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Outline

§ Recap of coordinate methods (cyclic vs randomized)

§ A new cyclic method for variational inequalities

§ Generalizations

§ A fun problem I am looking at (if enough time!)
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A Quick Refresher on (Block) Coordinate Methods

§ Fix a partition of the vector of variables into 𝑚 blocks:

1 2 1 3 3 1 2 4 4 2 3 4
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A Quick Refresher on (Block) Coordinate Methods

§ Fix a partition of the vector of variables into 𝑚 blocks:

1 21 3 31 2 4 42 3 4

Block 1 Block 2 Block 3 Block 4

rif(x)

first-order oracle

x 2 RN , i𝑑
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§ Types of methods/orderings of updates:
q cyclic: fix an order of blocks, go through all of them in a cycle;

q randomized: pick blocks randomly, sample with replacement;

q greedy: pick the block that leads to the largest progress
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§ Types of methods/orderings of updates:
q cyclic: fix an order of blocks, go through all of them in a cycle;

q randomized: pick blocks randomly, sample with replacement;

q greedy: pick the block that leads to the largest progress



Theory vs Practice?

§ Randomized methods [Strohmer & Vershynin’08], [Nesterov’12]:
q almost always faster than full gradient methods, assuming the problem is (block) 

coordinate friendly [Nesterov’12] + a lot of follow-up work;

q generally the best theoretical guarantees among block coordinate methods;

q key property: can relate the partial gradient to the full one by taking the expectation, 
helps much of the analysis carry over from full gradient methods

§ Cyclic methods [Kaczmarz’37], [Ortega & Rheinboldt’70]:
q often preferred in practice over randomized methods (e.g., in GLMNet, SparseNet);

q much more challenging to analyze; hard to relate partial gradients to full ones;

q complexity guarantees generally worse than even for full gradient methods and 
smooth cvx opt, by dimension-dependent factors [Beck-Tetruashvili’13]; this is tight 
for cyclic gradient descent-type method [Sun-Ye’19]
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State of the Art for Cyclic Methods (Prior to This Work)

§ Essentially no non-asymptotic results for min-max opt/variational inequalities 

q Exception: [Chow-Wu-Yin’17], but requires cocoercivity and the rate is 1/ 𝑘

§ For (non-accelerated) smooth convex optimization, number of full gradient queries 

(assuming coordinate-friendly) of the order 𝑂 !"#!

$
, at best (worse by a factor 

𝒎 =# of blocks than gradient descent; 𝒎 = 𝒅 for coordinate descent)

The only exception are convex quadratic problems [Gürbüzbalaban et al., 2017], [Lee & Wright, 2019]

§  *All analyses based on relating the partial gradient to the full one

    *as far as I can tell, please correct me if wrong
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Cyclic Coordinate Dual Averaging with Extrapolation
(CODER)

Setup and Results
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Joint Work With:

C. Song, J. Diakonikolas, “Cyclic Coordinate Dual Averaging with Extrapolation,” 

SIAM Journal on Optimization, vol. 33, no. 4, pp. 2935-2961, 2023.

Chaobing Song (Huawei)
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Problem Setup

§ Assumptions:
q There is a fixed partition of coordinates into 𝑚 blocks;
q 𝐹:ℝ! → ℝ!	is 

o ”(block) coordinate-friendly” according to that partition;
o monotone: ∀𝑥, 𝑦:	 𝐹 𝑥 − 𝐹 𝑦 , 𝑥	 − 𝑦 ≥ 0;
o Lipschitz: ∃𝐿 < ∞  s.t. ∀𝑥, 𝑦:	 𝐹 𝑥 − 𝐹 𝑦 ≤ 𝐿 𝑥 − 𝑦

q 𝑔:ℝ!→ ℝ is 
o block-separable over the given partition: 𝑔 𝑥 = ∑!"#$ 𝑔!(𝑥!) ;

o prox%&! 𝑥
! = arg min

'∈ℝ"!
𝑔! 𝑦 + #

*%
𝑦 − 𝑥! *

 is easily computable, ∀𝑗 ∈ {1, … ,𝑚};

o possibly strongly convex, with modulus 𝛾 ≥ 0 and lower semicontinuous

(GMVI)  Find 𝑥∗ ∈ ℝ# s.t. ∀𝑥, 𝐹 𝑥 , 𝑥	 − 𝑥∗ + 𝑔 𝑥 − 𝑔 𝑥∗ ≥ 0

(PCO)   min
$∈ℝ!

