Mistake, Manipulation and Margin Guarantees in Online Strategic Classification

Fatma Kılınc-Karzan

Carnegie Mellon University Tepper School of Business

Joint work with Lingqing Shen, Nam Ho-Nguyen, Hung Giang-Tran

UPenn Optimization Seminar

Classification

▶ Fundamental task in many domains: image classification, loan approval, ...

Classification

 \blacktriangleright Fundamental task in many domains: image classification, loan approval, ...

Classification

 \blacktriangleright Fundamental task in many domains: image classification, loan approval, ...

Classification

 \blacktriangleright What if the data are noisy?

Classification

 \blacktriangleright What if the data are noisy?

Classification

 \triangleright What if the data are strategic?

- ▶ binary classification as a game between an agent and a learner
- \triangleright the agent manipulates their features to achieve a desired outcome

- ▶ binary classification as a game between an agent and a learner
- ▶ the agent manipulates their features to achieve a desired outcome

- ▶ binary classification as a game between an agent and a learner
- \triangleright the agent manipulates their features to achieve a desired outcome
	- ▶ e.g., graduate school admission, bank loan approval
	- ▶ true features and labels are not actually improved
	- ▶ manipulated features can be misleading

- ▶ binary classification as a game between an agent and a learner
- \blacktriangleright the agent manipulates their features to achieve a desired outcome
	- ▶ e.g., graduate school admission, bank loan approval
	- ▶ true features and labels are not actually improved
	- ▶ manipulated features can be misleading
- \blacktriangleright the learner aims at a classifier that effectively
	- \blacktriangleright predicts true labels,

- ▶ binary classification as a game between an agent and a learner
- \blacktriangleright the agent manipulates their features to achieve a desired outcome
	- ▶ e.g., graduate school admission, bank loan approval
	- ▶ true features and labels are not actually improved
	- ▶ manipulated features can be misleading
- \blacktriangleright the learner aims at a classifier that effectively
	- \triangleright predicts true labels, and possibly discourages manipulation

- ▶ binary classification as a game between an agent and a learner
- \blacktriangleright the agent manipulates their features to achieve a desired outcome
	- ▶ e.g., graduate school admission, bank loan approval
	- ▶ true features and labels are not actually improved
	- ▶ manipulated features can be misleading
- \blacktriangleright the learner aims at a classifier that effectively
	- \triangleright predicts true labels, and possibly discourages manipulation
- \triangleright strategic agents \neq adversarial agents

Strategic behavior in classification

▶ challenge: as you learn and modify your decision rule, the agents will change how they respond to it

- ▶ challenge: as you learn and modify your decision rule, the agents will change how they respond to it
	- ▶ especially in online (non-distributional) settings, this leads to an informational problem in addition to computational problem

- ▶ challenge: as you learn and modify your decision rule, the agents will change how they respond to it
	- ▶ especially in online (non-distributional) settings, this leads to an informational problem in addition to computational problem
- ▶ similar to online learning of a Stackelberg leader strategy

- ▶ challenge: as you learn and modify your decision rule, the agents will change how they respond to it
	- ▶ especially in online (non-distributional) settings, this leads to an informational problem in addition to computational problem
- ▶ similar to online learning of a Stackelberg leader strategy
- ▶ challenge: as we measure performance (in this case agent's features), agents will manipulate without necessarily improving

- ▶ challenge: as you learn and modify your decision rule, the agents will change how they respond to it
	- ▶ especially in online (non-distributional) settings, this leads to an informational problem in addition to computational problem
- ▶ similar to online learning of a Stackelberg leader strategy
- \triangleright challenge: as we measure performance (in this case agent's features), agents will manipulate without necessarily improving
- ▶ question: can we minimize mistakes and manipulations together?

Online setting: at each time step t , the agent and the learner take action alternately

Online setting: at each time step t , the agent and the learner take action alternately

 \blacktriangleright agent

▶ observes the current classifier (y_t, b_t) given by $x \mapsto \widetilde{\text{label}}(x, y_t, b_t)$

Online setting: at each time step t , the agent and the learner take action alternately

 \blacktriangleright agent

- ▶ observes the current classifier (y_t, b_t) given by $x \mapsto \widetilde{\text{label}}(x, y_t, b_t)$
- ightharpoonup is given their feature vector A_t ,

Online setting: at each time step t , the agent and the learner take action alternately

▶ agent

- ▶ observes the current classifier (y_t, b_t) given by $x \mapsto \widetilde{\text{label}}(x, y_t, b_t)$
- igiven their feature vector A_t , reports manipulated feature vector $r_t := r(A_t, y_t, b_t)$

Online setting: at each time step t , the agent and the learner take action alternately

 \blacktriangleright agent

▶ observes the current classifier (y_t, b_t) given by $x \mapsto \widetilde{\text{label}}(x, y_t, b_t)$

ightharpoonup is given their feature vector A_t , reports manipulated feature vector $r_t := r(A_t, y_t, b_t)$

▶ learner

b observes the manipulated features $r_t = r(A_t, y_t, b_t)$

Online setting: at each time step t , the agent and the learner take action alternately

 \blacktriangleright agent

▶ observes the current classifier (y_t, b_t) given by $x \mapsto \widetilde{\text{label}}(x, y_t, b_t)$

ightharpoonup is given their feature vector A_t , reports manipulated feature vector $r_t := r(A_t, y_t, b_t)$

▶ learner

- b observes the manipulated features $r_t = r(A_t, y_t, b_t)$
- A makes a prediction $\widetilde{\text{label}}(r_t, y_t, b_t)$ using the current classifier (y_t, b_t)

Online setting: at each time step t , the agent and the learner take action alternately

 \blacktriangleright agent

▶ observes the current classifier (y_t, b_t) given by $x \mapsto \widetilde{\text{label}}(x, y_t, b_t)$

ightharpoonup is given their feature vector A_t , reports manipulated feature vector $r_t := r(A_t, y_t, b_t)$

▶ learner

- b observes the manipulated features $r_t = r(A_t, y_t, b_t)$
- A makes a prediction $\widetilde{\text{label}}(r_t, y_t, b_t)$ using the current classifier (y_t, b_t)
- ▶ receives the true $\ell_t := \text{label}(A_t)$

Online setting: at each time step t , the agent and the learner take action alternately

 \blacktriangleright agent

▶ observes the current classifier (y_t, b_t) given by $x \mapsto \widetilde{\text{label}}(x, y_t, b_t)$

ightharpoonup is given their feature vector A_t , reports manipulated feature vector $r_t := r(A_t, y_t, b_t)$

▶ learner

- b observes the manipulated features $r_t = r(A_t, y_t, b_t)$
- A makes a prediction $\widetilde{\text{label}}(r_t, y_t, b_t)$ using the current classifier (y_t, b_t)
- ▶ receives the true $\ell_t := \text{label}(A_t)$
- ▶ updates the classifier to (y_{t+1}, b_{t+1}) based on historical data $\{(r_{\tau}, \ell_{\tau}, y_{\tau}, b_{\tau})\}_{\tau \in [t]}$ (without knowledge of true features $\{A_\tau\}_{\tau \in [t]}$)

Literature

How does the agent manipulate?

Various manipulation models:

- ▶ utility maximization:^{1,2,3,4} max_x {gain(x, y_t, b_t) cost(A_t, x)}
- \blacktriangleright discrete features via a manipulation graph^{5,6}

 1 [Hardt el al., 2016], 2 [Dong et al., 2018], 3 [Chen et al., 2020], 4 [Ahmadi et al., 2021], 5 [Lechner and Urner, 2022], ⁶[Ahmadi et al., 2023]

Literature

How does the agent manipulate?

Various manipulation models:

▶ utility maximization:^{1,2,3,4} max_x {gain(x, y_t, b_t) – cost(A_t, x)}

 \blacktriangleright discrete features via a manipulation graph^{5,6}

How to evaluate the classifier's effectiveness in the strategic setting?

