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A new paradigm of science: deep learning

The sience of deep e Collect data and buy GPU first

learning

e Scale model with data and computational
resources

e End to end: Representation, computation,
prediction

The Bitter Lesson 100
90
. —8— PalLM 5-shot
Rich Sutton 80 ' _m. Gopher 5-shot
70 ~ —#— Chinchilla 5-shot
March 13, 2019 Human (Avg.)

Human (Best,
The biggest lesson that can be read from 70 years of Al research is that general methods that leverage (Best
computation are ultimately the most effective, and by a large margin. The ultimate reason for this is
oore's law, or rather its generalization of continued exponentially falling cost per unit of computation
Most Al research has been conducted as if the computation available to the agent were constant (in whi
case leveraging human knowledge would be one of the only ways to improve performance) but, over a
slightly longer time than a typical research project, massively more computation inevitably becomes
available. Seeking an improvement that makes a difference in the shorter term, researchers seek to lever
their human knowledge of the domain, but the only thing that matters in the long run is the leveraging
computation. These two need not run counter to ea\:h oiher, butin prachce they tend to. Time spent on 0
is time not spent on the other. There are p: i o i tment in one appmach ort 108 109 1010 101
other. And the human-knowledge approacL tends to complicate methods in ways that make them less Mode! Parameters (Non-Embedding)
suited to taking advantage of general methods leveraging computation. There were many examples of Al
researchers’ belated learning of this bitter lesson, and it is instructive to review some of the most

prominent. 1/55
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However, making deep learning a science requires...

e Why don't heavily parameterized neural
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However, making deep learning a science requires...

e Why don't heavily parameterized neural
networks overfit the data?

e What is the effective number of parameters?

e Why doesn’t backpropagation get stuck in
poor local minima with low value of the loss function, yet bad test error?

Yet another bitter lesson

Very difficult to build a mathematical foundation for deep learning...

e Highly incomplete: Kawaguchi'16, Arora et al19, Jacot et al18, Allen-Zhu et
al/18, Du et al.19, Mei et al19....

e This talk doesn't attempt to address these fundamental questions
e |Instead, we attempt to make deep learning (a bit more) geometrical
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When is it easier to geometrize deep learning?

Terminal phase of training

Training toward interpolating in-sample data,
beyond zero classification error (Papyan et al.20)
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When is it easier to geometrize deep learning?

Terminal phase of training

Training toward interpolating in-sample data,
beyond zero classification error (Papyan et al.20)

e Better generalization
e Improvement in adversarial robustness

Easier to geometrize neural networks at terminal phase of training
e The training dynamics is chaotic

e But, a well-trained neural network is a solution to some optimization
problem
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This talk

©® A small surrogate model
o Analyze the last-layer weights and features of well-trained neural networks
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This talk

©® A small surrogate model
o Analyze the last-layer weights and features of well-trained neural networks

® Asimple geometric law

e Describe how data are separated through layers in well-trained neural
networks
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Part I: A Layer-Peeled Model



Collaborators
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lllustration of our approach

‘ Layer L [ ] ‘ Layer L [ ]
Layer L-1 [ ] Layer L-1 [ ]
Layer L-2 [ ] Layer L-2 [ ]
Layer 2 [ ] Layer 2 [ ]

iy it
Layer 1 [ ] Layer 1 [ ]
(a) 1-Layer-Peeled Model (b) 2-Layer-Peeled Model
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Setup for deep learning

Neural network for K -class classification:

f(:]), v‘/full) = WLU (WL_10’(~ .. U(Wlm) e

e o (-)is a nonlinear activation function
e Wy := {W1,Ws,..., W} collects the weights
e Bias omitted
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Setup for deep learning

Neural network for K -class classification:
flx; Wiy) = Wro (Wi_10(---0(Wiz)--+))

e o (-)is a nonlinear activation function
e Wy := {W1,Ws,..., W} collects the weights
e Bias omitted