𝑓(𝑥) + 𝑔(𝑥)

(PMM)   min
$
max
'
Φ(𝑥, 𝑦)

I’ll focus on the cyclic coordinate 
case (𝑚 = 𝑑), for simplicity
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Coordinate Lipschitz Assumption?

§ What is standard in convex optimization:

∇!𝑓 𝑥 − ∇!𝑓 𝑥 + ℎ	𝑒! ≤ 𝐿! ℎ , ∀𝑥 ∈ 	ℝ", ℎ ∈ ℝ

§ For VIs unclear how to make useful. Take bilinear games min
#
max
$
𝑥%𝐴𝑦. Then

𝐹
𝑥
𝑦 = 0 𝐴

−𝐴% 0
𝑥
𝑦 = 𝐴𝑦

−𝐴%𝑥
,

so 𝐹!
𝑥
𝑦 = 𝐴!:𝑦 for 𝑗 in the block belonging to the 𝑥-player. In particular,

𝐹!
𝑥
𝑦 − 𝐹! 𝑥 + ℎ	𝑒!

𝑦 = 0

scalar

jth standard  basis vector
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A Different Coordinate Lipschitz Condition?

§ Going back to the bilinear case, for any 
𝑥
𝑦 , 𝑥′𝑦′  and any 𝑗 in the 𝑥-part,

𝐹!
𝑥
𝑦 − 𝐹! 𝑥'

𝑦' = 𝐴!:(𝑦 − 𝑦′)

§ From there, we can conclude:

𝐹!
𝑥
𝑦 − 𝐹! 𝑥'

𝑦'
(
= 𝑥 − 𝑥′

𝑦 − 𝑦′

% 0 0
0 𝐴!:𝐴!:%

𝑥 − 𝑥′
𝑦 − 𝑦′ .

§ Idea: generalize to other (possibly nonlinear) operators 𝐹 

quadratic form

symmetric 
PSD matrix
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New Lipschitz Condition

§ Can be trivially satisfied with 𝑄" = 𝐿𝐼, but can generally choose better 

§ Define:

/𝑄" =

§ Summary Lipschitz constant:

/𝐿 = 0
"#$

!

/𝑄"

There exist symmetric positive semidefinite matrices 𝑄), 𝑄(, … , 𝑄" such that for any 𝑧, 𝑧' ∈ ℝ",

𝐹! 𝑧 − 𝐹! 𝑧' ( ≤ 𝑧 − 𝑧' %𝑄! 𝑧 − 𝑧' .

𝑄(0
0 1,2, … , 𝑗 − 1

1,2, … , 𝑗 − 1
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Main Result

A method (CODER) that for any 𝜖 > 0 outputs a solution with primal-dual gap at most 𝜖, in

𝑂 min
D𝐿𝐷(

𝜖 ,
D𝐿
𝛾 log

D𝐿𝐷
𝜖

iterations.

§ This is the same as for full-vector update methods, but with 𝐿 replaced by D𝐿

Cyclic Block Coordinate Methods on a Finer Scale 15Jelena Diakonikolas (UW-Madison)



How Large is !𝐿?

§ Worst case:

D𝐿 = J
!*)

"

D𝑄! ≤ J
!*)

"

D𝑄! ≤ J
!*)

"

𝑄! ≤ 𝐿 𝑑

triangle 
inequality

;𝑄( ≼ 𝑄( 𝑄( ≼ 𝐿𝐼

• Even for the special case of smooth convex optimization, the resulting bound is better by a factor 𝑑 
than what was known for any (unaccelerated) cyclic coordinate method.