 \blacktriangleright mistake bound^{1,4,6}

 \blacktriangleright Stackelberg regret^{3,6,2} w.r.t. various loss functions

 1 [Hardt el al., 2016], 2 [Dong et al., 2018], 3 [Chen et al., 2020], 4 [Ahmadi et al., 2021], 5 [Lechner and Urner, 2022], ⁶[Ahmadi et al., 2023]

Our Model

We consider the following model:

- \triangleright online scenario, $t = 1, 2, \ldots$
- \triangleright binary classification, label(A_t) ∈ {-1, +1}
- ▶ linear classifier, $x \mapsto \widetilde{\text{label}}(x, y_t, b_t) = \text{sign}(y_t^\top x + b_t)$

Our Model

We consider the following model:

- \triangleright online scenario, $t = 1, 2, \ldots$
- \triangleright binary classification, label(A_t) ∈ {-1, +1}
- ▶ linear classifier, $x \mapsto \widetilde{\text{label}}(x, y_t, b_t) = \text{sign}(y_t^\top x + b_t)$

▶ agent's utility function

$$
r(A_t, y_t, b_t) \in \underset{x \in \mathbb{R}^d}{\arg \max} \left\{ \widetilde{\mathsf{label}}(x, y_t, b_t) - \mathrm{cost}(A_t, x) \right\}
$$

▶ tradeoff between desired prediction outcome and manipulation cost

Our Model

We consider the following model:

- \triangleright online scenario, $t = 1, 2, \ldots$
- \triangleright binary classification, label(A_t) ∈ {-1, +1}
- ▶ linear classifier, $x \mapsto \widetilde{\text{label}}(x, y_t, b_t) = \text{sign}(y_t^\top x + b_t)$

▶ agent's utility function

$$
r(A_t, y_t, b_t) \in \argmax_{x \in \mathbb{R}^d} \left\{ \widetilde{\mathsf{label}}(x, y_t, b_t) - \frac{c\|x - A_t\|}{\|x - A_t\|} \right\}
$$

- ▶ tradeoff between desired prediction outcome and manipulation cost
- **▶** assumption: $cost(A_t, x)$ resembles a distance metric \Rightarrow $cost(A_t, x) = c||x A_t||$

Preliminaries: Agent's response

Assumption

The agent's manipulation cost is $c||x - A_t||$, where $c \& || \cdot ||$ are known to the learner.

Lemma

∗

Given a classifier
$$
x \mapsto \text{sign}\left(y^\top x + b - \frac{2\|y\|_*}{c}\right)
$$
, the agent's response (i.e., manipulated feature) is given by*

Preliminaries: Agent's response

Assumption

The agent's manipulation cost is $c||x - A_t||$, where $c \& || \cdot ||$ are known to the learner.

Lemma

Given a classifier
$$
x \mapsto \text{sign}\left(y^\top x + b - \frac{2\|y\|_*}{c}\right)
$$
, the agent's response (i.e., manipulated feature) is given by*

$$
\frac{r(A,y,b)}{A} = \begin{cases} A + \left(\frac{2}{c} - \frac{y^{\top}A+b}{\|y\|_{*}}\right)v(y), & \text{if } 0 \leq \frac{y^{\top}A+b}{\|y\|_{*}} < \frac{2}{c} \\ A, & \text{otherwise} \end{cases}
$$

$$
A_t = r_t
$$

where $v(y) \in \partial ||y||_*$.

∗ Learner and agent use the same common tie-breaking rule whenever the optimal response is not unique.

Preliminaries: Prediction

In the strategic setting, what is an ideal classifier?

Preliminaries: Prediction

In the strategic setting, what is an ideal classifier?

▶ a correct classifier on unmanipulated data may be incorrect on manipulated data

Preliminaries: Prediction

In the strategic setting, what is an ideal classifier?

- ▶ a correct classifier on unmanipulated data may be incorrect on manipulated data
- ▶ an incorrect classifier on unmanipulated data may become correct

Preliminaries: Prediction

In the strategic setting, what is an ideal classifier?

- a correct classifier on unmanipulated data may be incorrect on manipulated data
- an incorrect classifier on unmanipulated data may become correct

▶ key idea 1: shift the decision hyperplane so that \widehat{a} abel $(A, y, b) = \text{sign} \left(\frac{y^{\top} A + b}{\|y\|_{*}} \right)$ $\frac{|A+b|}{||y||_*} - \frac{2}{c}$ $\frac{2}{c}$

▶ lemma: If $x \mapsto sign(\frac{y^\top x+b}{\|y\|_*})$ classifies all unmanipulated data correctly, then $x \mapsto sign(\frac{y^\top x+b}{\|y\|_*} - \frac{2}{c})$ classifies all manipulated features correctly

What else could go wrong with manipulated data?

▶ agent's responses can be inseparable even if unmanipulated data are separable

What else could go wrong with manipulated data?

▶ agent's responses can be inseparable even if unmanipulated data are separable

▶ key idea 2: construct a $proxy s(A_t, y_t, b_t)$ that approximates A_t using only the information we have, i.e., r_t , ℓ_t , y_t , b_t

Lemma

Given a classifier $x \mapsto$ sign $\left(y^{\top}x + b - \frac{2\|y\|_{*}}{c}\right)$, and agent's response $r(A, y, b)$, the proxy data is computed as \int J $r(A, y, b)$ – 2 c $v(y)$, if $\frac{y^{\top}r(A,y,b)+b}{\|y\|_{x}}$ ∥y∥[∗] = 2 c

$$
s(A,y,b) = \begin{cases} r(A,y,b) - \frac{2}{c}v(y), & \text{if } \frac{y \cdot r(A,y,b) + b}{\|y\|_{*}} = \frac{2}{c} \\ a\text{ and } \text{ label}(A) = -1, \\ A, & \text{otherwise.} \end{cases}
$$

Lemma

Given a classifier $x \mapsto$ sign $\left(y^{\top}x + b - \frac{2\|y\|_{*}}{c}\right)$, and agent's response $r(A, y, b)$, the proxy data is computed as $s(A,y,b) =$ \int J \mathcal{L} $r(A, y, b) - \frac{2}{c}v(y), \quad \text{if } \frac{y^\top r(A, y, b) + b}{\|y\|_{*}} = \frac{2}{c}$ and $label(A) = -1$, A, otherwise.

Lemma (correctness)

A response $r(A, y, b)$ is misclassified by $x \mapsto \mathsf{sign}(y^\top x + b - 2\|y\|_*/c) = \mathsf{label}(x, y, b)$ \iff its proxy $s(A, y, b)$ is misclassified by $x \mapsto \text{sign}(y^\top x + b)$.

Assumption (separability)

Unmanipulated data $\{(A_t, \text{label}(A_t))\}$ are separable, with a max margin classifier (y_*, b_*) achieving a margin of $d_* > 0$.

Assumption (separability)

Unmanipulated data $\{(A_t, \text{label}(A_t))\}$ are separable, with a max margin classifier (y_*, b_*) achieving a margin of $d_* > 0$.

Question

Proxy data $s(A, y, b)$ depends on classifier (y, b) . As we learn and revise classifiers (y_t, b_t) , how can we ensure that proxy data remains separable?

Assumption (separability)

Unmanipulated data $\{(A_t, \text{label}(A_t))\}$ are separable, with a max margin classifier (y_*, b_*) achieving a margin of $d_* > 0$.

Lemma (classifier alignment)

Suppose $(y, b), (\bar{y}, \bar{b}) \in \mathbb{R}^d \setminus \{0\} \times \mathbb{R}$ are such that $\bar{y}^{\top}v(y) \ge 0$. Then,

▶ label $(A) \cdot (\bar{y}^\top s(A, y, b) + \bar{b}) \geq$ label $(A) \cdot (\bar{y}^\top A + \bar{b})$ for all A;

Assumption (separability)

Unmanipulated data $\{(A_t, \text{label}(A_t))\}$ are separable, with a max margin classifier (y_*, b_*) achieving a margin of $d_* > 0$.

