

### Cyclic Block Coordinate Methods on a Finer Scale: Tighter Bounds and New Methods

Jelena Diakonikolas (UW-Madison)



Jason's Optimization Seminar





- Recap of coordinate methods (cyclic vs randomized)
- A new cyclic method for variational inequalities
- Generalizations
- A fun problem I am looking at (if enough time!)







| Block 1 | Block 2 | Block 3 | Block 4 |  |
|---------|---------|---------|---------|--|
| 1 1 1   | 2 2 2   | 3 3 3   | 4 4 4   |  |







#### first-order oracle





- Types of methods/orderings of updates:
  - **cyclic**: fix an order of blocks, go through all of them in a cycle;
  - **randomized**: pick blocks randomly, sample with replacement;
  - greedy: pick the block that leads to the largest progress



| Block 1 | Block 2 | Block 3 | Block 4 |  |
|---------|---------|---------|---------|--|
| 1 1 1   | 2 2 2   | 3 3 3   | 4 4 4   |  |

- Types of methods/orderings of updates:
  - **cyclic**: fix an order of blocks, go through all of them in a cycle;
  - randomized: pick blocks randomly, sample with replacement;
  - greedy: pick the block that leads to the largest progress

## Theory vs Practice?



### Randomized methods [Strohmer & Vershynin'08], [Nesterov'12]:

- almost always faster than full gradient methods, assuming the problem is (block) coordinate friendly [Nesterov'12] + a lot of follow-up work;
- generally the best theoretical guarantees among block coordinate methods;
- key property: can relate the partial gradient to the full one by taking the expectation, helps much of the analysis carry over from full gradient methods
- Cyclic methods [Kaczmarz'37], [Ortega & Rheinboldt'70]:
  - often preferred in practice over randomized methods (e.g., in GLMNet, SparseNet);
  - much more challenging to analyze; hard to relate partial gradients to full ones;
  - complexity guarantees generally worse than even for full gradient methods and smooth cvx opt, by dimension-dependent factors [Beck-Tetruashvili'13]; this is tight for cyclic gradient descent-type method [Sun-Ye'19]

## State of the Art for Cyclic Methods (Prior to This Work)



- Essentially no non-asymptotic results for min-max opt/variational inequalities
  - Exception: [Chow-Wu-Yin'17], but requires cocoercivity and the rate is  $1/\sqrt{k}$
- For (non-accelerated) smooth convex optimization, number of full gradient queries (assuming coordinate-friendly) of the order  $O\left(\frac{mLD^2}{\epsilon}\right)$ , at best (worse by a factor m = # of blocks than gradient descent; m = d for coordinate descent)

The only exception are convex quadratic problems [Gürbüzbalaban et al., 2017], [Lee & Wright, 2019]

\*All analyses based on relating the partial gradient to the full one

\*as far as I can tell, please correct me if wrong



## Cyclic Coordinate Dual Averaging with Extrapolation (CODER)

Setup and Results







## Joint Work With:

Chaobing Song (Huawei)

C. Song, J. Diakonikolas, "Cyclic Coordinate Dual Averaging with Extrapolation," SIAM Journal on Optimization, vol. 33, no. 4, pp. 2935-2961, 2023.

### Problem Setup



(P<sub>CO</sub>)  $\min_{x \in \mathbb{R}^d} f(x) + g(x)$ 

X

 $(P_{MM})$ 

(GMVI) Find  $x^* \in \mathbb{R}^d$  s.t.  $\forall x, \langle F(x), x - x^* \rangle + g(x) - g(x^*) \ge 0$ 

- Assumptions:
  - There is a fixed partition of coordinates into *m* blocks;
  - $F: \mathbb{R}^d \to \mathbb{R}^d$  is
    - "(block) coordinate-friendly" according to that partition;
    - monotone:  $\forall x, y$ :  $\langle F(x) F(y), x y \rangle \ge 0$ ;
    - Lipschitz:  $\exists L < \infty$  s.t.  $\forall x, y$ :  $||F(x) F(y)|| \le L||x y||$
  - $g: \mathbb{R}^d \to \mathbb{R}$  is
    - block-separable over the given partition:  $g(x) = \sum_{j=1}^{m} g^{j}(x^{j})$ ;
    - $\operatorname{prox}_{\tau g^j}(x^j) = \arg\min_{y \in \mathbb{R}^{d_j}} \left\{ g^j(y) + \frac{1}{2\tau} \|y x^j\|^2 \right\}$  is easily computable,  $\forall j \in \{1, \dots, m\}$ ;
    - $_{\circ}$  possibly strongly convex, with modulus  $\gamma \geq 0$  and lower semicontinuous