Optimization problem:
K ng

A
min — ZZE (ki Whan), Yr) + §H‘/Vfuu||2

Wi —1 i1

e 1y, is a one-hot vector denoting the k-th class
e ) weight decay parameter, £ cross-entropy loss
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A peek at Layer-Peeled Model

fx; Wyy)) = Wro (Wy_10(---o(Wix)---))

K Ng

. 1 A
min - SO L(F (ki W), uk) + §||Mu||||2

Wi k=1i=1

e Difficult to pinpoint how any layer W} influences the output
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A peek at Layer-Peeled Model

fx; Wyy)) = Wro (Wp_10(---o(Wix)---))

K ng

. A
o Z Z (Wehis, yi) + §||"Vfu||||2

Wi, H
L k: =il

e Difficult to pinpoint how any layer W} influences the output
° hk,i denotes o (WLflU(' .. O'(WliL‘k,i) s )), Wi = [wl, - ,wK]T
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A peek at Layer-Peeled Model

fx; Wyy)) = Wro (Wp_10(---o(Wix)---))

K ng
, 1
i N;Z (Wrhy i, yk)
1 K
s.b. EZHwkH?gEW
k=1

Nk

1
S E |hk,i||2 < FEpy
<

| =
TTMN

e Difficult to pinpoint how any layer W} influences the output

o hy;denotes o (Wr_i0(---o(Wizg,;) ) Wr = [wr, ..., wk]"
e Terminal phase of training
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Derivation

Rewrite the optimization problem as

K Nng

1 . oA ,
Jain o ;;ﬁ(WLh(kaW—L)ayk) + S IWLIE+ SIWc]

e last-layerfeature h(xy,;; W_r) := c(Wr_10(---c(Wizg,)---))
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Derivation

Rewrite the optimization problem as
S B A
. 2 2
ppin, ;Z (Wrh(we; Wor), yi) + §||WL|| + §||W—L||

e last-layerfeature h(xy,;; W_r) := c(Wr_10(---c(Wizg,)---))

From the dual viewpoint, a minimum is an optimal solution to

K ng
ppin, *Zzﬁ (Wrhyi, yr)
k=11=1
st. |[Wr|P<C
IW_L|I”
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Derivation

Rewrite the optimization problem as
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A A
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k: =1

e last-layerfeature h(xy,;; W_r) := c(Wr_10(---c(Wizg,)---))
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K ng
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Derivation

Rewrite the optimization problem as

K ng
A A
mln ZZ (Wrh(we; Wor), yi) + §||VVL||2+§||VV—L||2
k: =1

e last-layerfeature h(xy,;; W_r) := c(Wr_10(---c(Wizg,)---))
From the dual viewpoint, a minimum is an optimal solution to

K ng

VIVYE% — Z Zﬁ Wirhi i, yr)

k 1i=1
st. |[WrP<C
He{HW_p): |[W_L|?<C}

e Not a one-to-one mapping
° H(W,L) = [h(wk’i;W,L) 1<ELSK 1<i < nk]
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Derivation: an ansatz

{HW_.) : [[W_.|* < C2} {H Z lehkzll2 }
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Derivation: an ansatz

{HW_.) : [[W_.|* < C2} {H Z lehzmll2 }

K nyg

vI[;lLi,r}I ¥ Z ZE (Wrhe i, yi)

k=1i=1
st WL <G
He{HW_p): [W_L|]> < Cs}
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Derivation: an ansatz

K ng
1
{HW_p) : [W_r|* < Co} = {Hi > :n_k > llheall? < Cé}
k=1 =1

K ng
1
min SN L(Whyi,yr)
) 1 L ’ k=1 i=1
V{/Iil’l}_l NZZ WLhkuyk 1 K
=1i=1 2
st. Wi <cC s.t. EZIIWII < Ew
He{HW. >.||W_L||2<cz} o
1 i =
=3 —> hil* < En

e Self-duality of /5 spaces
e More justification for the ansatz later
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More on Layer-Peeled Model

Prediction constraint

Representation constraint
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More on Layer-Peeled Model