Lemma (classifier alignment)

Suppose
$$
(y, b), (\bar{y}, \bar{b}) \in \mathbb{R}^d \setminus \{0\} \times \mathbb{R}
$$
 are such that $\overline{y}^T v(y) \ge 0$. Then,
\n
$$
\begin{aligned}\n\text{label}(A) \cdot (\bar{y}^T s(A, y, b) + \bar{b}) &\ge \text{label}(A) \cdot (\bar{y}^T A + \bar{b}) \text{ for all } A; \\
\text{thus, } \min_{A \in \mathcal{A}} \left\{ \text{label}(A) \cdot \frac{\bar{y}^T s(A, y, b) + \bar{b}}{\|\bar{y}\|_{*}} \right\} &\ge \min_{A \in \mathcal{A}} \left\{ \text{label}(A) \cdot \frac{\bar{y}^T s(A, y, b)}{\|\bar{y}\|_{*}} \right\}. \end{aligned}
$$

Assumption (separability)

Unmanipulated data $\{(A_t, \text{label}(A_t))\}$ are separable, with a max margin classifier (y_*, b_*) achieving a margin of $d_* > 0$.

Lemma (classifier alignment)

Suppose $(y, b), (\bar{y}, \bar{b}) \in \mathbb{R}^d \setminus \{0\} \times \mathbb{R}$ are such that $\bar{y}^{\top}v(y) \ge 0$. Then, ▶ label $(A) \cdot (\bar{y}^\top s(A, y, b) + \bar{b}) \geq$ label $(A) \cdot (\bar{y}^\top A + \bar{b})$ for all A; ▶ thus, $\min_{A \in \mathcal{A}} \left\{ \text{label}(A) \cdot \frac{\bar{y}^\top s(A,y,b) + \bar{b}}{\|\bar{y}\|_{*}} \right\}$ ∥y¯∥[∗] $\Big\} \ge \mathsf{min}_{A \in \mathcal{A}} \, \Big\{ \mathsf{label}(A) \cdot \frac{\bar{\mathsf{y}}^\top A + \bar{b}}{\|\bar{\mathsf{y}}\|_\ast} \Big\}$ ∥y¯∥[∗] $\}$;

That is, under separability assumption on unmanipulated data, for every $y \in \mathbb{R}^d \setminus \{0\}$ satisfying $y^{\top}_*v(y) \ge 0$, we have proxy data s (A, y, b) are separable with margin at least d∗.

Algorithms

Main Idea

Generate and use $|{\sf{classifiers}}\left(y_t, b_t\right)$ that ensure separability of the proxy data $\overline{s(A_t, y_t, b_t)}$ and work with the proxy data

Algorithms

Main Idea

Generate and use $|{\sf{classifiers}}\left(y_t, b_t\right)$ that ensure separability of the proxy data $\overline{s(A_t, y_t, b_t)}$ and work with the proxy data

What works in the non-strategic setting?

▶ perceptron

- ▶ update by $v_{t+1} \leftarrow v_t + \text{label}(A_t) \cdot A_t$ whenever A_t is misclassified
- \blacktriangleright finite mistake bound, but no margin guarantee
- \triangleright computationally cheap

Algorithms

Main Idea

Generate and use $|{\sf{classifiers}}\left(y_t, b_t\right)$ that ensure separability of the proxy data $\overline{s(A_t, y_t, b_t)}$ and work with the proxy data

What works in the non-strategic setting?

- ▶ perceptron
	- ▶ update by $v_{t+1} \leftarrow v_t + \text{label}(A_t) \cdot A_t$ whenever A_t is misclassified
	- \blacktriangleright finite mistake bound, but no margin guarantee
	- \triangleright computationally cheap

margin maximization

▶

- max [∥]y∥∗≤1,b∈^R $\min_t \left\{ \textsf{label}(A_t) \cdot (y^\top A_t + b) \right\}$
- ▶ maximal margin classifier
- \blacktriangleright computationally expensive

Projected strategic perceptron (S-perceptron)†

Select a closed convex cone $\mathbb{L} \subset \mathbb{R}^d \times \mathbb{R}$. Initialize by $(y_0, b_0) = 0$. At iteration $t = 1, 2, \ldots$ Step 1. Receive manipulated data r_t and predict by label (r_t, y_t, b_t) . Step 2. Receive label (A_t) and compute the proxy $s(A_t,y_t,b_t)$ Step 3. Update by $(y_{t+1}, b_{t+1}) = \text{Proj}_{\mathbb{I}_t}(z_{t+1})$ where $z_{t+1} =$ $\int (y_t, b_t) +$ label $(A_t) \cdot (\sqrt{s(A_t, y_t, b_t)}, 1),$ if A_t is misclassified, (y_t, b_t) , otherwise.

▶ Why projection onto a cone?

†

Projected strategic perceptron (S-perceptron)†

Select a closed convex cone $\mathbb{L} \subset \mathbb{R}^d \times \mathbb{R}$. Initialize by $(y_0, b_0) = 0$. At iteration $t = 1, 2, \ldots$ Step 1. Receive manipulated data r_t and predict by label (r_t, y_t, b_t) . Step 2. Receive label (A_t) and compute the proxy $s(A_t, y_t, b_t)$ Step 3. Update by $(y_{t+1}, b_{t+1}) = \text{Proj}_{\mathbb{I}}(z_{t+1})$ where $z_{t+1} =$ $\int (y_t, b_t) +$ label $(A_t) \cdot (\sqrt{s(A_t, y_t, b_t)}, 1),$ if A_t is misclassified, (y_t, b_t) , otherwise.

▶ Why projection onto a cone?

†

Projected strategic perceptron (S-perceptron)†

Select a closed convex cone $\mathbb{L} \subset \mathbb{R}^d \times \mathbb{R}$. Initialize by $(y_0, b_0) = 0$. At iteration $t = 1, 2, \ldots$

- Step 1. Receive manipulated data r_t and predict by label (r_t, y_t, b_t) .
- Step 2. Receive label (A_t) and compute the proxy $s(A_t, y_t, b_t)$
- Step 3. Update by $(y_{t+1}, b_{t+1}) = \text{Proj}_{\mathbb{I}}(z_{t+1})$ where $z_{t+1} =$ $\int (y_t, b_t) + \text{label}(A_t) \cdot (\mathcal{S}(A_t, y_t, b_t), 1), \text{ if } A_t \text{ is misclassified},$ (y_t, b_t) , otherwise.

▶ Why projection onto a cone?

†

Projected strategic perceptron (S-perceptron)†

Select a closed convex cone $\mathbb{L} \subset \mathbb{R}^d \times \mathbb{R}$. Initialize by $(y_0, b_0) = 0$. At iteration $t = 1, 2, \ldots$

- Step 1. Receive manipulated data r_t and predict by label (r_t, y_t, b_t) .
- Step 2. Receive label (A_t) and compute the proxy $s(A_t, y_t, b_t)$
- Step 3. Update by $(y_{t+1}, b_{t+1}) = \text{Proj}_{\mathbb{I}}(z_{t+1})$ where $z_{t+1} =$ $\int (y_t, b_t) + \text{label}(A_t) \cdot (\mathcal{S}(A_t, y_t, b_t), 1), \text{ if } A_t \text{ is misclassified},$ (y_t, b_t) , otherwise.

Why projection onto a cone?

†

Projected strategic perceptron (S-perceptron)†

Select a closed convex cone $\mathbb{L} \subset \mathbb{R}^d \times \mathbb{R}$. Initialize by $(y_0, b_0) = 0$. At iteration $t = 1, 2, \ldots$

- Step 1. Receive manipulated data r_t and predict by label (r_t, y_t, b_t) .
- Step 2. Receive label (A_t) and compute the proxy $s(A_t, y_t, b_t)$

Step 3. Update by
$$
(y_{t+1}, b_{t+1}) = \text{Proj}_{\mathbb{L}}(z_{t+1})
$$
 where

$$
z_{t+1} = \begin{cases} (y_t, b_t) + \text{label}(A_t) \cdot (\mathbf{s}(A_t, y_t, b_t), 1), & \text{if } A_t \text{ is misclassified,} \\ (y_t, b_t), & \text{otherwise.} \end{cases}
$$

Why projection onto a cone?