I'll focus on the cyclic coordinate case (m = d), for simplicity

min max  $\Phi(x, y)$ 

### Coordinate Lipschitz Assumption?

• What is standard in convex optimization:

$$|\nabla^{j}f(x) - \nabla^{j}f(x + \frac{he_{j}}{he_{j}})| \le L_{j}|h|, \quad \forall x \in \mathbb{R}^{d}, h \in \mathbb{R}$$
  
scalar

• For VIs unclear how to make useful. Take bilinear games  $\min_{x} \max_{y} x^{T} A y$ . Then

$$F\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}0 & A\\-A^T & 0\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix} = \begin{bmatrix}Ay\\-A^Tx\end{bmatrix},$$

so  $F^{j}\begin{pmatrix} x \\ y \end{pmatrix} = A_{j:}y$  for j in the block belonging to the x-player. In particular,

$$F^{j}\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) - F^{j}\left(\begin{bmatrix} x+h \ e_{j} \\ y \end{bmatrix}\right) = 0$$



## A Different Coordinate Lipschitz Condition?

• Going back to the bilinear case, for any  $\begin{bmatrix} x \\ y \end{bmatrix}$ ,  $\begin{bmatrix} x' \\ y' \end{bmatrix}$  and any *j* in the *x*-part,

$$F^{j}\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) - F^{j}\left(\begin{bmatrix} x' \\ y' \end{bmatrix}\right) = A_{j:}(y - y')$$

• From there, we can conclude:

$$\left|F^{j}\left(\begin{bmatrix}x\\y\end{bmatrix}\right) - F^{j}\left(\begin{bmatrix}x'\\y'\end{bmatrix}\right)\right|^{2} = \begin{bmatrix}x-x'\\y-y'\end{bmatrix}^{T}\begin{bmatrix}0&0\\0&A_{j}A_{j}^{T}\end{bmatrix}\begin{bmatrix}x-x'\\y-y'\end{bmatrix}.$$
symmetric
PSD matrix

Idea: generalize to other (possibly nonlinear) operators F



### New Lipschitz Condition



There exist symmetric positive semidefinite matrices  $Q^1, Q^2, \dots, Q^d$  such that for any  $z, z' \in \mathbb{R}^d$ ,

$$|F^{j}(z) - F^{j}(z')|^{2} \le (z - z')^{T}Q^{j}(z - z').$$

• Can be trivially satisfied with  $Q^j = LI$ , but can generally choose better

Define:

$$\hat{Q}^{j} = \begin{bmatrix} 0 \\ 0 \\ Q^{j} \end{bmatrix}^{\frac{1}{2}, \dots, j-1}$$

Summary Lipschitz constant:

$$\hat{L} = \sqrt{\left\| \sum_{j=1}^{d} \hat{Q}^{j} \right\|}$$





A method (CODER) that for any  $\epsilon > 0$  outputs a solution with primal-dual gap at most  $\epsilon$ , in

$$O\left(\min\left\{\frac{\widehat{L}D^2}{\epsilon}, \frac{\widehat{L}}{\gamma}\log\left(\frac{\widehat{L}D}{\epsilon}\right)\right\}\right)$$

iterations.

• This is the same as for full-vector update methods, but with L replaced by  $\hat{L}$ 

## How Large is $\hat{L}$ ?



• Worst case:



- Even for the special case of smooth convex optimization, the resulting bound is better by a factor  $\sqrt{d}$  than what was known for any (unaccelerated) cyclic coordinate method.
- For variational inequalities, the obtained complexity result is state-of-the-art, even compared to randomized methods [Kotsalis et al., 2022] (it is actually better by a factor  $\sqrt{d}$  in the worst case).
- It is also the first cyclic method for general variational inequalities with monotone operators with provable convergence guarantees.