K ng — Prediction constraint
g Z Z (Whyi, yi)
No= — Representation constraint
L
2

K 1 N
Z o Z |hil|® < En
k=1 ko1

e Terminal phase of deep learning training
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More on Layer-Peeled Model

K ng — Prediction constraint
min § :Z (Wh
WH k_ a kwyk

— Representation constraint

=

1

2

K 1 ng
IR DINEPE
k=1 1=1

e Terminal phase of deep learning training

e Nonconvex but analytically tractable
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Balanced training

All class sizes are equal: ny = ng = -+~ = ng
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Balanced training

All class sizes are equal: ny = ng = -+~ = ng

What can the Layer-Peeled Model say?

Any global minimizer W* = [wy7, .. .,w}]T H*=[h;,:1<k< K, 1<i<n]
with cross-entropy loss obeys

* * ! *
hy.i = Cwy; = C'my,

where [m7, ..., m}] forms a K-simplex equiangular tight frame (ETF)

® hj ; depends only on the class membership!

o (= \/EH/EV[/,C/ =+ FEy
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Balanced training

All class sizes are equal: ny = ng = -+~ = ng

What can the Layer-Peeled Model say?

Any global minimizer W* = [wy7, .. .,w}]T H*=[h;,:1<k< K, 1<i<n]
with cross-entropy loss obeys

* * ! *
hy.i = Cwy; = C'my,

where [m7, ..., m}] forms a K-simplex equiangular tight frame (ETF)

® hj ; depends only on the class membership!

o (= \/EH/EV[/,C/ =+ FEy

e Whatis a K-simplex ETF?
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K-simplex ETF

K equal-length vectors form the largest possible equal-sized angles between
any pair J

Equivalently, random variables {1, .. ., £k of mean O and variance 1. If E§;{; = p
forall i # j, what's the min of p?
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K-simplex ETF

K equal-length vectors form the largest possible equal-sized angles between
any pair J

Equivalently, random variables {1, .. ., £k of mean O and variance 1. If E§;{; = p
forall i # j, what's the min of p?

1
| t angle = e —
argest angle = arccos ( 7 1) J
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This is simply neural collapse

Papyan, Han, and Donoho discovered neural collapse in 2020:

@ Variability collapse: features collapse to their class means
® Class means centered at their global mean collapse to ETF
© Up to scaling, last-layer classifiers each collapse to class means

O Classifier’s decision collapses to choosing the closet class mean

Implications on better generalization, large margin, and robustness )

[Mixon et al.20, E and Wojtowytsch'20, Lu and Steinerberger'20, Zhu et al.21] justified
neural collapse using different models
14/55



Snapshot of neural collapse

o
0@ €

¢
Credit: Papyan, Han, and Donoho
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Neural collapse can justify the Layer-Peeled Model



About the ansatz

K ng
1
{HW_p): [W_|? < Ca} = {Hi > e > Mkl < Cé}
k=1 =1

Recall
This gives
min
W.H
s.t.

ni

LW hy i, yr)

=
M=

14i=1

=~
Il

|wi|? < Ew

=[ =

2

1
> lhil® < En
ng

1 =1

> 11>

==
i
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What happens without the ansatz?

Without the ansatz:

Proposition

Zﬁ Whyi, yi)

=1

2|~

==
M= I 104

jwi||* < Bw

1 n
- > lhilll < B

1 i=1

=[ =
i

Assume K > 3 andp > K. For any q € (0,2) U (2, ), neural collapse does not

emerge in the model above
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What happens without the ansatz?

Without the ansatz:

> L(Whii,yx)

=1

3
T
S

==
M= I 104

lwi||* < Ew

1 n
- > lhilll < B

1 i=1

=[ =
i

Proposition

Assume K > 3 andp > K. For any q € (0,2) U (2, ), neural collapse does not
emerge in the model above

e s it possible to directly justify the ansatz?
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Can the Layer-Peeled Model predict something?