[†]Captures the strategic perceptron algorithm of [Ahmadi et al., 2021] for ℓ_2 -based manipulation costs.

Strategic Perceptron: Results

Let $M = #$ of mistakes throughout the algorithm.

Theorem (informal)

∗

S-perceptron algorithm is guaranteed to have a finite mistake bound ...

► whenever
$$
d_* > \frac{2}{c}
$$
, but no prior knowledge on (y^*, b^*) exists: select $\mathbb{L} = \mathbb{R}^d \times \mathbb{R}$ to get $|\mathcal{M}| \leq \frac{||y_*||_2^2 + b_*^2}{||y_*||_*^2} \frac{\tilde{D}^2 + 1}{(d_* - 2/c)^2}$;

Strategic Perceptron: Results

Let $M = #$ of mistakes throughout the algorithm.

Theorem (informal)

S-perceptron algorithm is guaranteed to have a finite mistake bound ...

\n- whenever
$$
d_* > \frac{2}{c}
$$
, but no prior knowledge on (y^*, b^*) exists: select $\mathbb{L} = \mathbb{R}^d \times \mathbb{R}$ to get $|\mathcal{M}| \leq \frac{||y_*||_2^2 + b_*^2}{||y_*||_*^2} \frac{\tilde{D}^2 + 1}{(d_* - 2/c)^2}$;
\n- whenever $b_* = 0$ is known a priori and $\|\cdot\|$ is ℓ_2 norm^{*}:
\n

► whenever
$$
b_* = 0
$$
 is known a priori and $|| \cdot ||$ is ℓ_2 norm*
select $\mathbb{L} = \mathbb{R}^d \times \{0\}$ to get $|\mathcal{M}| \le \frac{\tilde{D}^2 + 1}{d_*^2}$;

[∗]Recovers mistake bounds from [Ahmadi et al., 2021] given for this case.

Strategic Perceptron: Results

Let $M = #$ of mistakes throughout the algorithm.

Theorem (informal)

S-perceptron algorithm is guaranteed to have a finite mistake bound ...

► whenever
$$
d_* > \frac{2}{c}
$$
, but no prior knowledge on (y^*, b^*) exists: select $\mathbb{L} = \mathbb{R}^d \times \mathbb{R}$ to get $|\mathcal{M}| \leq \frac{||y_*||_2^2 + b_*^2}{||y_*||_*^2} \frac{\tilde{D}^2 + 1}{(d_* - 2/c)^2}$;

► whenever
$$
b_* = 0
$$
 is known a priori and $|| \cdot ||$ is ℓ_2 norm*:
select $\mathbb{L} = \mathbb{R}^d \times \{0\}$ to get $|\mathcal{M}| \leq \frac{\tilde{D}^2 + 1}{d_*^2}$;

► whenever
$$
y^* \in \mathbb{R}_+^d
$$
 is known a priori and $|| \cdot ||$ is any ℓ_p norm:
select $\mathbb{L} = \mathbb{R}_+^d \times \mathbb{R}$ to get $|\mathcal{M}| \le \frac{||y_*||_2^2 + b_*^2}{||y_*||_*^2} \frac{\tilde{D}^2 + 1}{d_*^2}$.

[∗]Recovers mistake bounds from [Ahmadi et al., 2021] given for this case.

Projected strategic perceptron

- $(+)$ computationally cheap
- $(+)$ finite mistake bound

Projected strategic perceptron

- $(+)$ computationally cheap
- $(+)$ finite mistake bound
- $(-)$ update only when making a mistake
- (-) not guaranteed to converge to (y_*, b_*) ; no margin guarantee

Projected strategic perceptron

- $(+)$ computationally cheap
- $(+)$ finite mistake bound
- $(-)$ update only when making a mistake
- (-) not guaranteed to converge to (y_*, b_*) ; no margin guarantee

Question: How can we improve?

Projected strategic perceptron

- $(+)$ computationally cheap
- $(+)$ finite mistake bound
- $(-)$ update only when making a mistake
- (\big) not guaranteed to converge to (y_*, b_*) ; no margin guarantee

Question: How can we improve?

- ▶ strategic perceptron uses only information from current iteration in its update
- \triangleright idea: make use of all historical data: $\{(r_\tau, \ell_\tau, y_\tau, b_\tau)\}_{\tau \in [t]}$

Strategic max-margin (SMM) algorithm

Call initialization subroutine. At iteration $t = 1, 2, \ldots$

Step 1. Receive manipulated data r_t and predict by label (r_t, y_t, b_t) .

Step 2. Receive label (A_t) and compute the proxy $s(A_t, y_t, b_t)$.

Step 3. Update to (y_{t+1}, b_{t+1}) by solving the **proxy margin maximization problem**

$$
(y_{t+1}, b_{t+1}) \in \underset{\|y\|_{*} \leq 1, b \in \mathbb{R}}{\arg \max} \min_{\tau \in [t]} \left\{ \text{label}(A_{\tau}) \cdot \left(y^{\top} s(A_{\tau}, y_{\tau}, b_{\tau}) + b \right) \right\}. \tag{Pt}
$$

Strategic max-margin (SMM) algorithm

Call initialization subroutine. At iteration $t = 1, 2, \ldots$

Step 1. Receive manipulated data r_t and predict by label (r_t, y_t, b_t) .

Step 2. Receive label (A_t) and compute the proxy $s(A_t, y_t, b_t)$.

Step 3. Update to (y_{t+1}, b_{t+1}) by solving the **proxy margin maximization problem**

$$
(y_{t+1}, b_{t+1}) \in \underset{\|y\|_{*} \leq 1, b \in \mathbb{R}}{\arg \max} \min_{\tau \in [t]} \left\{ \text{label}(A_{\tau}) \cdot \left(y^{\top} s(A_{\tau}, y_{\tau}, b_{\tau}) + b \right) \right\}. \tag{Pt}
$$

Strategic Max Margin: Results

Theorem (informal)

SMM algorithm is guaranteed to have

- \blacktriangleright a finite mistake bound; and
- ▶ a finite manipulation bound whenever $d_* > \frac{2}{c}$ $\frac{2}{c}$.

Assumption (distributional separability)

 ${A_t}_{t \in \mathbb{N}}$ are i.i.d. samples from a probability distribution with support A, and the max margin classifier on $\{(A, \text{label}(A)) : A \in \mathcal{A}\}\$ is (y_*, b_*) achieving a margin of $d_* > 0$.

Theorem (informal)

If $d_* > \frac{2}{c}$ $\frac{2}{c}$, SMM algorithm guarantees (y_t, b_t) converges to $(y_*, b_*)/\|y_*\|_*$ almost surely.

 \blacktriangleright Recall the proxy margin maximization problem

$$
\max_{\|y\|_{*}\leq 1, b\in \mathbb{R}} \min_{\tau\in[t]} \left\{ \textsf{label}(A_{\tau}) \cdot \left(y^{\top} s(A_{\tau}, y_{\tau}, b_{\tau}) + b \right) \right\}.
$$
 (P_t)

 \blacktriangleright Recall the proxy margin maximization problem

$$
\max_{\|y\|_{*}\leq 1, b\in \mathbb{R}} \min_{\tau\in [t]} \left\{ \text{label}(A_{\tau}) \cdot \left(y^{\top} s(A_{\tau}, y_{\tau}, b_{\tau}) + b \right) \right\}.
$$
 (P_t)

$$
\blacktriangleright \text{ Define } \overline{\mathcal{A}_t^+} := \{ s(A_\tau, y_\tau, b_\tau) : \tau \in [t] \text{ s.t. } \text{label}(A_\tau) = +1 \} \text{ and also } \widetilde{\mathcal{A}_t^-}.
$$

