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DEEP LEARNING IS COOL SLIDE

Language comprehension

World Knowledge
@ How many vegan cheesesteaks are sold in Philly every day? Reason/’ng

Unfortunately, I do not have specific data on the number of vegan cheesesteaks sold daily
in Philadelphia. Vegan cheesesteaks are a newer and niche offering compared to the
traditional cheesesteak made with beef and dairy cheese.

However, here are some points that can help provide an estimate:

1. Philadelphia has a growing vegan/plant-based food scene to cater to that dietary

preference.

2. Several popular cheesesteak shops like Blackbird Pizzeria, Hip City Veg, and Goldie
now offer vegan cheesesteak options using seitan, mushrooms or other meat

substitutes.
min f (‘][‘9; O_tS Of C a_ta) 3. There are also some all-vegan cheesesteak shops like Dalesandro's Vegan and
OcR 101 I Blackbird Pizzeria that exclusively sell the vegan version.

4. According to some reports, vegan cheesesteaks make up around 5-10% of total
cheesesteak sales at the shops that offer them.

0 <« H — 7/] V f (9 ) Given the relatively small but increasing demand, my rough estimate would be that
probably a few thousand vegan cheesesteaks are sold on any given day in Philadelphia
currently. But this is just an educated guess - the actual number could be higher or lower
based on the changing dietary trends in the city. Obtaining precise sales data is difficult
without vendor inputs.



OPTIMIZATION BEHAVIORS AREVERY INTRIGUING

Modular Division (training on 50% of data)
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FEW THOUGHTS

This era of ML: Deep learning surmounts various computational challenges

to produce impressive results that we did not expect

Theory: can provide guarantees, explanations, new algorithmic insights

Challenge: I here are numerous moving parts, everything aftects everything,

scale Is often too large to tackle

An approach:; Create synthetic controllable setups that replicate the

desirable learning behaviors and allow for new Insights and analysis



TODAY: PARITIES AND MARKOV CHAINS

Sparse-parities and Feature Markov Chains and
Learning Induction Heads

with Boaz Barak, Ben Edelman, Sham Kakade, with Ben Edelman, Ezra Edelman, Eran
Eran Malach & Cyril Zhang Malach & Nikos Tsilivis
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Slide credits shared with Cyril Zhang c Slide credits shared with Ben Edelman



LEARNING SPARSE PARITIES

rundamental problem in learning theory:

Input:  Dataset of m samples {(x(i),y(i>)}?i1 with each x% i.i.d. from Unif({£1}") and

y(i) - ij(i) for some unknown set § of size k
jes

Output: Subset § of relevant variables

Xs(x) = Ijesx;
k-way Boolean XOR




LEARNING SPARSE PARITIES - WHAT IS KNOWN

Statistical-computational trade-offs:

n
Statistically requires & klog n samples, brute force over all possible (k) choices

Computationally beating 7™ time is hard!

» Provably, In restricted computational models [Kearns '93; Kol, Raz, Tal ' 1 6
o(k)

° Conjectura\ly (with a constant noise), NO 1 a\gorithm | Applebaum, Cash, Peikert, Sahal ‘09]

Lots of interesting, different algorithms!

» Noiseless: O(n°) time, needs Q(n) samples [Gauss 1810]
» Noiseless: O(n*?) time [Spielman, via Klivans-Servedio '06]
o Noisy: 2001021 time & samples [Blum, Kalai, Wasserman '00]
» Noisy: O(n"®) time via Chebyshev polynomials [Valiant‘I3]

v



SPARSE PARITIES AS A PROXY MODEL

The XOR problem [Minsky-Papert ‘69] convinced everyone to abandon deep learning

1 -
L e - i ‘ = P o) T .
“
F B
] .

