end{split}$$

$$key idea: h(y,b; \tilde{\mathcal{A}}^+, \tilde{\mathcal{A}}^-) = \frac{1}{2} \left(\min_{x \in \tilde{\mathcal{A}}^+} y^\top x - \max_{x \in \tilde{\mathcal{A}}^-} y^\top x \right) - \left| b + \frac{1}{2} \left(\min_{x \in \tilde{\mathcal{A}}^+} y^\top x + \max_{x \in \tilde{\mathcal{A}}^-} y^\top x \right) \right|.$$

Assumption (distributional separability)

 $\{A_t\}_{t\in\mathbb{N}}$ are i.i.d. samples from a probability distribution with support A, and the max margin classifier on $\{(A, label(A)) : A \in A\}$ is (y_*, b_*) achieving a margin of $d_* > 0$.

Theorem (informal)

Suppose $\|\cdot\|$ is the ℓ_2 norm and $\gamma_t = \gamma_0/\sqrt{t}$. Then, gradient SMM algorithm is guaranteed to

- make finitely many mistakes almost surely,
- induce finite manipulations whenever $d_* > \frac{2}{c}$, and

• converge to $(y_*, b_*)/||y_*||_2$ almost surely whenever $d_* > \frac{2}{c}$.

Suppose $\|\cdot\|$ is the ℓ_2 norm. Then,

under a priori assumption of $b_ = 0$ [†]under the assumption $d_* > 2/c$ [‡]under distributional separability assumption

-

Suppose $\|\cdot\|$ is the ℓ_2 norm. Then,

Algorithm	Mistake	Manipulation	Margin
S-perceptron	finite bound*	_	_

under a priori assumption of $b_ = 0$ †under the assumption $d_* > 2/c$ ‡under distributional separability assumption

Suppose $\|\cdot\|$ is the ℓ_2 norm. Then,

Algorithm	Mistake	Manipulation	Margin
S-perceptron	finite bound*	_	_
SMM	finite bound	finite bound †	$convergence^{\dagger \ddagger}$

under a priori assumption of $b_ = 0$ [†]under the assumption $d_* > 2/c$ [‡]under distributional separability assumption

Kılınç-Karzan

Guarantees in Online Strategic Classification

Suppose $\|\cdot\|$ is the ℓ_2 norm. Then,

Algorithm	Mistake	Manipulation	Margin
	finite bound*	_	_
SMM	finite bound	finite bound †	$convergence^{\dagger \ddagger}$
Gradient SMM	$finite^{\ddagger}$	$finite^{\dagger \ddagger}$	$convergence^{\dagger \ddagger}$

under a priori assumption of $b_ = 0$ [†]under the assumption $d_* > 2/c$ [‡]under distributional separability assumption

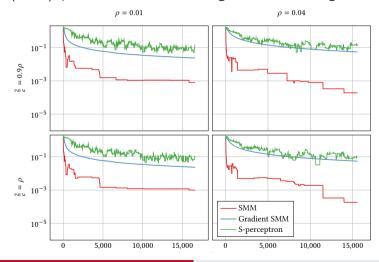
Computational Study - Setting

- Bank loan application data from [8] (collected by an online platform Prosper):
 - d = 6 continuous features (bank card utilization, credit history length, etc.)
 - 20,222 data points (41.70% have +1 labels)
 - ▶ Preprocessed to ensure separability and a margin of at least $\rho > 0$

Computational Study - Setting

- Bank loan application data from [8] (collected by an online platform Prosper):
 - d = 6 continuous features (bank card utilization, credit history length, etc.)
 - 20,222 data points (41.70% have +1 labels)
 - ▶ Preprocessed to ensure separability and a margin of at least $\rho > 0$
- Tested the impact of
 - Margin $\rho \in \{0.01, 0.02, 0.04\},\$
 - Cost of manipulation $2/c \in \{0.9, 1.0, 1.1\} \cdot \rho$, and
 - ▶ Noise in agent responses: learner observes $r(A_t, y_t, b_t) + \varepsilon_t$, where $\varepsilon_t \sim \mathcal{N}(0, \sigma^2 I_d)$ is i.i.d. Gaussian noise with $\sigma \in \{0, 10^{-3}, 10^{-2}\}$.

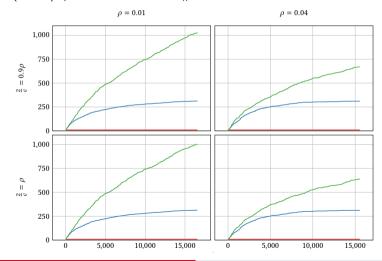
• No noise ($\sigma = 0$), performance metric: **convergence to max-margin classifier**



Kılınç-Karzan

Guarantees in Online Strategic Classification

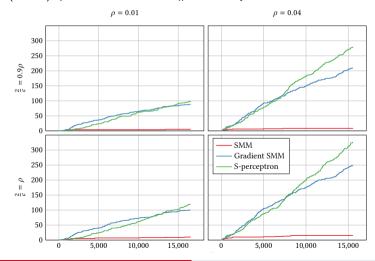
▶ No noise ($\sigma = 0$), performance metric: **# of mistakes**



Kılınç-Karzan

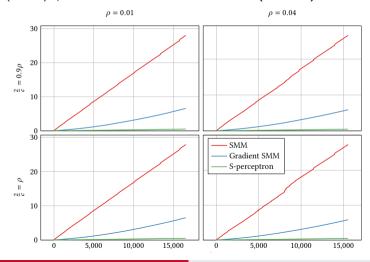
Guarantees in Online Strategic Classification