 \blacktriangleright Recall the proxy margin maximization problem

$$
\max_{\|y\|_{*}\leq 1, b\in \mathbb{R}} \min_{\tau\in[t]} \left\{ \text{label}(A_{\tau}) \cdot \left(y^{\top} s(A_{\tau}, y_{\tau}, b_{\tau}) + b \right) \right\}.
$$
 (P_t)

\n- Define
$$
\overline{A_t^+} := \{ s(A_\tau, y_\tau, b_\tau) : \tau \in [t] \text{ s.t. } \text{label}(A_\tau) = +1 \}
$$
 and also $\widetilde{A_t^-}$.
\n- Then (P_t) is
\n

$$
\max_{\|y\|_{*}\leq 1, b\in\mathbb{R}} h(y, b; \widetilde{\mathcal{A}}_{t}^{+}, \widetilde{\mathcal{A}}_{t}^{-})
$$
\nwhere\n
$$
\frac{h(y, b; \widetilde{\mathcal{A}}_{t}^{+}, \widetilde{\mathcal{A}}_{t}^{-})}{h(y, b; \widetilde{\mathcal{A}}_{t}^{+}, \widetilde{\mathcal{A}}_{t}^{-})} := \min \left\{ \min_{x \in \widetilde{\mathcal{A}}_{t}^{+}} \left\{ y^{\top}x + b \right\}, \min_{x \in \widetilde{\mathcal{A}}_{t}^{-}} \left\{ -y^{\top}x - b \right\} \right\}.
$$

$$
h(y, b; \widetilde{\mathcal{A}}^+, \widetilde{\mathcal{A}}^-) = \min \left\{ \min_{x \in \widetilde{\mathcal{A}}^+} \left\{ y^\top x + b \right\}, \min_{x \in \widetilde{\mathcal{A}}^-} \left\{ -y^\top x - b \right\} \right\}
$$

Lemma (witness points, classifier alignment)

Suppose $\widetilde{\mathcal{A}}^+, \widetilde{\mathcal{A}}^-\subset \mathbb{R}^d$ separable with positive margin. Then,

▶ $(\tilde{y}, \tilde{b}) \in \arg \max_{\|y\|_{*} \leq 1, b \in \mathbb{R}} h(y, b; \tilde{A}^{+}, \tilde{A}^{-})$ satisfy $\|\tilde{y}\|_{*} = 1$;

$$
h(y, b; \widetilde{\mathcal{A}}^+, \widetilde{\mathcal{A}}^-) = \min \left\{ \min_{x \in \widetilde{\mathcal{A}}^+} \left\{ y^\top x + b \right\}, \min_{x \in \widetilde{\mathcal{A}}^-} \left\{ -y^\top x - b \right\} \right\}
$$

Lemma (witness points, classifier alignment)

Suppose $\widetilde{\mathcal{A}}^+, \widetilde{\mathcal{A}}^-\subset \mathbb{R}^d$ separable with positive margin. Then,

▶ $(\tilde{y}, \tilde{b}) \in \arg \max_{\|y\|_{*} \leq 1, b \in \mathbb{R}} h(y, b; \tilde{A}^{+}, \tilde{A}^{-})$ satisfy $\|\tilde{y}\|_{*} = 1$;

$$
\begin{aligned}\n\blacktriangleright \; &\exists \; \textit{witness points} \; \tilde{x}^+ \in \text{conv}(\widetilde{\mathcal{A}}^+) \; \textit{and} \; \tilde{x}^- \in \text{conv}(\widetilde{\mathcal{A}}^-) \; \textit{s.t.} \\
&\tilde{y}^\top (\tilde{x}^+ - \tilde{x}^-) = \| \tilde{x}^+ - \tilde{x}^- \| \cdot \| \tilde{y} \|_*, \; \textit{and} \\
&\tilde{d} \| \tilde{y} \|_* = \tilde{y}^\top \tilde{x}^+ + \tilde{b} = -\tilde{y}^\top \tilde{x}^- - \tilde{b};\n\end{aligned}
$$

$$
h(y, b; \widetilde{\mathcal{A}}^+, \widetilde{\mathcal{A}}^-) = \min \left\{ \min_{x \in \widetilde{\mathcal{A}}^+} \left\{ y^\top x + b \right\}, \min_{x \in \widetilde{\mathcal{A}}^-} \left\{ -y^\top x - b \right\} \right\}
$$

Lemma (witness points, classifier alignment)

Suppose $\widetilde{\mathcal{A}}^+, \widetilde{\mathcal{A}}^-\subset \mathbb{R}^d$ separable with positive margin. Then, ▶ $(\tilde{y}, \tilde{b}) \in \arg \max_{\|y\|_* \leq 1, b \in \mathbb{R}} h(y, b; \tilde{\mathcal{A}}^+, \tilde{\mathcal{A}}^-)$ satisfy $\|\tilde{y}\|_* = 1$; ▶ ∃ witness points $\tilde{x}^+ \in \text{conv}(\widetilde{\mathcal{A}}^+)$ and $\tilde{x}^- \in \text{conv}(\widetilde{\mathcal{A}}^-)$ s.t. $\tilde{y}^{\top}(\tilde{x}^+ - \tilde{x}^-) = \|\tilde{x}^+ - \tilde{x}^- \|\cdot \|\tilde{y}\|_*,$ and $\tilde{d} \|\tilde{y}\|_{*} = \tilde{y}^{\top} \tilde{x}^{+} + \tilde{b} = -\tilde{y}^{\top} \tilde{x}^{-} - \tilde{b};$

▶ whenever $\|\cdot\|$ and its dual norm $\|\cdot\|_*$ are strictly convex,

$$
h(y, b; \widetilde{\mathcal{A}}^+, \widetilde{\mathcal{A}}^-) = \min \left\{ \min_{x \in \widetilde{\mathcal{A}}^+} \left\{ y^\top x + b \right\}, \min_{x \in \widetilde{\mathcal{A}}^-} \left\{ -y^\top x - b \right\} \right\}
$$

Lemma (witness points, classifier alignment)

Suppose $\widetilde{\mathcal{A}}^+, \widetilde{\mathcal{A}}^-\subset \mathbb{R}^d$ separable with positive margin. Then, ▶ $(\tilde{y}, \tilde{b}) \in \arg \max_{\|y\|_{*} \leq 1, b \in \mathbb{R}} h(y, b; \tilde{A}^{+}, \tilde{A}^{-})$ satisfy $\|\tilde{y}\|_{*} = 1$;

$$
\begin{aligned}\n\blacktriangleright \; &\exists \; \textit{witness points} \; \tilde{x}^+ \in \text{conv}(\widetilde{\mathcal{A}}^+) \; \textit{and} \; \tilde{x}^- \in \text{conv}(\widetilde{\mathcal{A}}^-) \; \textit{s.t.} \\
&\tilde{y}^\top (\tilde{x}^+ - \tilde{x}^-) = \| \tilde{x}^+ - \tilde{x}^- \| \cdot \| \tilde{y} \|_*, \; \textit{and} \\
&\tilde{d} \| \tilde{y} \|_* = \tilde{y}^\top \tilde{x}^+ + \tilde{b} = -\tilde{y}^\top \tilde{x}^- - \tilde{b};\n\end{aligned}
$$

\n- whenever
$$
\|\cdot\|
$$
 and its dual norm $\|\cdot\|_*$ are strictly convex,
\n- \triangleright (\tilde{y}, \tilde{b}) is unique; and
\n

$$
h(y, b; \widetilde{\mathcal{A}}^+, \widetilde{\mathcal{A}}^-) = \min \left\{ \min_{x \in \widetilde{\mathcal{A}}^+} \left\{ y^\top x + b \right\}, \min_{x \in \widetilde{\mathcal{A}}^-} \left\{ -y^\top x - b \right\} \right\}
$$

Lemma (witness points, classifier alignment)

