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DEEP LEARNING IS COOL SLIDE Language comprehension
World Knowledge

Reasoning

θ ← θ − η∇ℓ(θ)

min
θ∈ℝ1011

ℓ( fθ; lots of data)
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OPTIMIZATION BEHAVIORS ARE VERY INTRIGUING

Double descent Grokking Phase Transitions

Scaling Laws
Lottery Tickets Mode Connectivity
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FEW THOUGHTS

This era of ML: Deep learning surmounts various computational challenges 
to produce impressive results that we did not expect

Challenge: There are numerous moving parts, everything affects everything, 
scale is often too large to tackle

Theory: can provide guarantees, explanations, new algorithmic insights

An approach: Create synthetic controllable setups that replicate the 
desirable learning behaviors and allow for new insights and analysis 
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TODAY: PARITIES AND MARKOV CHAINS
Sparse-parities and Feature 

Learning
Markov Chains and 

Induction Heads

Slide credits shared with Cyril Zhang

with Boaz Barak, Ben Edelman, Sham Kakade, 
Eran Malach & Cyril Zhang

with Ben Edelman, Ezra Edelman, Eran 
Malach & Nikos Tsilivis

Slide credits shared with Ben Edelman
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LEARNING SPARSE PARITIES
Fundamental problem in learning theory:

Dataset of  samples  with each  i.i.d. from   and 
 for some unknown set  of size 

m {(x(i), y(i))}m
i=1 x(i) 𝖴𝗇𝗂𝖿({±1}n)

y(i) = ∏
j∈S

x(i)
j S k

Subset  of relevant variablesS

Input:

Output:
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LEARNING SPARSE PARITIES - WHAT IS KNOWN

Statistically requires  samples, brute force over all possible  choices≈ k log n (n
k)

Statistical-computational trade-offs:

Computationally beating  time is hard!
Provably, in restricted computational models [Kearns ’93; Kol, Raz, Tal ’16] 
Conjecturally (with a constant noise), no  algorithm [Applebaum, Cash, Peikert, Sahai ‘09] 

nO(k)

no(k)

Lots of interesting, different algorithms!

Noiseless:  time, needs  samples  [Gauss 1810]
Noiseless:  time  [Spielman, via Klivans-Servedio ’06]
Noisy:  time & samples  [Blum, Kalai, Wasserman ’00]
Noisy:  time via Chebyshev polynomials  [Valiant ‘13]

O(n3) Ω(n)
Õ(nk/2)

2O(n/log n)

Õ(n0.8)



8

SPARSE PARITIES AS A PROXY MODEL
The XOR problem [Minsky-Papert ‘69] convinced everyone to abandon deep learning

Perceptron could not fit this

More expressive networks could easily fit

Recently gained interest experimentally [Daniely-Malach’20] and theoretically [Ben Arous-
Gheissari-Jagannath ’20]

Similar problem of learning single-index and multi-index models studied over gaussian 
input [Damian-Lee-Soltanolkatabi’22; Abbe-Boix-Misiakiewicz’23; Moniri-Lee-Hassani-Dobriman’23, 
….]



LEARNING SPARSE PARITIES WITH NEURAL NETS
Can neural networks learn sparse parities?

Many different architectures learn with  time/samples≈ nk

Barak, Edelman, Goel, Kakade, Malach, Zhang. Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit. NeurIPS 2022.



COMPETING REASONS FOR SUCCESS OF TRAINING
How are the models learning this challenging sparse function? 

Random guessing? Hidden progress?

“Stumbling in the dark” until SGD guesses 
 chance every  iterations

Plausible theory: langevin-dynamics

S
≈ n−k O(1)

Loss looks flat, but another quantity doesn’t
Some function  is predictive of 
Plausible theory: ?

Φ(θt) t𝗌𝗎𝖼𝖼𝖾𝗌𝗌

Barak, Edelman, Goel, Kakade, Malach, Zhang. Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit. NeurIPS 2022.



MECHANISM BEHIND SUCCESS OF TRAINING
Can this be random search?

Convergence times would depend 
on SGD’s stochasticity and not 

purely initialization

Random search would look like an 
exponential distribution 

 for P(i) ∝ (1 − p)i−1p 1/p = (n
k)

Barak, Edelman, Goel, Kakade, Malach, Zhang. Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit. NeurIPS 2022.



WHERE IS THE HIDDEN PROGRESS?

Assume:  with correlation loss , and exact GD 

Claim: In one step, GD from  learns all the features

fw(x) = 𝖱𝖾𝖫𝖴(w⊤x) ℓ(y, ̂y) = − y ̂y

w = [±1,…, ± 1]

At initialization:  (shifted majority function)𝖱𝖾𝖫𝖴′￼(w⊤x) =
𝗌𝗂𝗀𝗇(±1⊤x) + 1

2

Proof sketch: 
Population gradient ∇w𝔼 [ℓ (χS(x), 𝖱𝖾𝖫𝖴(w⊤x))] = − 𝔼 [χS(x) ⋅ x ⋅ 𝖱𝖾𝖫𝖴′￼(w⊤x)]

Key: Gradient on relevant coordinates is  larger than the irrelevant coordinatesΩ(n−(k−1)/2)
Fourier gap

Barak, Edelman, Goel, Kakade, Malach, Zhang. Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit. NeurIPS 2022.