Imbalanced training
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Imbalanced training

Datasets often have a disproportionate ratio of observations in each class J

As a simple starting point, assume

e The first K4 majority classes each contain n 4 training examples
(ni=ng=--=ng, =na)
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Imbalanced training

Datasets often have a disproportionate ratio of observations in each class

As a simple starting point, assume

e The first K4 majority classes each contain n 4 training examples
(ni=ng=--=ng, =na)

e The remaining Kp := K — K4 minority classes each contain np examples
(TLKA+1 =NK 42 =" =NKg = ng)

e Call R:=na/ng > 1the imbalance ratio
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Convex relaxation

e Define h;, as the feature mean of the k-th class

ngk

1
hk = nic ; hk,i

e Introduce a new decision variable

X = [h17h2>---ahK,WT}T [hl,hg,...,hK,WT] €R2K><2K
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Convex relaxation
e Define h;, as the feature mean of the k-th class

ngk

nk z{:’lkl

e Introduce a new decision variable

X = [h1,hay. . hie, W] [ha ha, .. by, W € R2EX2K

Then
e X is positive semidefinite

N

1« K ,
% 2 X () KZHthQ 7 2 g 2o Il <
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Convex relaxation
e Define h;, as the feature mean of the k-th class

ngk

nk z{:’lkl

e Introduce a new decision variable

X = [h1,hay. . hie, W] [ha ha, .. by, W € R2EX2K

Then
e X is positive semidefinite
[ ]
1 K K 1 N
= X(k,k hillP<=>" = |hil? < E
A IETURE D DILTIEED SRS L WIEE
[ ]

=

LS xgun) o 2 ol < B

k K+1 k=1
18/55



Convex relaxation

K

. ng

o ;ﬁﬁ(zkyyk)

st oz =[X(k,K+1),X(kK+2),...,X(k2K)]"
1 K 1 2K
T2 Xk k) < By, = > X(kk) < Bw

k=1 k=K+1

X0
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Convex relaxation

K

. ng
st oz =[X(k,K+1),X(kK+2),...,X(k2K)]"
1 K 1 2K
w2 Xk k) < By, o2 Y X(kk) < Bw
k=1 k=K+1

X >0

e Not a semidefinite program in the strict sense because a semidefinite

program uses a linear objective function
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Nonconvex optimization via convex optimization

Assume p > 2K and L is convex in its first argument. Then the minimizers of the
Layer-Peeled Model can be derived from the minimizer of the convex
relaxation, up to a rotation
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Nonconvex optimization via convex optimization

Assume p > 2K and L is convex in its first argument. Then the minimizers of the
Layer-Peeled Model can be derived from the minimizer of the convex
relaxation, up to a rotation

e No loss of information when we study the Layer-Peeled Model through a
convex program

e But class means no longer collapse to classifiers

20/55



A numerical surprise

Average cosine of between-minority-class angles

1

0.8}
0.6
Q
£
2 0.4
o
0.2r
ol
-0. -0.2
10° 10’ 102 10° 10* 10° 10" 102 10° 10*
Imbalance Ratio (R) Imbalance Ratio (R)
(C)EW:1,EH=5 (d)EW:LEHZIO

@ When R < Ry for some Ry > 0, average between-minority-class angle
becomes smaller as R increases

® Once R > Ry, average between-minority-class angle becomes 0: implying
that all minority classifiers collapse!
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Minority Collapse

@ When R < Ry for some Ry > 0, average between-minority-class angle
becomes smaller as R increases

® Once R > Ry, average between-minority-class angle becomes 0: implying
that all minority classifiers collapse!

Proposition

Let (H*, W™) be any global minimizer of the Layer-Peeled Model. As
R=nu/npg — oo, we have

limwj —wj, =0, forall Ky <k <k <K

e The prediction on the minority classes becomes completely at random
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Minority Collapse

@ When R < Ry for some Ry > 0, average between-minority-class angle
becomes smaller as R increases

® Once R > Ry, average between-minority-class angle becomes 0: implying
that all minority classifiers collapse!