3 E.’c,l_' j

Perceptron could not fit this

More expressive networks could easily fit

Recently gained interest experimentally [Daniely-Malach™20] and theoretically [Ben Arous-
Ghelssari-Jagannath "20]

Similar problem of learning single-index and multi-index models studied over gaussian
iNput [Damian-Lee-Soltanolkatabi22; Abbe-Boix-Misiakiewicz'2 3; Moniri-Lee-Hassani-Dobriman’23,

]




LEARNING SPARSE PARITIES WITH NEURAL NETS

Can neural networks learn sparse parities?

width-100 ReLU MLP, n =40,k =4 ( . . A
(i), (n, k) = median convergence time (30, 4) (ii), (n, k) = (30, 5)
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iterations
I 2-layer MLPs: fy(x) =v'o(Wx +b) wide MLPs: W € R1000000xn
Many different architectures learn with & n" time/samples many nonlinearities o: ReLU, x*, ... thin MLPs: W € R*™
deeper MLPs, Transformers, PolyNets single neuron: f5(x) = sin(w "x)

Barak, Edelman, Goel, Kakade, Malach, Zhang. Hidden Progress in Deep Learning: SGD Learns Farities Near the Computational Limit. NeurlPS 2022.



COMPETING REASONS FOR SUCCESS OF TRAINING

How are the models learning this challenging sparse function?

Random guessing? Hidden progress?
o “Stumbling in the dark’ until SGD guesses § o |oss looks flat, but another quantity doesn’t
» ~ n ¥ chance every O(1) iterations » Some function @(6,) is predictive of £, ..acs
» Plausible theory: langevin-dynamics o Plausible theory: !

Barak, Edelman, Goel, Kakade, Malach, Zhang. Hidden Progress in Deep Learning: SGD Learns Farities Near the Computational Limit. NeurlPS 2022.



MECHANISM BEHIND SUCCESS OF TRAINING

Can this be random search?

PolyNet (k=3) convergence time distributions PolyNet (k=3) training curves, shared inits
n=10 0.5 - —— random init #1
n=20 N\ —— random init #2
n=30 — random init #3
> n=40 0.4 - —— random init #4
§ s — random init #5
g 5053 -
g = N
g E 0.2 A
0.1 - \
\ \
0 250 500 750 1000 1250 1500 1750 2000 (') 560 10'00 15'00 20'00 25'00 3o|00
# iterations to convergence SGD iteration t
Random search would look like an Convergence times would depend
4 4 ) 4 ! 4
exponential distribution on SGD's stochasticity and not

P() < (1 —p)~lpforl/p = & purely inrtialization
k

Barak, Edelman, Goel, Kakade, Malach, Zhang. Hidden Progress in Deep Learning: SGD Learns Farities Near the Computational Limit. NeurlPS 2022.



WHERE IS THE HIDDEN PROGRESS!?
|

Assume: f, (x) = ReLU(w 'x) with correlation loss Z(y, ) = — y9, and exact GD

Claim: In one step, GD fromw = |x1,..., £ 1] learns all the features

linear threshold

PI”OOf SketCh: function (LTF)
Population gradient V[ [f ()(S(x), ReLU(WTx))] = — [ [)(S(x) - x - ReLU (wa)]
parities _ o
- o sign(ilTx) +1 . | Boolean Fourier coefficients
At initialization: ReLU (w ' x) = > (shifted majority function) [Titsworth ‘62; O’Donnell ‘14]
1 relevant features S E irrelevant features [n]\ S 1
= =5 [MajS\{l} MajS\{k} l\71‘5‘]'5u{k+1} lgﬁjsu{n} NiajSU{n}] + =1
2 . j o J :
Y Y
||eve|-(k - 1) COGﬁS‘ = Tl_kT Tl_kT = Hevel-(k + 1) Coef‘fs\ FOur'IeIf gap

Key: Gradient on relevant coordinates s Q(n~ =D arger than the irrelevant coordinates

Barak, Edelman, Goel, Kakade, Malach, Zhang. Hidden Progress in Deep Learning: SGD Learns Farities Near the Computational Limit. NeurlPS 2022.



MAIN RESULT - HIDDEN INFORMATION

Theorem [BEGKMZ'221;
One hidden-layer MLPs with ReLU activation and 29® hidden units learn k-sparse

parities using large batch SGD with compute time (batch-size x run-time) scaling as n*.

For any Fourier gap y, ~ 1/y* samples suffice.

NTK requires at least n°*® hidden units

First gradient step has enough information to identify relevant { - maiority
coordinates, then online convex optimization works ||

-mpirically, many variants work: varying batch size, noise, offline data, ,
deeper networks, losses, sinusoidal activations, initializations 00 05 10 15

Hard to do step-by-step analysis, Fourier gap unknown for random halfspaces

Barak, Edelman, Goel, Kakade, Malach, Zhang. Hidden Progress in Deep Learning: SGD Learns Farities Near the Computational Limit. NeurlPS 2022.