MAIN RESULT - HIDDEN INFORMATION

Theorem [BEGKMZ’22]: 
One hidden-layer MLPs with ReLU activation and  hidden units learn -sparse 
parities using large batch SGD with compute time (batch-size x run-time) scaling as  
For any Fourier gap ,  samples suffice.

2O(k) k
nk .

γ ≈ 1/γ2

NTK requires at least  hidden unitsnΩ(k)

First gradient step has enough information to identify relevant 
coordinates, then online convex optimization works
Empirically, many variants work: varying batch size, noise, offline data, 
deeper networks, losses, sinusoidal activations, initializations 

Hard to do step-by-step analysis, Fourier gap unknown for random halfspaces

Barak, Edelman, Goel, Kakade, Malach, Zhang. Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit. NeurIPS 2022.



MECHANISM BEHIND SUCCESS OF TRAINING

Hypothesis: SGD learns parities via Fourier gap amplification mechanism
why does it never succeed significantly earlier?  needs  samples 

why does its trajectory depend heavily on initialization?  gap depends on initialization 

1/γ2

Hidden progress measures:

Active area of research

Barak, Edelman, Goel, Kakade, Malach, Zhang. Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit. NeurIPS 2022.



Grokking behavior when trained on fixed samples

Training loss goes to 0, validation loss 
hits 0 much later

SPARSE PARITIES: GROKKING

Barak, Edelman, Goel, Kakade, Malach, Zhang. Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit. NeurIPS 2022.



SPARSE PARITIES: SCALING LAWS

Scaling laws: predict how test performance depends on compute and data

Why are parities hard?

Observe that  for all 𝔼[χS(x)χT(x)] = 0 S ≠ T

𝗅𝗈𝗌𝗌 ≈
1

𝖽𝖺𝗍𝖺α +
1

𝖼𝗈𝗆𝗉𝗎𝗍𝖾β + γ

How can we trade data and compute resources?

No other subset has any correlation

Therefore we need  to identify which parity it is𝖽𝖺𝗍𝖺 × 𝖼𝗈𝗆𝗉𝗎𝗍𝖾 ≥ (n
k)



SPARSE PARITIES: SCALING LAWS

SGD training interpolates between random guessing and Fourier gap amplification

Darker is better

Why would this work?

Assume: Each ReLU is sparsely initialized with some sparsity 

Claim: As width increases, more chance to get a subset that overlaps with the relevant 
variables  lottery tickets with “partial progress” (higher Fourier gap)

k′￼

⟹

Edelman, Goel, Kakade, Malach, Zhang. Pareto Frontiers in Neural Feature Learning: Data, Compute, Width, and Luck. NeurIPS 2023 (Spotlight).



SPARSE PARITIES: SPURIOUS CORRELATIONS

Wider MLPs are more sample efficient on low-data benchmarks, as predicted by theory!

Sparse initialization helps, but is not necessary! 

Edelman, Goel, Kakade, Malach, Zhang. Pareto Frontiers in Neural Feature Learning: Data, Compute, Width, and Luck. NeurIPS 2023 (Spotlight).
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Useful for studying several phenomenon, and a good model to simulate feature learning

SPARSE PARITIES AS A PROXY MODEL

Some other use cases:
Parity computations are essential building blocks for several reasoning problems [Liu-Ash-
Goel-Kakade-Zhang’22]
Parities are useful to model spurious/core features to understand robust learning [Qiu-
Huang-Goel’24]
Feature learning dynamics of parities lead to insights into new distillation strategies [Panigrahy-
Liu-Malladi-Goel’24]

and more…



20

TODAY: PARITIES AND MARKOV CHAINS

Slide credits shared with Cyril Zhang

Sparse-parities and Feature 
Learning

Markov Chains and 
Induction Heads

with Boaz Barak, Ben Edelman, Sham Kakade, 
Eran Malach & Cyril Zhang

with Ben Edelman, Ezra Edelman, Eran 
Malach & Nikos Tsilivis

Slide credits shared with Ben Edelman



21

IN-CONTEXT LEARNING AND INDUCTION HEADS
Surprising ability of LLMs to learn from data in the prompt

Researchers from Anthropic attributed this to the formation of induction heads
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INDUCTION HEADS

Copy the token after the previous occurrence of the current token

In the phase change, induction heads are 
formed and in-context loss drastically reduces

Phase changes are everywhere!

Can be thought of as ‘bigram’ computations

How do we understand this?