• For variational inequalities, the obtained complexity result is state-of-the-art, even compared to 
randomized methods [Kotsalis et al., 2022] (it is actually better by a factor 𝑑 in the worst case). 

• It is also the first cyclic method for general variational inequalities with monotone operators with 
provable convergence guarantees.
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How Large is !𝐿?

§ In practice, D𝐿 is no larger than 𝐿, usually smaller (constants below are for min-max SVM)

q Real data sets:

q Synthetic (standard Gaussian) data; fixed dataset size 𝑛 or fixed dimension 𝑑, respectively

Cyclic Block Coordinate Methods on a Finer Scale 17Jelena Diakonikolas (UW-Madison)



Algorithm

partial “gradient” at intermediate point

partial “gradient” extrapolation

dual averaging step with extrapolated gradient

Similar gradient extrapolation 
in [Hamedani & Aybat., 2018] 
and [Kotsalis et al., 2022]
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How the Analysis Works

§ We can only solve this approximately to error 𝜖 > 0, so equivalently want to 

 find 𝑥)∗ ∈ ℝ# s.t. ∀𝑥, 𝐹 𝑥 , 𝑥	 − 𝑥)∗ + 𝑔 𝑥 − 𝑔 𝑥)∗ ≥ −𝜖

which is the same as find 𝑥+∗ ∈ ℝ" s.t. ∀𝑥, 	Gap 𝑥, 𝑥+∗ ≔ 𝐹 𝑥 , 𝑥+∗ − 𝑥 − 𝑔 𝑥 + 𝑔 𝑥+∗ ≤ 𝜖

§ So we may try to bound Gap 𝑥, 𝑥-  for iterations 𝑘 = 1, 2, …

§ The key step:
Gap 𝑥, 𝑥- = 𝐹 𝑥 , 𝑥- − 𝑥 − 𝑔 𝑥 + 𝑔 𝑥-

(GMVI)  Find 𝑥∗ ∈ ℝ# s.t. ∀𝑥, 𝐹 𝑥 , 𝑥	 − 𝑥∗ + 𝑔 𝑥 − 𝑔 𝑥∗ ≥ 0

= 𝑞-, 𝑥- − 𝑥 − 𝑔 𝑥 + 𝑔 𝑥-
    + 𝐹 𝑥- − 𝑞-, 𝑥- − 𝑥

≤ 𝐹 𝑥- , 𝑥- − 𝑥 − 𝑔 𝑥 + 𝑔 𝑥-

−
1
2 𝑥 − 𝑥* +

+ +
1
2 𝑥 − 𝑥* +

+

this part defines the 
step, by taking a max

the art of choosing 𝑞* is for 
controlling this term 



Numerical Experiments 
(Illustration)

SVM with LASSO or ridge, 
on a1a LibSVM dataset 
(𝑑 = 123, 𝑛 = 1605)
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Further Developments

Two Examples: Bilinear Extensive Form Games and Shuffled SGD
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Q: Are cyclic methods always slower than full vector update methods in the worst case? 

A: No, and they may have advantages. A specific example (the first of its kind!) to follow. 



Joint Work With:

D. Chakrabarti, J. Diakonikolas, C. Kroer “Block Coordinate Methods and Restarting for Solving 
Extensive Form Games,” in Proc. NeurIPS 2023. (𝛼𝛽 ordering of authors)
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Darshan Chakrabarti 
(Columbia University)

Christian Kroer
(Columbia University)



Problem: Bilinear Extensive Form Games (EFGs)

§ A general class of game-theoretic models that capture both simultaneous and sequential 
moved, private/imperfect information, and stochasticity

§ In optimization language, we have a bilinear min-max problem:

min
𝒙∈𝒳

max
𝒚∈𝒴

𝒚3𝑴𝒙	

sequence form polytopes: treeplexes
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Treeplex?

+ + + + = 1𝑥, 𝑥+

𝑥, 𝑥+

𝑥-

𝑥-

1

𝑥.

𝑥. 𝑥/

𝑥/

𝑥0 𝑥1 𝑥2 𝑥3 𝑥,4 𝑥,, 𝑥,+ 𝑥,- 𝑥,.

