Poison and Cure: Non-Convex Optimization Techniques for Private Synthetic Data and Reconstruction Attacks

Michael Kearns University of Pennsylvania and AWS AI/ML

"Differentially Private Query Release Through Adaptive Projection" S. Aydore, W. Brown, M. Kearns, K. Kenthapadi, L. Melis, A. Roth, A. Siva In ICML 2021

"Confidence-Ranked Reconstruction of Census Microdata from Published Statistics" T. Dick, C. Dwork, M. Kearns, T. Liu, A. Roth, G. Vietri, Z. S. Wu In PNAS 2023 I. Leveraging non-convex optimization to build efficient algorithms for differentially private synthetic data generation

2. The same algorithmic ideas enable efficient algorithms for large-scale reconstruction attacks (on Census data)

The Duality

Sensitive Data (e.g., medical records)

Output Distribution (e.g., noisy statistics)

"An algorithm is differentially private if changing a single record does not alter its output distribution by much." [DN03, DMNS06]

Definition: A (randomized) algorithm A is (ε, δ) -differentially private if for all neighbors D, D' and every S \subseteq Range(A)

 $\Pr[A(D) \in S] \le e^{\varepsilon} \Pr[A(D') \in S] + \delta$

Differentially Private Synthetic Data

DP Algorithm

Sensitive data set (e.g. medical records)

Synthetic data set "Fake" data records that preserve important statistical properties

What statistical properties?

Allow arbitrary usage

Data Scientist

Moment Matching: (aka Query Release)

	Smoke	Lung Cancer	Diabetes	Age	
patient_id l	I	I	I	35	q(x) = 1
patient_id2	I	0	0	40	q(x) = 0
patient_id3	I	I	0	43	q(x) = 1
patient_id4	0	0	I	21	q(x)=0
					q(D) = 1/2

Example:

what is the fraction of people that satisfy some specified property q?

e.g.
$$q(x) = has$$
 "Smoke", "Lung Cancer" & "Age ≥ 30 "
(3-way Marginals)

Moment Matching: (aka Query Release)

$$lpha$$
-accurate if $|q(\mathsf{D}) - a_q| \leq lpha$ for every $q \in Q$

Algorithm 1 Relaxed Projection (RP)

Input: A vector of differentiable queries $q: \mathcal{X}^r \to \mathbb{R}^{m'}$, a vector of target answers $\hat{a} \in \mathbb{R}^{m'}$, and an initial dataset $D' \in (\mathcal{X}^r)^{n'}$.

Use any differentiable optimization technique (Stochastic Gradient Descent, Adam, etc.) to attempt to find:

$$D_S = \arg \min_{D' \in (\mathcal{X}^r)^{n'}} ||q(D') - \hat{a}||_2^2$$

Output D_S .

Algorithm 2 Relaxed Adaptive Projection (RAP)

Input: A dataset D, a collection of m statistical queries Q, a "queries per round" parameter $K \leq m$, a "number of iterations" parameter $T \leq m/K$, a synthetic dataset size n', and differential privacy parameters $\epsilon, \delta.$ Let ρ be such that: $\epsilon = \rho + 2\sqrt{\rho \log(1/\delta)}$ if T = 1 then for i = 1 to m do Let $\hat{a}_i = G(D, q_i, \rho/m)$. end for Randomly initialize $D' \in (\mathcal{X}^r)^{n'}$. Output $D' = RP(q, \hat{a}, D').$ else Let $Q_S = \emptyset$ and $D'_0 \in (\mathcal{X}^r)^{n'}$ be an arbitrary initialization. for t = 1 to T do for k = 1 to K do Define $\hat{q}^{Q \setminus Q_S}(x) = (\hat{q}_i(x) : q_i \in Q \setminus Q_S)$ where \hat{q}_i is an equivalent extended differentiable query for q_i . Let $q_i = RNM(D, \hat{q}^{Q \setminus Q_S}, \hat{q}^{Q \setminus Q_S}(D'_{t-1}), \frac{\rho}{2T \cdot K}).$ Let $Q_S = Q_S \cup \{q_i\}.$ Let $\hat{a}_i = G(D, q_i, \frac{\rho}{2T \cdot K})$. end for Define $q^{Q_S}(x) = (q_i(x) : q_i \in Q_S)$ and $\hat{a} = \{\hat{a}_i : q_i \in Q_S\}$ where \hat{q}_i is an equivalent extended differentiable query for q_i . Let $D'_t = RP(q^{Q_s}, \hat{a}, D'_{t-1})$. end for Output D'_T .

end if

Dataset	Records	Features	Transformed Binary Features
ADULT	48842	15	588
LOANS	42535	48	4427

Table 1: Datasets. Each dataset starts with the given number of original (categorical and real valued) features. After our transformation, it is encoded as a dataset with a larger number of binary features.

(c) ADULT dataset on 5-way marginals

(d) LOANS dataset on 5-way marginals

Reconstruction Attacks [DN03]

Empirical attacks:

- Census Bureau's attack on 2010 decennial census
 - Leveraged powerful integer program solvers
- Aircloak Challenge [CN18, JSD20]

Reconstruction as Projection

Given answers $a = (a_1, ..., a_m)$ to queries $q = (q_1, ..., q_m)$ Reconstruct a dataset \hat{D} by minimizing $\|q(\hat{D}) - a\|^2 = \sum_j (q_j(\hat{D}) - a_j)^2$

Leverage the computational efficiency and randomization of synthetic data methods

RAP-Rank: Confidence-Ranked Reconstruction

Use a *randomized*, *non-private* synthetic data method to sample solutions to the projection problem

Bayesian Intuition

Experiments Set Up

 $i \leq k$

٠

٠

2010 Demonstration Privacy-Protected Microdata Files (PPMF)

- Hierarchy of geographic entities
 - national \rightarrow state \rightarrow county \rightarrow tract \rightarrow block
 - Hierarchy of prior information

- Reconstruct data at two levels
 - Block: 620 queries
 - Tract: 10-50k queries

P001	Total population by block,		
P006	Total races tallied by block,		
P007	Hispanic or Latino origin by race by block,		
P009	Hispanic or Latino and not Hispanic or Latino by race by block,		
P011	Hispanic or Latino and not Hispanic or Latino by race by age (≥ 18) by block,		
P012	Sex by age by block,		
P012A-I	Sex by age by block iterated by race,		
P014	Sex by age (< 20) by block,		
PCT012012A-N	Sex by age by tract iterated by major race alone.		

2010 Demonstration Privacy-Protected Microdata Files

k / u (proportion of the # of unique rows in D)

2010 Demonstration Privacy-Protected Microdata Files

k / u (proportion of the # of unique rows in D)

 Ours	<u> </u>	D _{tract}	 D_{state}
 $D_{holdout}$		D_{county}	 $D_{national}$

2010 Demonstration Privacy-Protected Microdata Files

k / u (proportion of the # of unique rows in D)

Thanks!