Suppose $\widetilde{\mathcal{A}}^+, \widetilde{\mathcal{A}}^-\subset \mathbb{R}^d$ separable with positive margin. Then,

$$
\blacktriangleright (\tilde{y}, \tilde{b}) \in \arg \max_{\|y\|_{*} \leq 1, b \in \mathbb{R}} h(y, b; \tilde{\mathcal{A}}^{+}, \tilde{\mathcal{A}}^{-}) \text{ satisfy } \|\tilde{y}\|_{*} = 1;
$$

$$
\begin{aligned}\n\blacktriangleright & \exists \text{ witness points } \tilde{x}^+ \in \text{conv}(\widetilde{\mathcal{A}}^+) \text{ and } \tilde{x}^- \in \text{conv}(\widetilde{\mathcal{A}}^-) \text{ s.t.} \\
& \tilde{y}^\top (\tilde{x}^+ - \tilde{x}^-) = \| \tilde{x}^+ - \tilde{x}^- \| \cdot \| \tilde{y} \|_*, \text{ and} \\
& \tilde{d} \| \tilde{y} \|_* = \tilde{y}^\top \tilde{x}^+ + \tilde{b} = -\tilde{y}^\top \tilde{x}^- - \tilde{b};\n\end{aligned}
$$

\n- whenever
$$
\|\cdot\|
$$
 and its dual norm $\|\cdot\|_*$ are strictly convex,
\n- (\tilde{y}, \tilde{b}) is unique; and
\n- any (\bar{y}, \bar{b}) satisfying $h\left(\bar{y}, \bar{b}; \tilde{A}^+, \tilde{A}^-\right) \geq \bar{d} > 0$ satisfies $\bar{y}^\top v(\tilde{y}) \geq (\bar{d}/\tilde{d}) > 0$.
\n
Suppose separability and strict convexity of the norms hold.

At time t, SMM generates (y_t, b_t) with margin d_t . Then, for all t

- At time t, SMM generates (y_t, b_t) with margin d_t . Then, for all t
	- ▶ y_t will be well-aligned with y_* , i.e., $y_*^{\top} v(y_t) \ge ||y_*||_* \frac{d_*}{d_t} > 0$;

- At time t, SMM generates (y_t, b_t) with margin d_t . Then, for all t
	- ▶ y_t will be well-aligned with y_* , i.e., $y_*^{\top} v(y_t) \ge ||y_*||_* \frac{d_*}{d_t} > 0$;
	- ▶ $d_{t+1} > d_*$;

- At time t, SMM generates (y_t, b_t) with margin d_t . Then, for all t
	- ▶ y_t will be well-aligned with y_* , i.e., $y_*^{\top} v(y_t) \ge ||y_*||_* \frac{d_*}{d_t} > 0$;
	- ▶ $d_{t+1} > d_*$:
	- ▶ if label $(A_t)[y_t^\top s(A_t, y_t, b_t) + b_t] \leq a\|y_t\|_*$ holds for $a < d_*$, then $d_{t+1} \leq \kappa(a, d_*, \tilde{D})d_t$. $(\kappa(a, d_*, \tilde{D}) \in (0, 1)$ is a parameter based on the geometry of the problem, margin and size of data)

- At time t, SMM generates (y_t, b_t) with margin d_t . Then, for all t
	- ▶ y_t will be well-aligned with y_* , i.e., $y_*^{\top} v(y_t) \ge ||y_*||_* \frac{d_*}{d_t} > 0$;
	- ▶ $d_{t+1} > d_*$:
	- ▶ if label $(A_t)[y_t^\top s(A_t, y_t, b_t) + b_t] \leq a\|y_t\|_*$ holds for $a < d_*$, then $d_{t+1} \leq \kappa(a, d_*, \tilde{D})d_t$. $(\kappa(a, d_*, \tilde{D}) \in (0, 1)$ is a parameter based on the geometry of the problem, margin and size of data)

$$
\implies \text{ $\#$ of mistakes \mathcal{M} satisfies $|\mathcal{M}| \leq \frac{\log(d_1/d_*)}{\log\bigl(1/\kappa(0,d_*,\tilde{D})\bigr)} < \infty$;}
$$

Suppose separability and strict convexity of the norms hold.

- At time t, SMM generates (y_t, b_t) with margin d_t . Then, for all t
	- ▶ y_t will be well-aligned with y_* , i.e., $y_*^{\top} v(y_t) \ge ||y_*||_* \frac{d_*}{d_t} > 0$;
	- ▶ $d_{t+1} > d_*$:
	- ▶ if label $(A_t)[y_t^\top s(A_t, y_t, b_t) + b_t] \leq a\|y_t\|_*$ holds for $a < d_*$, then $d_{t+1} \leq \kappa(a, d_*, \tilde{D})d_t$. $(\kappa(a, d_*, \tilde{D}) \in (0, 1)$ is a parameter based on the geometry of the problem, margin and size of data)

$$
\implies \text{ $\#$ of mistakes \mathcal{M} satisfies $|\mathcal{M}| \leq \frac{\log(d_1/d_*)}{\log\bigl(1/\kappa(0,d_*,\tilde{D})\bigr)} < \infty$;}
$$

 \Rightarrow # of manipulations of negative data \mathcal{N}^- , (as well as \mathcal{N}^+ whenever $d_* > 2/c$) satisfy

$$
|\mathcal{N}^-|\leq \frac{\log(d_1/d_*)}{\log\Big(1/\kappa\left(0,d_*,\tilde{D}\right)\Big)}<\infty,\qquad |\mathcal{N}^+|\leq \frac{\log(d_1/d_*)}{\log\Big(1/\kappa\left(2/c,d_*,\tilde{D}\right)\Big)}<\infty;
$$

Lemma (uniform convergence)

Let
\n
$$
\widetilde{\mathcal{A}}_1^+ \subseteq \widetilde{\mathcal{A}}_2^+ \subseteq \ldots \subseteq \widetilde{\mathcal{A}}_\infty^+ \subset \mathbb{R}^d
$$
\n
$$
\widetilde{\mathcal{A}}_1^- \subseteq \widetilde{\mathcal{A}}_2^- \subseteq \ldots \subseteq \widetilde{\mathcal{A}}_\infty^- \subset \mathbb{R}^d.
$$

If both sets $\widetilde{\mathcal{A}}^+_\infty$ and $\widetilde{\mathcal{A}}^-_\infty$ are bounded, then $h_t(y,b):=h\left(y,b;\widetilde{\mathcal{A}}^+_t,\widetilde{\mathcal{A}}^-_t\right)$ converge uniformly to $h_{\infty} (y, b) := h \left(y, b; \widetilde{\mathcal{A}}_{\infty}^+, \widetilde{\mathcal{A}}_{\infty}^- \right)$ $\Big)$ over any compact domain $\mathcal{D}\subset\mathbb{R}^{d}\times\mathbb{R}.$

Lemma (uniform convergence)

Let
\n
$$
\widetilde{\mathcal{A}}_1^+ \subseteq \widetilde{\mathcal{A}}_2^+ \subseteq \ldots \subseteq \widetilde{\mathcal{A}}_\infty^+ \subset \mathbb{R}^d
$$
\n
$$
\widetilde{\mathcal{A}}_1^- \subseteq \widetilde{\mathcal{A}}_2^- \subseteq \ldots \subseteq \widetilde{\mathcal{A}}_\infty^- \subset \mathbb{R}^d.
$$

If both sets $\widetilde{\mathcal{A}}^+_\infty$ and $\widetilde{\mathcal{A}}^-_\infty$ are bounded, then $h_t(y,b):=h\left(y,b;\widetilde{\mathcal{A}}^+_t,\widetilde{\mathcal{A}}^-_t\right)$ converge uniformly to $h_{\infty} (y, b) := h \left(y, b; \widetilde{\mathcal{A}}_{\infty}^+, \widetilde{\mathcal{A}}_{\infty}^- \right)$ $\Big)$ over any compact domain $\mathcal{D}\subset\mathbb{R}^{d}\times\mathbb{R}.$

▶ When data A_t is bounded, i.e., $||A_t|| \leq D$, we get uniform conv. to $h_{\infty}(y, b)$.