MECHANISM BEHIND SUCCESS OF TRAINING

Hypothesis: SGD learns parities via Fourier gap amplification mechanism

> why does it never succeed significantly earlie? needs 1/y? samples

» why does Its trajectory depend heavily on initialization! gap depends on initialization

Hidden progress measures:

sinusoidal neuron: n=50, k=3, B = 32 sinusoidal neuron; n=50, k=3, B=1024
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Barak, Edelman, Goel, Kakade, Malach, Zhang. Hidden Progress in Deep Learning: SGD Learns Farities Near the Computational Limit. NeurlPS 2022.



SPARSE PARITIES: GROKKING SR o

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin Vedant Misra*
OpenAl Google
m = 10000 m = 1800 m = 1000 m = 700
W
S
5 0.4 - - - -
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©
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ﬁ — train
O — Vval
O.O 1 | | | 1 | | 1 | | | 1 | | |
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Grokking behavior when trained on fixed samples

Iraining loss goes to 0, validation loss
hits O much later

Barak, Edelman, Goel, Kakade, Malach, Zhang. Hidden Progress in Deep Learning: SGD Learns Farities Near the Computational Limit. NeurlPS 2022.



S PA RS E PA R‘ T‘ E S S C A L‘ N G L AWS Scaling Laws for Neural Language Models

Scaling laws: predict how test performance depends on compute and data

1 1
loss & + +
data® compute” !

How can we trade data and compute resources?

Why are parities hard!?

Observe that E[ yg(x)y(x)] =0 forall § # T
No other subset has any correlation

n
to identify which parity 1t is
k
*with constant T data

& success probability &

Therefore we need data X compute > (



SPARSE PARITIES: SCALING LAWS

% of converged runs (n=100, k=3, ReLU MLP, unif. init) Example train & test error curves
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Darker is better

training iterations

SGD training interpolates between random guessing and Fourier gap amplification

Why would this work!?

Assume: Each RelU is sparsely initialized with some sparsity k'

Claim: As width increases, more chance to get a subset that overlaps with the relevant

variables = lottery tickets with “partial progress™ (higher Fourier gap)

Edelman, Goel, Kakade, Malach, Zhang. Pareto Frontiers in Neural Feature Learning: Data, Compute, Width, and Luck. NeurlPS 2023 (Spotlight).



SPARSE PARITIES: SPURIOUS CORRELATIONS

Wider MLPs are more sample efficient on low-data benchmarks, as predicted by theory!

MLPs (varying width & init sparsity) on tabular data

dense init, r=100

0.50 1 0.5 051 Task 14 —— dense init, r=300
- —— dense init, r=1000
= C 04- 0.45 - 0.4 - —— dense init, r=3000
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S T
—
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= » —— best MLP
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104 103 102 10  10° 10-* 1073 102 10!  10° -~ [GOV22] best MLP

---- [GOV22] best RF
fraction of full training data

Sparse Initialization helps, but Is not necessary!

Edelman, Goel, Kakade, Malach, Zhang. Pareto Frontiers in Neural Feature Learning: Data, Compute, Width, and Luck. NeurlPS 2023 (Spotlight).



SPARSE PARITIES AS A PROXY MODEL
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le3 data

Useful for studying several phenomenon, and a good model to simulate feature learning

Some other use cases:

» Parity computations are essential building blocks for several reasoning problems [Liu-Ash-
Goel-Kakade-Zhang'22]
» Parities are useful to model spurious/core features to understand robust learning [Qiu-

—uang-Goel 24]
» [eature learning dynamics of parities lead to insights into new distillation strategies [Panigrahy-
|u-Malladi-Goel' 24

and more. ..