• No noise ($\sigma = 0$), performance metric: **# of manipulations**



Kılınç-Karzan

• No noise ($\sigma = 0$), performance metric: solution time (seconds)



Kılınç-Karzan

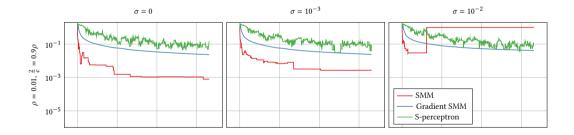
Guarantees in Online Strategic Classification

Performance Comparison: Noisy Response

learner observes $r(A_t, y_t, b_t) + \varepsilon_t$, where $\varepsilon_t \sim \mathcal{N}(0, \sigma^2 I_d)$ is i.i.d. Gaussian noise with σ

Performance Comparison: Noisy Response

- ▶ learner observes $r(A_t, y_t, b_t) + \varepsilon_t$, where $\varepsilon_t \sim \mathcal{N}(0, \sigma^2 I_d)$ is i.i.d. Gaussian noise with σ
- ▶ varying noise level in agent responses: $\sigma \in \{0, 10^{-3}, 10^{-2}\}$



Performance Comparison: Noisy Response

- ▶ learner observes $r(A_t, y_t, b_t) + \varepsilon_t$, where $\varepsilon_t \sim \mathcal{N}(0, \sigma^2 I_d)$ is i.i.d. Gaussian noise with σ
- ▶ varying noise level in agent responses: $\sigma \in \{0, 10^{-3}, 10^{-2}\}$
- performance metric: convergence to max-margin classifier

Computational Study - Summary

Summary of **numerical performance** (no noise):

Algorithm	Margin	Mistake	Manipulation	Time
S-perceptron		()	()	(++)
SMM	(++)	(++)	(++)	()
Gradient SMM	(+-)	(+)	(-)	(+)

SMM performs the best in terms of all metrics except solution time.

Gradient-based SMM does better than strategic perceptron in terms of convergence and # of mistakes, and eventually in terms of # manipulations as well.

Computational Study - Summary

	Summary of	numerical	performance	(no noise):
--	------------	-----------	-------------	-------------

Algorithm	Margin	Mistake	Manipulation	Time
S-perceptron	(-/+)	()	()	(++)
SMM	(++)	(++)	(++)	()
Gradient SMM	(+-)	(+)	(-)	(+)

SMM performs the best in terms of all metrics except solution time.

- Gradient-based SMM does better than strategic perceptron in terms of convergence and # of mistakes, and eventually in terms of # manipulations as well.
- SMM is robust to low magnitude of noise, but not high noise.
- ► Gradient SMM and S-perceptron appear to be quite robust to noise.

Conclusion

Summary

New algorithms for classification in strategic setting with theoretical guarantees on # of mistakes, # of manipulations and margin

Conclusion

Summary

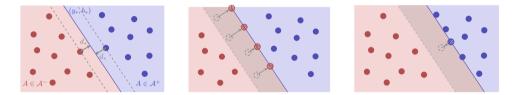
New algorithms for classification in strategic setting with theoretical guarantees on # of mistakes, # of manipulations and margin

Future outlook

- model variants
 - alternative manipulation models (other cost structures, discrete features via manipulation graph, ...)
 - unknown utility function
 - strategic classification for nonlinear classifiers
- connections with Stackelberg games more generally
- more tools to handle strategic behavior effectively

Thank you!

fkilinc@andrew.cmu.edu



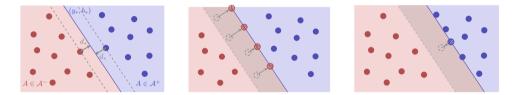
[Shen et al., 2024]

Mistake, Manipulation, and Margin Guarantees in Online Strategic Classification (March 2024).

arXiv:2403.18176.

Questions?

fkilinc@andrew.cmu.edu



[Shen et al., 2024]

Mistake, Manipulation, and Margin Guarantees in Online Strategic Classification (March 2024).

arXiv:2403.18176.

References I

- Moritz Hardt et al. "Strategic Classification". In: Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science. Cambridge Massachusetts USA: ACM, Jan. 2016, pp. 111–122.
- [2] Jinshuo Dong et al. "Strategic Classification from Revealed Preferences". In: Proceedings of the 2018 ACM Conference on Economics and Computation. Ithaca NY USA: ACM, June 2018, pp. 55–70.
- [3] Yiling Chen, Yang Liu, and Chara Podimata. "Learning Strategy-Aware Linear Classifiers". In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 15265–15276.
- [4] Saba Ahmadi et al. "The Strategic Perceptron". In: Proceedings of the 22nd ACM Conference on Economics and Computation. Budapest Hungary: ACM, July 2021, pp. 6–25.
- [5] Tosca Lechner and Ruth Urner. "Learning losses for strategic classification". In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36. 7. 2022, pp. 7337–7344.

References II

- [6] Saba Ahmadi, Avrim Blum, and Kunhe Yang. "Fundamental Bounds on Online Strategic Classification". In: Proceedings of the 24th ACM Conference on Economics and Computation. London United Kingdom: ACM, July 2023, pp. 22–58.
- [7] Nam Ho-Nguyen and Fatma Kılınç-Karzan. "Exploiting problem structure in optimization under uncertainty via online convex optimization". In: *Mathematical Programming* 177.1-2 (2018), pp. 113–147.
- [8] Ganesh Ghalme et al. "Strategic Classification in the Dark". en. In: Proceedings of the 38th International Conference on Machine Learning. ISSN: 2640-3498. PMLR, July 2021, pp. 3672–3681.