IN-CONTEXT LEARNING OF MARKOV CHAINS

0

1
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0.1
0.6

10 20 0 0 20 20 20 2 0 0 0 … Data: Dataset of sequences of states where each 
sequence is drawn from a different Markov chain

Goal: Get good accuracy at predicting the next-
state in a randomly drawn Markov chain

Strategy 1: Guess uniformly

Strategy 2: Guess according to how likely each 
state is in the context

Strategy 3: Guess according to how likely each 
state is in the context given the previous state 

Uniform

Unigram

Bigram

Edelman, Edelman, Goel, Malach, Tsilivis. The Evolution of Statistical Induction Heads: In-Context Learning Markov Chains. Under submission.



WHAT DO TRANSFORMERS DO?
Strategy 1: Guess uniformly

Strategy 2: Guess according to how likely each state is in the context

Strategy 3: Guess according to how likely each state is in the context 
given the previous state 

Uniform

Unigram

Bigram

Edelman, Edelman, Goel, Malach, Tsilivis. The Evolution of Statistical Induction Heads: In-Context Learning Markov Chains. Under submission.



WHAT DO TRANSFORMERS DO?

Edelman, Edelman, Goel, Malach, Tsilivis. The Evolution of Statistical Induction Heads: In-Context Learning Markov Chains. Under submission.

Relative position, so  
refers to position encoding 

on th token before

p

p

 becomes 
dominant at the end

p = 1 First layer looks one back

Second layer finds all 
tokens that follow the 

current token

Induction head is formed 
at the phase transition

Transformer hovers at the 
unigram stage

Animation credit: Ezra



WHAT DO TRANSFORMERS DO?

Edelman, Edelman, Goel, Malach, Tsilivis. The Evolution of Statistical Induction Heads: In-Context Learning Markov Chains. Under submission.

Relative position, so  
refers to position encoding 

on th token before

p

p

 become 
dominant at the end

p = 1,2 The two heads in the first 
layer looks one and two 

positions back

Second layer finds all 
tokens that have the two 

previous tokens

Higher order induction 
head is formed at the 

phase transition

Transformer hovers at the 
unigram stage, then 
passes to through a 

bigram stage

Animation credit: Ezra



IS LEARNING THE UNIGRAM HELPFUL?

Edelman, Edelman, Goel, Malach, Tsilivis. The Evolution of Statistical Induction Heads: In-Context Learning Markov Chains. Under submission.

Test: What if we train on data where unigram is not helpful?
Doubly stochastic matrices lead to uniform stationary distribution, therefore unigram is not helpful

No unigram phase

Converges faster

Unigram slows down 
learning of bigram

But gets lower error



WHAT IS HAPPENING UNDER THE HOOD?

Edelman, Edelman, Goel, Malach, Tsilivis. The Evolution of Statistical Induction Heads: In-Context Learning Markov Chains. Under submission.

Simplified Transformer:

Relative position encoding

Bigram:  and Wk = Idk v = [0,1,0,…,0]

Key observation: Two-phase learning, 
 gets a diagonal component after first 

step, and  gets a quadratic decay
Once the diagonal bias exists,  gets 
higher gradient than all other positions

Wk
v

v2

Second layer alignment

Causal learning

Embedding of input

odd-even behavior

Unigram:  and Wk = 11⊤ v = [1,0,…,0]



WHAT IS HAPPENING UNDER THE HOOD?

Edelman, Edelman, Goel, Malach, Tsilivis. The Evolution of Statistical Induction Heads: In-Context Learning Markov Chains. Under submission.

Key observation: Two-phase learning, 
 gets a diagonal component after first step, and  gets a quadratic decay

Once the diagonal bias exists,  gets higher gradient than all other positions
Wk v

v2

Theoretical analysis shows that the first step gradient for diagonal bias is  larger 
than the gradient bias for step 2, which could explain why step 2 takes a lot longer

O(t)

Caveats: Hard to compute closed forms for , and dominance of  for all lossesk > 2 v2



USEFUL SETTING TO UNDERSTAND LLMS

Empirically find higher-
order induction heads

Loss landscape for data 
from single Markov chain

Observe similar stages of learning in 
in-context linear regression

Show how Transformers learn general 
causal structures beyond Markov Chains

All within the last month or two 😱
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TODAY: PARITIES AND MARKOV CHAINS

Slide credits shared with Cyril Zhang

Sparse-parities and Feature 
Learning

Markov Chains and 
Induction Heads

with Boaz Barak, Ben Edelman, Sham Kakade, 
Eran Malach & Cyril Zhang

with Ben Edelman, Ezra Edelman, Eran 
Malach & Nikos Tsilivis

Slide credits shared with Ben Edelman
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LOOKING AHEAD
Synthetic controlled setup as a playground to probe:

• dynamics of feature learning 

• algorithmic learning

• emergent phenomena

• …

Outcomes: Architectural modifications, evaluation methods, data importance 
measures, quantification of unexpected behaviors, …

Many interesting optimization questions in these non-convex dynamics!

LEGO [Zhang et al.’22]
PVRs [Zhang et al.’21]
DFAs (Dyck, …) [Yao et al.’21]
Math (modulo arithmetic) [Power et al’21]
Learning to Learn Simple Function Classes 
[Garg et al’22]