Lemma (uniform convergence)

Let
\n
$$
\widetilde{\mathcal{A}}_1^+ \subseteq \widetilde{\mathcal{A}}_2^+ \subseteq \ldots \subseteq \widetilde{\mathcal{A}}_\infty^+ \subset \mathbb{R}^d
$$
\n
$$
\widetilde{\mathcal{A}}_1^- \subseteq \widetilde{\mathcal{A}}_2^- \subseteq \ldots \subseteq \widetilde{\mathcal{A}}_\infty^- \subset \mathbb{R}^d.
$$

If both sets $\widetilde{\mathcal{A}}^+_\infty$ and $\widetilde{\mathcal{A}}^-_\infty$ are bounded, then $h_t(y,b):=h\left(y,b;\widetilde{\mathcal{A}}^+_t,\widetilde{\mathcal{A}}^-_t\right)$ converge uniformly to $h_{\infty} (y, b) := h \left(y, b; \widetilde{\mathcal{A}}_{\infty}^+, \widetilde{\mathcal{A}}_{\infty}^- \right)$ $\Big)$ over any compact domain $\mathcal{D}\subset\mathbb{R}^{d}\times\mathbb{R}.$

- ▶ When data A_t is bounded, i.e., $||A_t|| \leq D$, we get uniform conv. to $h_{\infty}(y, b)$.
- ▶ When d_* > 2/c, \implies finitely many mistakes and manipulations $\implies \exists t_0 \in \mathbb{N}$ s.t. $r(A_t, y_t, b_t) = s(A_t, y_t, b_t) = A_t$ for all $t \ge t_0$ a.s.

Lemma (uniform convergence)

Let
\n
$$
\widetilde{\mathcal{A}}_1^+ \subseteq \widetilde{\mathcal{A}}_2^+ \subseteq \ldots \subseteq \widetilde{\mathcal{A}}_\infty^+ \subset \mathbb{R}^d
$$
\n
$$
\widetilde{\mathcal{A}}_1^- \subseteq \widetilde{\mathcal{A}}_2^- \subseteq \ldots \subseteq \widetilde{\mathcal{A}}_\infty^- \subset \mathbb{R}^d.
$$

If both sets $\widetilde{\mathcal{A}}^+_\infty$ and $\widetilde{\mathcal{A}}^-_\infty$ are bounded, then $h_t(y,b):=h\left(y,b;\widetilde{\mathcal{A}}^+_t,\widetilde{\mathcal{A}}^-_t\right)$ converge uniformly to $h_{\infty} (y, b) := h \left(y, b; \widetilde{\mathcal{A}}_{\infty}^+, \widetilde{\mathcal{A}}_{\infty}^- \right)$ $\Big)$ over any compact domain $\mathcal{D}\subset\mathbb{R}^{d}\times\mathbb{R}.$

- ▶ When data A_t is bounded, i.e., $||A_t|| \leq D$, we get uniform conv. to $h_{\infty}(y, b)$.
- ▶ When $d_* > 2/c$, \implies finitely many mistakes and manipulations $\implies \exists t_0 \in \mathbb{N}$ s.t. $r(A_t, y_t, b_t) = s(A_t, y_t, b_t) = A_t$ for all $t \ge t_0$ a.s.
- ▶ Distributional separability will ensure $\{A_t : t \geq t_0\}$ is dense in A a.s.
- ▶ (y_*, b_*) maximizes h_{∞} a.s. (recall also that h_{∞} has a unique maximizer)
- ▶ Then, uniform conv. of $h_t \to h_{\infty}$ implies $(y_t, b_t) \to (y_*, b_*)$ almost surely.

- $(+)$ finite mistake and manipulation bounds
- (+) convergence to the max margin classifier (y_*, b_*)

- $(+)$ finite mistake and manipulation bounds
- (+) convergence to the max margin classifier (y_*, b_*)
- $(-)$ requires solving an optimization problem at each iteration

- $(+)$ finite mistake and manipulation bounds
- (+) convergence to the max margin classifier (y_*, b_*)
- $(-)$ requires solving an optimization problem at each iteration
- Question: Can we reduce the computation cost?

- $(+)$ finite mistake and manipulation bounds
- (+) convergence to the max margin classifier (y_*, b_*)
- $(-)$ requires solving an optimization problem at each iteration
- Question: Can we reduce the computation cost?
	- \blacktriangleright idea: Joint estimation-optimization⁷
		- ▶ given a sequence of optimization problems that converges to a target problem
		- ▶ perform one update (e.g., one step of gradient descent) based on the problem defined by the current data

Gradient-based SMM: Algorithm

Gradient-based strategic max-margin algorithm (Gradient SMM)

Call initialization subroutine. Select stepsizes $\{\gamma_t\}$. At iteration $t = 1, 2, \ldots$ Step 1. Receive manipulated data r_t and predict by label (r_t, y_t, b_t) .

- Step 2. Receive label (A_t) and compute the proxy $s(A_t, y_t, b_t)$.
- Step 3. Update to (y_{t+1}, b_{t+1}) by

$$
s_t^+ \in \arg \max_{s \in \widetilde{\mathcal{A}}_t^+} z_t^\top s, \quad s_t^- \in \arg \min_{s \in \widetilde{\mathcal{A}}_t^-} z_t^\top s, \quad z_{t+1} = \text{Proj}_{B_{\|\cdot\|_2}} \left(z_t + \gamma_t (s_t^+ - s_t^-) \right)
$$
\n
$$
\text{and } y_{t+1} = \frac{\sum_{\tau \in [t+1]} \gamma_\tau z_\tau}{\sum_{\tau \in [t+1]} \gamma_\tau}, \quad b_{t+1} = -\frac{1}{2} \left(\min_{s \in \widetilde{\mathcal{A}}_t^+} y_{t+1}^\top s + \max_{s \in \widetilde{\mathcal{A}}_t^-} y_{t+1}^\top s \right).
$$

$$
\text{key idea:}\n\begin{aligned}\nh(y, b; \widetilde{A}^+, \widetilde{A}^-) &= \frac{1}{2} \left(\min_{x \in \widetilde{A}^+} y^\top x - \max_{x \in \widetilde{A}^-} y^\top x \right) - \left| b + \frac{1}{2} \left(\min_{x \in \widetilde{A}^+} y^\top x + \max_{x \in \widetilde{A}^-} y^\top x \right) \right|. \n\end{aligned}
$$

Gradient-based SMM: Algorithm

Gradient-based strategic max-margin algorithm (Gradient SMM)

Call initialization subroutine. Select stepsizes $\{\gamma_t\}$. At iteration $t = 1, 2, \ldots$ Step 1. Receive manipulated data r_t and predict by label (r_t, y_t, b_t) .

Step 2. Receive label (A_t) and compute the proxy $s(A_t, y_t, b_t)$.

Step 3. Update to (y_{t+1}, b_{t+1}) by

$$
s_t^+ \in \arg \max_{s \in \widetilde{\mathcal{A}}_t^+} z_t^{\top} s, \quad s_t^- \in \arg \min_{s \in \widetilde{\mathcal{A}}_t^-} z_t^{\top} s, \quad z_{t+1} = \text{Proj}_{B_{\|\cdot\|_2}} \left(z_t + \gamma_t (s_t^+ - s_t^-) \right)
$$

and
$$
y_{t+1} = \frac{\sum_{\tau \in [t+1]} \gamma_\tau z_\tau}{\sum_{\tau \in [t+1]} \gamma_\tau}, \quad b_{t+1} = -\frac{1}{2} \left(\min_{s \in \widetilde{\mathcal{A}}_t^+} y_{t+1}^{\top} s + \max_{s \in \widetilde{\mathcal{A}}_t^-} y_{t+1}^{\top} s \right).
$$

$$
\text{key idea:} \\ h(y, b; \widetilde{A}^+, \widetilde{A}^-) = \frac{1}{2} \left(\min_{x \in \widetilde{A}^+} y^\top x - \max_{x \in \widetilde{A}^-} y^\top x \right) - \left| b + \frac{1}{2} \left(\min_{x \in \widetilde{A}^+} y^\top x + \max_{x \in \widetilde{A}^-} y^\top x \right) \right|.
$$

Assumption (distributional separability)

 ${A_t}_{t\in\mathbb{N}}$ are i.i.d. samples from a probability distribution with support A, and the max margin classifier on $\{(A, \text{label}(A)) : A \in \mathcal{A}\}\$ is (y_*, b_*) achieving a margin of $d_* > 0$.