Proposition (Chen 2023)

Let (H*, W™) be any global minimizer of the Layer-Peeled Model. When
R > R*, we have
wi =wj, forall Ky <k <k <K

e The prediction on the minority classes becomes completely at random
e Fairness issue
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lllustration of Minority Collapse
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}




lllustration of Minority Collapse
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}


Intuition for Minority Collapse

Nk
Z (Whei, yr)

S
=
2|~

|wil® < Bw

2

1
— Z lheql* < En
n :

=] =

[
TTMNEMN HMN

o’

Competition for space!
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Is Minority Collapse a real thing?



Minority Collapse in experiments

J «
+KA=3
0.8r|-e-K,=5
—K,=7
0.6
{5}
e
Q0.4
o
0.2 7
H
0 ,,
-0.2
1 10 100 1000 +00
Imbalance Ratio (R)
(e) VGG11 on FashionMNIST
1
+KA=3
0.8f|-o-K,=5 /
- K,=7
0.6 /
[}
c
D 0.4 /
Q
S /
0.2 » A
-
0 5 —
-0.2
1 10 100 1000 +00

Imbalance Ratio (R)

(g) ResNet18 on FashionMNIST

—+K,=3 /
0.8f|-0-K,=5 /
KT
0.6
© /
c /f
'3 04
o *//
0.2 f
A
0 —
-0.2
1 10 100 1000 +00
Imbalance Ratio (R)
(f) VGG13 on CIFARIO
1
—K A=3 #*
0.87|-e-K,=5
—K,=7
0.6
[}
£ /
2 0.4 /
o
0.2 #
0 o
-0.2
1 10 100 1000 +00

Imbalance Ratio (R)

(h) ResNet18 on CIFAR1O
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Part II: A Law of Data Separation



Let’s dig into it

v]UI_I?S VERNE

Does neural collapse extend to
interior layers?

{ JOURNEY 1oz CENTER
OF THE

EARTH
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e Too many nonlinearities, plus high degrees of
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Let’s dig into it

JULES VERNE

Does neural collapse extend to
interior layers?

e Unfortunately, no
e Too many nonlinearities, plus high degrees of

non-uniqueness JOURNEY o CENTER
e Any other patterns? ‘ OF THE

EARTH &
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Collaborator
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Collaborator

e Hangfeng He (Penn—University of Rochester)

Hangfeng He Home Research Teaching

| am an Assistant Professor in the Department of Computer
Science and the Goergen Institute for Data Science at the
University of Rochester. Before this, | was a Ph.D. student at
the University of Pennsylvania, where | worked with Dan
Roth and Weijie Su. Before that, | received my bachelor’s
degree from Peking University in 2017.

My research interests include machine learning and natural
language processing, with a focus on incidental supervision
for natural language understanding, interpretability of deep
neural networks, and reasoning in natural language.

[Google Scholar] [CV]

Contact

Office: 3009 Wegmans Hall, 250 Hutchison Rd, Rochester, NY 14620
Email: hangfeng.he@rochester.edu



Chaotic patterns

Layer=6 Layer=7 Labels
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“Big” symmetries are gone. How about “small”
symmetries?



A numerical surprise: equi-separation

4
°

T§3- °
& °
.% 2 1 ®
8 °
E 1
c ]
5 01
O °

1 °

2 4 6 8

Layer index

8-layer feedforward network trained on FashinMNIST using Adam
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A numerical surprise

4

o

©

3 3

& Correlation = —0.997

£ 24 ®

v
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©
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O

-1 ‘ : : :
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Layer index

8-layer feedforward network trained on FashinMNIST using Adam
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A sharp comparison

Layer=6 Layer=7 Labels
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This is NOT the reality

VYY
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This is the reality

}.«-{)i
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More experimental results

4
3 .
2 .
1 .
0
1 2 3 -1 2 4 6
(a) SCD-4 (b) SCD-8
4
3 .
2 * .
. . . .
0
1 2 3 - 2 4 6

(e) SCD+Momentum-8

(h) Adam-8

(f) SGCD+Momentum-20

20

5 10 15 20
(i) Adam-20
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More experimental results