## How Large is $\hat{L}$ ?

- In practice,  $\hat{L}$  is no larger than L, usually smaller (constants below are for min-max SVM)
  - Real data sets:

| Dataset   | a9a     | australia | madelon | colon | $\operatorname{mnist}$ |
|-----------|---------|-----------|---------|-------|------------------------|
| L         | 15389.6 | 340.5     | 1992.4  | 9.0   | 24410.5                |
| $\hat{L}$ | 10358.8 | 238.1     | 1269.7  | 5.7   | 15236.1                |

Synthetic (standard Gaussian) data; fixed dataset size *n* or fixed dimension *d*, respectively



### Algorithm



Algorithm 3.1 Cyclic cOordinate Dual avEraging with extRapolation (CODER)

1: Input: 
$$\boldsymbol{x}_{-1} = \boldsymbol{x}_0 \in \operatorname{dom}(g), \gamma \ge 0, \hat{L} > 0, m, \{\mathcal{S}^1, \dots, \mathcal{S}^m\}$$
  
2: Initialization:  $\boldsymbol{p}_0 = \boldsymbol{F}(\boldsymbol{x}_0), \boldsymbol{z}_0 = \boldsymbol{0}, a_0 = A_0 = 0$   
3: for  $k = 1$  to  $K$  do  
4:  $a_k = \frac{1+\gamma A_{k-1}}{2\hat{L}}, A_k = A_{k-1} + a_k$   
5: for  $j = 1$  to  $m$  do  
6:  $p_k^j = \boldsymbol{F}^j(\boldsymbol{x}_k^1, \dots, \boldsymbol{x}_k^{j-1}, \boldsymbol{x}_{k-1}^j, \dots, \boldsymbol{x}_{k-1}^m) \longrightarrow$  partial "gradient" at intermediate point  
7:  $q_k^j = p_k^j + \frac{a_{k-1}}{a_k} (\boldsymbol{F}^j(\boldsymbol{x}_{k-1}) - \boldsymbol{p}_{k-1}^j) \longrightarrow$  partial "gradient" extrapolation  
8:  $\boldsymbol{z}_k^j = \boldsymbol{z}_{k-1}^j + a_k q_k^j$  dual averaging step with extrapolated gradient  
9:  $\boldsymbol{x}_k^j = \operatorname{prox}_{A_k g^j}(\boldsymbol{x}_0^j - \boldsymbol{z}_k^j)$  dual averaging step with extrapolated gradient  
10: end for  
11: end for  
12: return  $\tilde{\boldsymbol{x}}_K = \frac{1}{A_K} \sum_{k=1}^K a_k \boldsymbol{x}_k, \boldsymbol{x}_K$ 

### How the Analysis Works



(GMVI) Find 
$$x^* \in \mathbb{R}^d$$
 s.t.  $\forall x, \langle F(x), x - x^* \rangle + g(x) - g(x^*) \ge 0$ 

• We can only solve this approximately to error  $\epsilon > 0$ , so equivalently want to

find 
$$x_{\epsilon}^* \in \mathbb{R}^d$$
 s.t.  $\forall x, \langle F(x), x - x_{\epsilon}^* \rangle + g(x) - g(x_{\epsilon}^*) \ge -\epsilon$ 

which is the same as find  $x_{\epsilon}^* \in \mathbb{R}^d$  s.t.  $\forall x$ ,  $\operatorname{Gap}(x, x_{\epsilon}^*) \coloneqq \langle F(x), x_{\epsilon}^* - x \rangle - g(x) + g(x_{\epsilon}^*) \leq \epsilon$ 

- So we may try to bound  $Gap(x, x_k)$  for iterations k = 1, 2, ...
- The key step:

$$\begin{aligned} \operatorname{Gap}(x, x_k) &= \langle F(x), x_k - x \rangle - g(x) + g(x_k) \\ &\leq \langle F(x_k), x_k - x \rangle - g(x) + g(x_k) \end{aligned} \qquad \begin{array}{l} \text{this part defines the} \\ \text{step, by taking a max} \\ &= \left[ \langle q_k, x_k - x \rangle - g(x) + g(x_k) - \frac{1}{2} \|x - x_k\|_2^2 \right] + \frac{1}{2} \|x - x_k\|_2^2 \\ &+ \left[ \langle F(x_k) - q_k, x_k - x \rangle \right] \\ & \text{the art of choosing } q_k \text{ is for controlling this term} \end{aligned}$$

# Numerical Experiments (Illustration)

SVM with LASSO or ridge, on a1a LibSVM dataset (d = 123, n = 1605)



Cyclic Block Coordinate Methods on a Finer Scale



Two Examples: Bilinear Extensive Form Games and Shuffled SGD



### Q: Are cyclic methods always slower than full vector update methods in the worst case?

A: No, and they may have advantages. A specific example (the first of its kind!) to follow.