TODAY: PARITIES AND MARKOV CHAINS

Sparse-parities and Feature Markov Chains and
Learning Induction Heads

with Boaz Barak, Ben Edelman, Sham Kakade, with Ben Edelman, Ezra Edelman, Eran
Eran Malach & Cyril Zhang Malach & Nikos Tsilivis
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Slide credits shared with Cyril Zhang 20 Slide credits shared with Ben Edelman



IN-CONTEXT LEARNING AND INDUCTION HEADS

Surprising ability of LLMSs to learn from data in the prompt

Input: 2014-06-01 -

Output: 10610112014 Translate English to French: task description
Input: 2007-12-13 , sea otter => loutre de mer examples
-context
Output: !1211312007! | 'M-con
Input: 2010-09-23 examples peppermint => menthe poivrée
- | I | |

Output: '09:23:2010° _ plush girafe => girafe peluche
Input: 2005-07-23 test example
Output: !'0712312005! cheese => prompt

I

« — — model completion

Researchers from Anthropic attributed this to the formation of induction heads

attention

Random Tokens Repeat of Random Tokens

Category 40 ids node- Category 40 ids -

prefix of attended-to-token Attended-to-token is copied. The corresponding
= current token MB@itl is increased for the next token.

2|



INDUCTION HEADS

attention

Random Tokens Repeat of Random Tokens

Category 40 ids node- Category 40 ids -

prefix of attended-to-token Attended-to-token is copied. The corresponding
= current token MB@itl is increased for the next token.

Copy the token after the previous occurrence of the current token

Can be thought of as ‘bigram’ computations
TWO LAYER THREE LAYER
(ATTENTION-ONLY) (ATTENTION-ONLY)
Elapsed Training Tokens Elapsed Training Tokens

0 2.5e9 5.0e9 7.5e9 1e10 O 2.5e9 5.0e9 7.5e9 Te10
| | | 1 | | | 1 |

In the phase change, iInduction heads are
formed and in-context loss drastically reduces

Phase changes are everywhere!

How do we understand this?

22



IN-CONTEXT LEARNING OF MARKOV CHAINS

f\
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Uniform

Unigram

Bigram

Data: Dataset of sequences of states where each
sequence Is drawn from a different Markov chain

Goal: Get good accuracy at predicting the next-
state In a randomly drawn Markov chain

Strategy |: Guess uniformly

Strategy 2: Guess according to how likely each
state I1s In the context

Strategy 3: Guess according to how likely each
state I1s In the context given the previous state

Edelman, Edelman, Goel, Malach, Tsilivis. The Evolution of Statistical Induction Heads: In-Context Learning Markov Chains. Under submission.



WHAIT DO TRANSFORMERS DO/

Uniform Strategy |: Guess uniformly
Unigram  Strategy 2: Guess according to how likely each state is in the context

Strategy 3: Guess according to how likely each state Is In the context

Bigram |
given the previous state
Attention-only transformer Distance between model predictions
test loss on 3-state ICL-MC — and candidate strategies
0.30 S 0.25
o —— Uniform
” 0.25 - é 0.20 - —— Unigram
S 5 —— Bigram
1 0.20 - 2 0.15 -
= 0.
2 e,
0 0.15 - =
il J.Z’ 0.10 +
0.10 - Q
.2 005 7
] a
0.05 . . . . . —1 0.00 . . | .
0 25 50 75 100 125 . 0 25 50 75 100 125
Training Sequences Seen (Thousands) Training Sequences Seen (Thousands)

Edelman, Edelman, Goel, Malach, Tsilivis. The Evolution of Statistical Induction Heads: In-Context Learning Markov Chains. Under submission.



Animation credit: Ezra

WHAIT DO TRANSFORMERS DO/

[ransformer hovers at the
unigram stage

Relative position, so p
refers to position encoding
on pth token before

p = 1 becomes
dominant at the end

KL-Div Loss
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Second layer finds all
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Edelman, Edelman, Goel, Malach, Tsilivis. The Evolution of Statistical Induction Heads: In-Context Learning Markov Chains. Under submission.



Animation credit: Ezra

WHAIT DO TRANSFORMERS DO/

Attention-only transformer:

test loss on 3-state ICL-Trigrams
[ransformer hovers at the o0 o
unigram stage, then S 0.20
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Edelman, Edelman, Goel, Malach, Tsilivis. The Evolution of Statistical Induction Heads: In-Context Learning Markov Chains. Under submission.



S LEARNING THE UNIGRAM HELPFUL?

Test: What If we train on data where unigram is not helpful?