Theorem (informal)

Suppose $\|\cdot\|$ is the ℓ_2 norm and $\gamma_t = \gamma_0/\sqrt{t}$. Then, gradient SMM algorithm is guaranteed to

- \blacktriangleright make finitely many mistakes almost surely,
- ▶ induce finite manipulations whenever $d_* > \frac{2}{c}$ $\frac{2}{c}$, and

▶ converge to $(y_*, b_*)/||y_*||_2$ almost surely whenever $d_* > \frac{2}{c}$ $\frac{2}{c}$.

▶ Suppose $\|\cdot\|$ is the ℓ_2 norm. Then,

under a priori assumption of $b_ = 0$ † under the assumption $d_* > 2/c$ ‡ under distributional separability assumption

Kılınç-Karzan [Guarantees in Online Strategic Classification](#page-0-0) 25 / 33

÷,

▶ Suppose $\|\cdot\|$ is the ℓ_2 norm. Then,

under a priori assumption of $b_ = 0$ † under the assumption $d_* > 2/c$ ‡ under distributional separability assumption

▶ Suppose $\|\cdot\|$ is the ℓ_2 norm. Then,

under a priori assumption of $b_ = 0$ † under the assumption $d_* > 2/c$ ‡ under distributional separability assumption

Kılınç-Karzan [Guarantees in Online Strategic Classification](#page-0-0) 25 / 33

J.

▶ Suppose $\|\cdot\|$ is the ℓ_2 norm. Then,

under a priori assumption of $b_ = 0$ † under the assumption $d_* > 2/c$ ‡ under distributional separability assumption

Computational Study - Setting

- ▶ Bank loan application data from [\[8\]](#page-109-0) (collected by an online platform Prosper):
	- \blacktriangleright $d = 6$ continuous features (bank card utilization, credit history length, etc.)
	- ▶ 20, 222 data points $(41.70\%$ have $+1$ labels)
	- **•** Preprocessed to ensure separability and a margin of at least $\rho > 0$

Computational Study - Setting

- Bank loan application data from $[8]$ (collected by an online platform Prosper):
	- \blacktriangleright $d = 6$ continuous features (bank card utilization, credit history length, etc.)
	- ▶ 20, 222 data points $(41.70\%$ have $+1$ labels)
	- ▶ Preprocessed to ensure separability and a margin of at least $\rho > 0$
- ▶ Tested the impact of
	- ▶ Margin $\rho \in \{0.01, 0.02, 0.04\}$,
	- ▶ Cost of manipulation $2/c \in \{0.9, 1.0, 1.1\} \cdot \rho$, and
	- ▶ Noise in agent responses: learner observes $r(A_t, y_t, b_t) + \varepsilon_t$, where $\varepsilon_t \sim \mathcal{N}(0, \sigma^2 I_d)$ is i.i.d. Gaussian noise with $\sigma \in \left\{0, 10^{-3}, 10^{-2}\right\}$.

 \blacktriangleright No noise ($\sigma = 0$), performance metric: **convergence to max-margin classifier**

▶ No noise $(\sigma = 0)$, performance metric: # of mistakes

Kiling-Karzan [Guarantees in Online Strategic Classification](#page-0-0) 27 / 33

▶ No noise $(\sigma = 0)$, performance metric: $#$ of manipulations

Performance Comparison: Noisy Response

▶ learner observes $r(A_t, y_t, b_t) + \varepsilon_t$, where $\varepsilon_t \sim \mathcal{N}(0, \sigma^2 I_d)$ is i.i.d. Gaussian noise with σ

Performance Comparison: Noisy Response

- ▶ learner observes $r(A_t, y_t, b_t) + \varepsilon_t$, where $\varepsilon_t \sim \mathcal{N}(0, \sigma^2 I_d)$ is i.i.d. Gaussian noise with σ
- ▶ varying noise level in agent responses: $\sigma \in \{0, 10^{-3}, 10^{-2}\}$

Performance Comparison: Noisy Response

- ▶ learner observes $r(A_t, y_t, b_t) + \varepsilon_t$, where $\varepsilon_t \sim \mathcal{N}(0, \sigma^2 I_d)$ is i.i.d. Gaussian noise with σ
- ▶ varying noise level in agent responses: $\sigma \in \{0, 10^{-3}, 10^{-2}\}$
- ▶ performance metric: convergence to max-margin classifier

Computational Study - Summary

▶ Summary of numerical performance (no noise):

▶ SMM performs the best in terms of all metrics except solution time.

▶ Gradient-based SMM does better than strategic perceptron in terms of convergence and $\#$ of mistakes, and eventually in terms of $\#$ manipulations as well.

Computational Study - Summary

 \triangleright Summary of numerical performance (no noise):

▶ SMM performs the best in terms of all metrics except solution time.

- ▶ Gradient-based SMM does better than strategic perceptron in terms of convergence and $\#$ of mistakes, and eventually in terms of $\#$ manipulations as well.
- ▶ SMM is robust to low magnitude of noise, but not high noise.
- ▶ Gradient SMM and S-perceptron appear to be quite robust to noise.

Conclusion

Summary

▶ New algorithms for classification in strategic setting with theoretical guarantees on $\#$ of mistakes, $\#$ of manipulations and margin

Conclusion

Summary

▶ New algorithms for classification in strategic setting with theoretical guarantees on $\#$ of mistakes, $\#$ of manipulations and margin

Future outlook

- ▶ model variants
	- ▶ alternative manipulation models (other cost structures, discrete features via manipulation $graph, \ldots)$
	- ▶ unknown utility function
	- \blacktriangleright strategic classification for nonlinear classifiers
- ▶ connections with Stackelberg games more generally
- ▶ more tools to handle strategic behavior effectively

Thank you!

fkilinc@andrew.cmu.edu

[Shen et al., 2024]

Mistake, Manipulation, and Margin Guarantees in Online Strategic Classification (March 2024).

arXiv:2403.18176.

Questions?

fkilinc@andrew.cmu.edu

[Shen et al., 2024]

Mistake, Manipulation, and Margin Guarantees in Online Strategic Classification (March 2024).

arXiv:2403.18176.
References I

- [1] Moritz Hardt et al. "Strategic Classification". In: Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science. Cambridge Massachusetts USA: ACM, Jan. 2016, pp. 111–122.
- [2] Jinshuo Dong et al. "Strategic Classification from Revealed Preferences". In: Proceedings of the 2018 ACM Conference on Economics and Computation. Ithaca NY USA: ACM, June 2018, pp. 55–70.
- [3] Yiling Chen, Yang Liu, and Chara Podimata. "Learning Strategy-Aware Linear Classifiers". In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 15265–15276.
- [4] Saba Ahmadi et al. "The Strategic Perceptron". In: Proceedings of the 22nd ACM Conference on Economics and Computation. Budapest Hungary: ACM, July 2021, pp. 6–25.
- [5] Tosca Lechner and Ruth Urner. "Learning losses for strategic classification". In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36. 7. 2022, pp. 7337–7344.

References II

- [6] Saba Ahmadi, Avrim Blum, and Kunhe Yang. "Fundamental Bounds on Online Strategic Classification". In: Proceedings of the 24th ACM Conference on Economics and Computation. London United Kingdom: ACM, July 2023, pp. 22–58.
- [7] Nam Ho-Nguyen and Fatma Kılınç-Karzan. "Exploiting problem structure in optimization under uncertainty via online convex optimization". In: Mathematical Programming 177.1-2 (2018), pp. 113–147.
- [8] Ganesh Ghalme et al. "Strategic Classification in the Dark". en. In: Proceedings of the 38th International Conference on Machine Learning. ISSN: 2640-3498. PMLR, July 2021, pp. 3672–3681.