### Joint Work With:

Darshan Chakrabarti (Columbia University)

Christian Kroer (Columbia University)

D. Chakrabarti, J. Diakonikolas, C. Kroer "Block Coordinate Methods and Restarting for Solving Extensive Form Games," in Proc. NeurIPS 2023. ( $\alpha\beta$  ordering of authors)

### Problem: Bilinear Extensive Form Games (EFGs)

- A general class of game-theoretic models that capture both simultaneous and sequential moved, private/imperfect information, and stochasticity
- In optimization language, we have a bilinear min-max problem:











### Why Cyclic Updates are OK





Jelena Diakonikolas (UW-Madison)





A method (ECyclicPDA) that for any  $\epsilon > 0$  outputs a solution with primal-dual gap at most  $\epsilon$  with iteration complexity that is **no worse** than the iteration complexity of full-vector update methods like Mirror-Prox.

This is the first example (that I know of) of a cyclic method with no scaling with the number of blocks in the worst case.

Jelena Diakonikolas (UW-Madison)



### Q: Do these ideas extend beyond basic cyclic coordinate methods?

A: Yes. They extend to the incremental gradient method and shuffled SGD.







Joint Work With:

Xufeng Cai (UW-Madison)

Eric (Cheuk-Yin) Lin (UW-Madison)

X. Cai, C-Y. Lin, J. Diakonikolas, "Empirical Risk Minimization with Shuffled SGD: A Primal-Dual Perspective and Improved Bounds," arXiv preprint, arXiv:2306.12498, 2023.

### Problem Setup



Empirical Risk Minimization problems over data  $\{a_1, a_2, ..., a_n\}$ 

$$\min_{\boldsymbol{x}} \frac{1}{n} \sum_{i=1}^{n} \ell_i(\boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{x})$$

are (in practice) usually solved by incremental/shuffled SGD methods, which make updates

$$\boldsymbol{x}_{k,i+1} = \boldsymbol{x}_{k,i} - \eta \nabla \ell_i (\boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{x}_{k,i})$$

going through all the data vectors in a cyclic manner, possibly permuting the order at the beginning of a cycle.

Convergence guarantees: not understood until recently [Gürbüzbalaban et al., 2021], [Shamir, 2016], [Haochen & Sra, 2019], [Nagaraj et al., 2019], [Rajput et al., 2020], [Ahn et al., 2020], [Mishchenko et al., 2020], [Nguyen et al., 2021], [Cha et al., 2023]





 We can view incremental gradient/shuffled SGD as a primal-dual method with cyclic updates on the dual side

Algorithm 1 Shuffled SGD (Primal-Dual View)

1: Input: Initial point  $x_0 \in \mathbb{R}^d$ , batch size b > 0, step size  $\{\eta_k\} > 0$ , number of epochs K > 02: for k = 1 to K do

3: Generate any permutation  $\pi^{(k)}$  of [n] (either deterministic or random)

4: 
$$x_{k-1,1} = x_{k-1}$$

5: 
$$\mathbf{for} \ i = 1 \text{ to } m \mathbf{do}$$

6: 
$$\boldsymbol{y}_{k}^{(i)} = \arg \max_{\boldsymbol{y} \in \mathbb{R}^{b}} \left\{ \boldsymbol{y}^{\top} \boldsymbol{A}_{k}^{(i)} \boldsymbol{x}_{k-1,i} - \sum_{j=1}^{b} \ell_{\pi_{b(i-1)+j}^{(k)}}^{*}(\boldsymbol{y}^{j}) \right\}$$