Doubly stochastic matrices lead to uniform stationary distribution, therefore unigram is not helpful

Test Loss in Original Distribution

—— 75% Doubly Stochastic 25% Unigrams

. 0.30 - —— Doubly Stochastic
No unigram phase

Unigram slows down
learning of bigram

O

N

O
|

Converges faster

But gets lower error

KL-Div Loss
o
N
o

©

-

Ul
]

0.10 ~

0 25 50 75 100 125
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WHAI IS HAPPENING UNDER THE HOOD!

Simplified Transformer:

Causal learning

f(E) = mask (EW,(ME)") E, where M =

Embedding of input Second layer alignment

Bigram: W, = Id, and v = [0,1,0,...,0]

Key observation: Iwo-phase learning,

W, gets a diagonal component after first
step, and v gets a quadratic decay

» Once the diagonal bias exists, v, gets
higher gradient than all other positions

U1 0
U9 U1
Ut Up—1

Relative position encoding

Row

Unigram: W, =

W, matrix

-

c R¥™*t and W, € RF**¥

0.24

0.22

0.20

0.18

0.16

0.14

0.12

0.10

0.200 A

0.175 -

0.150 A

0.125 A

0.100 A

0.075 A

0.050 A

0.025 A

0.000 -

11" and v =[1,0,....0]

v vector

odd-even behavior

20 40 60 80 100
Position
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Row

WHAI IS HAPPENING UNDER THE HOOD!

Key observation: Iwo-phase learning,
o W, gets a diagonal component after first step, and v gets a quadratic decay

» Once the diagonal bias exists, v, gets higher gradient than all other positions

W (1) W matrix v vector

0.200 A

0.065 0.24

0.020 A 0.175 -

0.060 0.22

0.150 A
0.20

0.055 -
0.015 0.125 -

0.050 0.18

0.100 A

0.010 - 0.16

0.045 0.075 A

0.040 0.14 4050

0.005 A

0.035 0.12 0.025 -

0.10 0.000

T 0.000 - T
1 2 0 20 40 60 80 100 0 20 40 60 80 100

Column Position | | | | | Position

Theoretical analysis shows that the first step gradient for diagonal bias is O(t) larger
than the gradient bias for step 2, which could explain why step 2 takes a lot longer

Caveats: Hard to compute closed forms for k > 2, and dominance of v, for all losses
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All within the last month or two

USEFUL SET TING TO UNDERSTAND LLMS

IN-CONTEXT LANGUAGE LEARNING: Attention with Markov: A Framework for Principled Analysis of Transformers
ARCHITECTURES AND ALGORITHMS via Markov Chains

Ashok Vardhan Makkuva“! Marco Bondaschi“! Adway Girish! Alliot Nagle? Martin Jaggi' Hyeji Kim '

. t1
Ekin AKkyiirek Bailin Wang Yoon Kim Jacob Andreas Michael Gastpar

MIT CSAIL
{akyurek, bailinw, yoonkim, jda}@mit.edu

Loss landscape for data

=mpirically find higher- from single Markov chain

order induction heads

How Transformers Learn Causal Structure with
The Developmental Landscape of In-Context Learning Gradient Descent

Eshaan Nichani, Alex Damian, and Jason D. Lee
Jesse Hoogland *! George Wang *! Matthew Farrugia-Roberts?> Liam Carroll> Susan Wei? Daniel Murfet 3 ’ ’

Observe similar stages of learning in Show how Transformers learn general
in-context linear regression causal structures beyond Markov Chains



TODAY: PARITIES AND MARKOV CHAINS

Sparse-parities and Feature Markov Chains and
Learning Induction Heads

with Boaz Barak, Ben Edelman, Sham Kakade, with Ben Edelman, Ezra Edelman, Eran
Eran Malach & Cyril Zhang Malach & Nikos Tsilivis
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LOOKING AHEAD

Synthetic controlled setup as a playground to probe:

» dynamics of feature learning LEGO [Zhang et al.22]
PVRs [Zhang et al. 2| ]

DFAs (Dyck, ...) [Yao et al.21]
* emergent phenomena Math (modulo arrthmetic) [Power et al’2 | ]

» algorithmic learning

_earning to Learn Simple Function Classes
R ‘Garg et al”22]

Outcomes: Architectural modifications, evaluation methods, data importance
measures, quantification of unexpected behaviors, ...

Many interesting optimization questions in these non-convex dynamics!
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