4 4
3 3
2 2
1 1
0 0
-1 2 3 2 -1 2 4 6 B
(a) SCD-4 (b) SCD-8
4 4
3 3
2 2
1 1
0 0
1y 2 3 4 - 2 4 6 8

(d) SGD+Momentum-4

(e) SCD+Momentum-8

4 4

3 3

2 2 o

1 1

0 0

T 2 3 4 - 2 4 6 B
(g) Adam-4 (h) Adam-8

(i) Adam-20
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Separation fuzziness

T = (Tk1 + -+ + Tgn, ) /1 sample mean of Class k
Z:=(nZ1 + -+ ngTx)/n: global mean (n:=n; + -+ ng)
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Separation fuzziness

T = (Tk1 + -+ + Tgn, ) /1 sample mean of Class k
Z:=(nZ1 + -+ ngTx)/n: global mean (n:=n; + -+ ng)

Sum of squares between (signal) Sum of squares within (noise)
1 K 1 K ng
B:=— T.—7)(Te—7) = = 5= i—Z T
SS - ; ng(T—)(Tr—7) SSW - kzd ;(a:k Tg) (Tpi—Tk)
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Separation fuzziness

T = (Tk1 + -+ + Tgn, ) /1 sample mean of Class k
ZT:=(nmZ1 + - +ngTg)/n: globalmean (n:=ny +--- + ng)

Sum of squares between (signal) Sum of squares within (noise)
1 K 1 K ng
B:=— T, —2)(Tp—7) | = — i—T i—ZK) |
SS - ;nk(wk Z)(Zr—7) SSW - ;;(wk Tg) (Tpi—Tk)

Measure of how well data are separated

D := Tr(SSW SSB™)

e SSB™ is the Moore-Penrose inverse of the matrix SSB
e Inverse signal-to-noise ratio (Papyan et al’20)

e Weighted projection of noise onto (K — 1)-D space spanned by SSB. Thus
no need to normalize D by the dimension
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It's well separated
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An (empirical) law of deep learning

D,: separation measure for data before passing through the " layer

4

3

log D,

The law of equi-separation

Forl <t<mandsomel<p<1:

D, =~ cpt
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An (empirical) law of deep learning

D,: separation measure for data before passing through the " layer

4

3 . .

, log D; The law of equi-separation
Forl <t<mandsomel<p<1:

1

0 Dy~ cp!

-1

2 4 6 8

e Nonlinearity is crucial
e Equivalently,

1
log Dyy1 —log Dy = —log —
p

log 2
= 5 =1

e p=0.53 above. So half-life: ¢ — =
ogp

N
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When does it emerge?

W

5 10 15 20 5 10 15 20 5 10 15 20
(a) Epoch-0 (b) Epoch=10 (c) Epoch=20
5 10 15 20 5 10 15 20 5 10 15 20

(d) Epoch-30

(e) Epoch=50

(f) Epoch=100

5 10 15 20

(g) Epoch-200

5 10 15 20

(h) Epoch=300

5 10 15 20

(i) Epoch=600
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When does it emerge? Earlier than neural collapse

5 10 15 20 5 10 15 20 5 10 15 20
(a) Epoch-0 (b) Epoch=10 (c) Epoch=20
5 10 15 20 5 10 15 20 5 10 15 20

(d) Epoch-30

(e) Epoch=50

(f) Epoch=100

T

T

T

5 10 15 20

(g) Epoch-200

5 10 15 20

(h) Epoch=300

5 10 15 20

(i) Epoch=600
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Earlier than neural collapse

1.8

1.6

1.4

1.2 .

1.0

0.81

.
A IR N N R RS,

100 200 300 400 500 600
Epoch

Separation fuzziness of last-layer features
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Ask me anything about this law
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Ask me anything about this law

Is this law pervasive?

Does this law provide insights into the practice
of deep learning?

Any intuition about why this law appears?

Can we prove this law?