7: 
$$\boldsymbol{x}_{k-1,i+1} = rg \max_{\boldsymbol{x} \in \mathbb{R}^d} \left\{ \boldsymbol{y}_k^{(i) \top} \boldsymbol{A}_k^{(i)} \boldsymbol{x} + \frac{b}{2\eta_k} \| \boldsymbol{x} - \boldsymbol{x}_{k-1,i} \|^2 \right\}$$

9: 
$$m{x}_k = m{x}_{k-1,m+1}, \, m{y}_k = ig(m{y}_k^{(1)},m{y}_k^{(2)},\dots,m{y}_k^{(m)}ig)$$

10: **end for** 

11: **Return:** 
$$\hat{x}_{K} = \sum_{k=1}^{K} \eta_{k} x_{k} / \sum_{k=1}^{K} \eta_{k}$$





Tighter, data-dependent, convergence bounds for all standard variants of incremental gradient/shuffled SGD, for smooth convex loss functions. The obtained bounds are tighter by a factor that can be as large as  $\sqrt{n}$ , both in theory and in practice.

### How Tighter in Practice?



| Dataset    | $\# { m Features}  (d)$ | #Datapoints $(n)$ | $L/\hat{L}$ | $\log_n L/\hat{L}$ |
|------------|-------------------------|-------------------|-------------|--------------------|
| A1A        | 123                     | 1605              | 5.50        | 0.231              |
| A9A        | 123                     | 32561             | 5.49        | 0.164              |
| BBBC005    | 361920                  | 19201             | 18.3        | 0.295              |
| BBBC010    | 361920                  | 201               | 7.04        | 0.368              |
| cifar10    | 3072                    | 50000             | 10.0        | 0.213              |
| DUKE       | 7129                    | 44                | 38.0        | 0.962              |
| E2006TRAIN | 150360                  | 16087             | 5.35        | 0.173              |
| GISETTE    | 5000                    | 6000              | 3.52        | 0.145              |
| LEU        | 7129                    | 38                | 32.8        | 0.960              |
| MNIST      | 780                     | 60000             | 19.1        | 0.268              |
| news20     | 1355191                 | 19996             | 42.1        | 0.378              |
| rcv1       | 47236                   | 20242             | 111         | 0.475              |
| REAL-SIM   | 20958                   | 72309             | 194         | 0.471              |
| SONAR      | 60                      | 208               | 6.26        | 0.344              |
| TMC2007    | 30438                   | 21519             | 10.9        | 0.239              |

### Other Extensions I Did Not Talk About

- Variance reduction for cyclic methods [Song, D, 2021], [Lin, Song, D, ICML 2023], [Cai, Song, Wright, D, ICML 2023]
- Acceleration in smooth convex optimization [Lin, Song, D, ICML 2023]
- Nonconvex optimization [Cai, Song, Wright, D, ICML 2023]
- Incremental gradient methods and continual learning [Cai, D, forthcoming]





and it is for a "real" application!

### Ice Cube Neutrino Detector





### Ice Cube Neutrino Detector





### Physics models for detected photon waveforms:

 $egin{aligned} & m{\cdot} \ f(t) = A\left(e^{-rac{t-x_0}{b_1}} + e^{rac{t-x_0}{b_2}}
ight) \ & m{\cdot} \ f(t) = A\left(Ce^{e^{-rac{t-x_0}{b_1}}} + e^{rac{t-x_0}{b_2}}
ight) \end{aligned}$ 

Problem can be formulated as a regularized non-negative least-square problem:

where 
$$f A$$
 is non-negative, highly sparse and structured, and the desired form of regularization  $r({f x})$  is unclear.

 $\min_{\mathbf{x}\geq 0} \|\mathbf{A}\mathbf{x}-\mathbf{b}\|_2^2 + r(\mathbf{x})$ 

$$35$$
  
 $30$   
 $25$   
 $20$   
 $20$   
 $15$   
 $10$   
 $5$   
 $0$   
 $-20$   
 $0$   
 $20$   
 $40$   
 $60$   
 $80$   
 $100$   
 $120$   
Time (ns)







- We should still care about and study cyclic methods!
- We just need to be more careful about how we look at them
- What next?
  - □ For what classes of problems are cyclic methods particularly effective and why?
  - What kind of cyclic methods should we use in practice?

### Questions?

jelena@cs.wisc.edu