𝑥,/ 𝑥,0

+ + + = 𝑥, + + = 𝑥- + = 𝑥.

+ = 𝑥0
Q. How would you implement a block coordinate method for this feasible set?
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𝑥0



Why Cyclic Updates are OK

+ + + + = 1𝑥, 𝑥+

𝑥, 𝑥+

𝑥-

𝑥-

1

𝑥.

𝑥. 𝑥/

𝑥/

𝑥0 𝑥1 𝑥2 𝑥3 𝑥,4 𝑥,, 𝑥,+ 𝑥,- 𝑥,.

𝑥,/ 𝑥,0

+ + + = 𝑥, + + = 𝑥- + = 𝑥.

+ = 𝑥0 ⇔
𝑥,/
𝑥0

+
𝑥,0
𝑥0

= 1

⇔
𝑥0
𝑥,
+
𝑥1
𝑥,
+
𝑥2
𝑥,
+
𝑥3
𝑥,
= 1
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Main Result

A method (ECyclicPDA) that for any 𝜖 > 0 outputs a solution with primal-dual gap at most 𝜖 
with iteration complexity that is no worse than the iteration complexity of full-vector update 
methods like Mirror-Prox.
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This is the first example (that I know of) of a cyclic method with no scaling with the number of 
blocks in the worst case.



Q: Do these ideas extend beyond basic cyclic coordinate methods?

A: Yes. They extend to the incremental gradient method and shuffled SGD.



Joint Work With:

X. Cai, C-Y. Lin, J. Diakonikolas, “Empirical Risk Minimization with Shuffled SGD: A Primal-Dual 
Perspective and Improved Bounds,” arXiv preprint, arXiv:2306.12498, 2023.
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Xufeng Cai
(UW-Madison)

Eric (Cheuk-Yin) Lin
(UW-Madison)



Problem Setup

Empirical Risk Minimization problems over data {𝒂$, 𝒂+, … , 𝒂,}

min
𝒙

1
𝑛
0
.#$

,

ℓ.(𝒂./𝒙)

are (in practice) usually solved by incremental/shuffled SGD methods, which make updates

𝒙0,.1$ = 𝒙0,. − 𝜂∇ℓ.(𝒂./𝒙0,.)

going through all the data vectors in a cyclic manner, possibly permuting the order at the 
beginning of a cycle. 

Convergence guarantees: not understood until recently [Gürbüzbalaban et al., 2021], [Shamir, 
2016],  [Haochen & Sra, 2019], [Nagaraj et al., 2019], [Rajput et al., 2020], [Ahn et al., 2020], 
[Mishchenko et al., 2020], [Nguyen et al., 2021], [Cha et al., 2023]
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Main Insight

§ We can view incremental gradient/shuffled SGD as a primal-dual method 
with cyclic updates on the dual side
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Main Results

Tighter, data-dependent, convergence bounds for all standard variants of incremental 
gradient/shuffled SGD, for smooth convex loss functions. The obtained bounds are tighter 
by a factor that can be as large as 𝑛, both in theory and in practice. 
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How Tighter in Practice?
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Other Extensions I Did Not Talk About

§ Variance reduction for cyclic methods [Song, D, 2021], [Lin, Song, D, ICML 2023],          
[Cai, Song, Wright, D, ICML 2023]

§ Acceleration in smooth convex optimization [Lin, Song, D, ICML 2023]

§ Nonconvex optimization [Cai, Song, Wright, D, ICML 2023]

§ Incremental gradient methods and continual learning [Cai, D, forthcoming]
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A Toy Project I am Excited About

and it is for a “real” application!
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Ice Cube Neutrino Detector 
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Ice Cube Neutrino Detector 
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Neutrino Detection & Non-negative Least Squares
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Summary

§ We should still care about and study cyclic methods!

§ We just need to be more careful about how we look at them

§ What next?

q For what classes of problems are cyclic methods particularly effective and why?

q What kind of cyclic methods should we use in practice?

Questions?
jelena@cs.wisc.edu 
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