Yes
Yes

| think so

Not yet

41/55



Data, imbalance, and learning rate

6

4

2

T~

6

4

2

1 2 3

IS

(a) CIFAR10-4

2 a 6

(b) CIFAR10-8

©

o kB N w & u

o P N w &

(g) Learning rate: 0.01

1 2 3 4

(d) Imbalance-4

o kB N w & u

2 4 6 8

(e) Imbalance-8

o B N w a

2 4 6 8

2 4 6 8

(h) Learning rate: 0.03

o kN w a

(f) Imbalance-20

o kN w a

2 4 6 8

(i) Learning rate: O.1
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Architecture

4 4
3 4 . 3
2 N 2
2 B

1 1
0 0 3 0 e
-1 2 ) 6 8 -2 2 4 6 8 -1 5 10

(a) AlexNetX-FMNIST (b) AlexNetX-CIFAR1O (c) VGG13X-FMNIST
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Guidelines and insights from the law of equi-separation

The trilogy of the deep learning practice
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Dependence on the depth

Dy, = cp™: deep learning is necessarily to be deep
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Dependence on the depth

D, =~ cp™: deep learning is necessarily to be deep

However, a complete story is slightly different J

5 10 15 5 10 15 5 10 15
(a) MNIST (b) FashionMNIST (c) CIFARIO

e The choice of depth should consider the complexity of the applications

e Prior literature does not take the data-separation perspective (Srivastava et
all15)
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Data-separation perspective on width and shape

4. 4 4
3 2 3 3

2 2 2

1 1 1

0 0 0

-1 2 4 6 8 -1 2 2 6 8 -1 2 4 6 8

(a) Width: 20 (b) Width: 100 (c) Width: 1000

4 arg 4

3 3 3 .

2 2 2

1 1 1

0 0 S 0
-1 ° -1 . -1 J
2 4 6 8 2 4 6 8 B 4 6 8
(d) Shape: narrow-wide (e) Shape: wide-narrow (f) Shape: mix
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Data-separation perspective on width and shape

2 4 6 8 2 4 6 8

(b) Width: 100 (c) Width: 1000

4 4
. .
3 3
2 2
1 1
0 0
- 2 4 6 8 -1
(a) Width: 20
4 4
3 3
2 2
1 1
0 0
B
-1 -1
s 4 6 8 -

(d) Shape: narrow-wide

(e) Shape: wide-narrow

4
.
3
®

2

1

0

D

. -1 ¢
2 4 6 8 - 6 8

2 .
2 4

(f) Shape: mix

e Very wide neural networks should not be recommended (Tan and Le'19)

e Look vertically rather than horizontally when judging a network
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Equi-separation implies robustness

Dm Dm Dmfl D2
= X X

Overall separation ability R := —= = cee X
P 4 Dy Dp-1 Dpo Dy
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Equi-separation implies robustness

. .. l)nl l)nm l)ﬂlfl l)2
Overall separation ability R := —= = X X oo X
P 4 Dy Dpo1 Dpo Dy

Perturb each layer:

Dy Do Dy
_ l)n1—1 l)nz—Q l)l 2
R+R<Dm +Dm71+ +D2>€+O(€)
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Equi-separation implies robustness

. .. Dm Dm Dmfl D2
Overall separation ability R := —= = X X oo X
P 4 Dy Dpo1 Dpo Dy

Perturb each layer:
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. .. Dm Dm Dmfl D2
Overall separation ability R := —= = X X oo X
P 4 Dy Dpo1 Dpo Dy

Perturb each layer:

Do + Din—1 + Dz + €

DnL—l c Dm_2 € D1
_ Dm—l Dm—2 Dl 2
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D, D, D
The perturbation R ( mol Mmooy D1> g is minimized in absolute

Dm Dmfl 2
value when
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Equi-separation implies robustness

. .. Dm Dm Dmfl D2
Overall separation ability R := —= = X X oo X
P 4 Dy Dpo1 Dpo Dy

Perturb each layer:

Dy o) (Bt . D2,
Dm—l y Dm—2 Dl

o Dm—l Dm—2 Dl 2
R+R< bt T +D2>€+O(s)

D, Dy, D S .
The perturbation R ( mol g Mt 1) g is minimized in absolute
Dm Dmfl D2

value when
Dy Dy Do

Dm—l _Dm—2 _.“_Dil

e Train at least until the law comes into effect
e An analog: if Wakanda wants to double GDP in 10 years, the most robust

way is to fix annual growth rate at 210 — 1 = 7.2%
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Equi-separation implies better generalization

5 10 15 20 5 10 15 20

(@) Unfrozen (b) Frozen

e Frozen training: bottom/top 10 layers are trained while the others are fixed

e Have about the same final separation measure and training loss
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Equi-separation implies better generalization

5 10 15 20 5 10 15 20

(@) Unfrozen (b) Frozen

e Frozen training: bottom/top 10 layers are trained while the others are fixed
e Have about the same final separation measure and training loss

e Test accuracy:

e Unfrozen: 21.46%

o Frozen: 18.25%
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Interpretation from data-separation perspective

What are the basic operational modules in ResNet?

3.50
3.25
3.00
2.75
2.50
2.25
2.00

3.50 3.50
3.25 3.25
3.00 3.00

2.75
2.50
2.25
2.00

2.75
2.50

(a) 2 layers in a block

(b) 3 layers in a block

2.5 5.0 7.5 10.0

(c) Mix
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Interpretation from data-separation perspective

What are the basic operational modules in ResNet?

3.50 3.50 3.50
3.251 3.25 3.25
3.001 3.00 3.00
2.757 2.75 2.75
2.501 2.50 2.50
2.25- 2.25 2.25
200 1 2 3 4 5 200 1 2 3 4 5 200 1 2 3 4 5
(a) 2 layers in a block (b) 3 layers in a block (c) Mix

e The right module is block for ResNet
e All layers/modules are created equal

e Need to take all layers collectively for interpretation, challenging layer-wise
approaches (Zeiler and Fergus'14)
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The same story for DenseNet (Gao et al.19)

102

10!

10°

103
102
[ ]
[
e | 10!
10°
0 1 2 3 4 0 1 2 3 4

DenseNet161 by identifying a block as a module
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The law from other angles



The law for each class

Class=0 Class=1 Class=2 Class=3
0.0 1
_25 o
T T T T T T T T T T T T
25 50 7.5 25 50 7.5 25 50 7.5 25 50 75
Class=4 Class=5 Class=6 Class=7
0.0 - _ g 4
—2.5— - 4 4
[
T T T T T T T T T T T T
25 50 7.5 25 50 7.5 25 50 7.5 25 50 75
Class=8 Class=9
-
001 \ _ _
[ ]
—2.5‘ 9 - o
T T T T T T T T
25 50 7.5 25 50 75 0.0 0.5 1.0 0.0 0.5

1.0
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The equi-separation law in test

4.0

3.5

3.0

2.5

2.0

(a) Adam-4-Test
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.
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(b) Adam-8-Test
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2.0

(c) Adam-20-Test
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Language models?

=75 .
2.5 5.0 7.5 10.0 125

(a) BERT-CLS (b) BERT-AVG

e Trained on a binary sentiment classification task (SST-2)

e Perhaps because it learns a sequence of token-level representations
instead of sentence-level representations for each layer
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Asking right questions about deep learning theory

“If  had an hour

to solve a problem

I'd spend

55 minutes

. thinking about
"’C’f/;- the problem

and 5 minutes
thinking about
solutions.”

— Albert Einstein
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Take-home messages

Layer-Peeled Model: Last-layer weights and features are free except for norm
constraints

e Explain neural collapse
e Predict Minority Collapse

Equi-Separation Law: A data-separation perspective
e All layers/modules are created equal

e Cuidelines and insights into architecture design, training, and interpretation

Reference

@ Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse in
Imbalanced Training
with Cong Fang, Hangfeng He, and Qi Long
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