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A new paradigm of science: deep learning
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• Collect data and buy GPU first

• Scale model with data and computational
resources

• End to end: Representation, computation,
prediction
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However, making deep learning a science requires...

• Why don’t heavily parameterized neural
networks overfit the data?

• What is the effective number of parameters?

• Why doesn’t backpropagation get stuck in
poor local minima with low value of the loss function, yet bad test error?

Yet another bitter lesson
Very difficult to build a mathematical foundation for deep learning...

• Highly incomplete: Kawaguchi’16, Arora et al.’19, Jacot et al.’18, Allen-Zhu et
al.’18, Du et al.’19, Mei et al.’19,...

• This talk doesn’t attempt to address these fundamental questions

• Instead, we attempt to make deep learning (a bit more) geometrical
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When is it easier to geometrize deep learning?

Easier to geometrize neural networks at terminal phase of training

• The training dynamics is chaotic

• But, a well-trained neural network is a solution to some optimization
problem

3 / 55

Terminal phase of training

Training toward interpolating in-sample data,
beyond zero classification error (Papyan et al.’20)

• Better generalization

• Improvement in adversarial robustness
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This talk

1 A small surrogate model
Analyze the last-layer weights and features of well-trained neural networks

2 A simple geometric law
Describe how data are separated through layers in well-trained neural
networks

4 / 55



This talk

1 A small surrogate model
Analyze the last-layer weights and features of well-trained neural networks

2 A simple geometric law
Describe how data are separated through layers in well-trained neural
networks

4 / 55



Part I: A Layer-Peeled Model



Collaborators

• Cong Fang (Penn→Peking University)

• Hangfeng He (Penn→University of Rochester)

• Qi Long (Penn)
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Illustration of our approach

(a) 1-Layer-Peeled Model (b) 2-Layer-Peeled Model
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Setup for deep learning

Neural network for K-class classification:

f(x;Wfull) = WLσ (WL−1σ(· · ·σ(W1x) · · · ))

• σ(·) is a nonlinear activation function

• Wfull := {W1,W2, . . . ,WL} collects the weights

• Bias omitted

Optimization problem:

min
Wfull

1

N

K∑
k=1

nk∑
i=1

L(f(xk,i;Wfull),yk) +
λ

2
∥Wfull∥2

• yk is a one-hot vector denoting the k-th class

• λ weight decay parameter, L cross-entropy loss
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A peek at Layer-Peeled Model

f(x;Wfull) = WLσ (WL−1σ(· · ·σ(W1x) · · · ))

min
Wfull

1

N

K∑
k=1

nk∑
i=1

L(f(xk,i;Wfull),yk) +
λ

2
∥Wfull∥2

• Difficult to pinpoint how any layer Wl influences the output

• hk,i denotes σ (WL−1σ(· · ·σ(W1xk,i) · · · )); WL = [w1, . . . ,wK ]⊤

• Terminal phase of training
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Derivation

Rewrite the optimization problem as

min
WL,H

1

N

K∑
k=1

nk∑
i=1

L(WLh(xk,i;W−L),yk) +
λ

2
∥WL∥2 +

λ

2
∥W−L∥2

• Last-layer feature h(xk,i;W−L) := σ(WL−1σ(· · ·σ(W1xk,i) · · · ))

From the dual viewpoint, a minimum is an optimal solution to

min
WL,H

1

N

K∑
k=1

nk∑
i=1

L(WLhk,i,yk)

s.t. ∥WL∥2 ⩽ C1

• Not a one-to-one mapping

• H(W−L) := [h(xk,i;W−L) : 1 ⩽ k ⩽ K, 1 ⩽ i ⩽ nk]
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Derivation: an ansatz

Assumption

{
H(W−L) : ∥W−L∥2 ⩽ C2

}
≈

{
H :

K∑
k=1

1

nk

nk∑
i=1

∥hk,i∥2 ⩽ C ′
2

}

min
WL,H

1

N

K∑
k=1

nk∑
i=1

L(WLhk,i,yk)

s.t. ∥WL∥2 ⩽ C1

H ∈
{
H(W−L) : ∥W−L∥2 ⩽ C2

}

min
W ,H

1

N

K∑
k=1

nk∑
i=1

L(Whk,i,yk)

s.t.
1

K

K∑
k=1

∥wk∥2 ≤ EW

1

K

K∑
k=1

1

nk

nk∑
i=1

∥hk,i∥2 ≤ EH

• Self-duality of ℓ2 spaces

• More justification for the ansatz later
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More on Layer-Peeled Model

min
W ,H

1

N

K∑
k=1

nk∑
i=1

L(Whk,i,yk)

s.t.
1

K

K∑
k=1

∥wk∥2 ≤ EW

1

K

K∑
k=1

1

nk

nk∑
i=1

∥hk,i∥2 ≤ EH

• Terminal phase of deep learning training

• Nonconvex but analytically tractable
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Prediction constraint

Representation constraint
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Balanced training

All class sizes are equal: n1 = n2 = · · · = nK

What can the Layer-Peeled Model say?

Theorem

Any global minimizer W ⋆ ≡ [w⋆
1 , . . . ,w

⋆
K ]

⊤
,H⋆ ≡ [h⋆

k,i : 1 ⩽ k ⩽ K, 1 ⩽ i ⩽ n]
with cross-entropy loss obeys

h⋆
k,i = Cw⋆

k = C ′m⋆
k,

where [m⋆
1, . . . ,m

⋆
K ] forms a K-simplex equiangular tight frame (ETF)

• h⋆
k,i depends only on the class membership!

• C =
√

EH/EW , C ′ =
√

EH

• What is a K-simplex ETF?
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K-simplex ETF

K equal-length vectors form the largest possible equal-sized angles between
any pair

Equivalently, random variables ξ1, . . . , ξK of mean 0 and variance 1. If Eξiξj = ρ
for all i ̸= j, what’s the min of ρ?

largest angle = arccos

(
− 1

K − 1

)

K = 2 K = 3 K = 4
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This is simply neural collapse

Papyan, Han, and Donoho discovered neural collapse in 2020:

1 Variability collapse: features collapse to their class means

2 Class means centered at their global mean collapse to ETF

3 Up to scaling, last-layer classifiers each collapse to class means

4 Classifier’s decision collapses to choosing the closet class mean

Implications on better generalization, large margin, and robustness

[Mixon et al.’20, E and Wojtowytsch’20, Lu and Steinerberger’20, Zhu et al.’21] justified
neural collapse using different models
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Snapshot of neural collapse

converge to having equal length, forming equal-sized an-56

gles between any given pair, and being the maximally57

pairwise-distanced configuration constrained to the pre-58

vious two properties. This configuration is identical to59

a previously studied configuration in the mathematical60

sciences known as Simplex Equiangular Tight Frame61

(ETF) (6). See Definition 1.62

(NC3) Convergence to self-duality: The class-means63

and linear classifiers – although mathematically quite64

di�erent objects, living in dual vector spaces – converge65

to each other, up to rescaling. Combined with (NC2), this66

implies a complete symmetry in the network classifiers’67

decisions: each iso-classifier-decision region is isometric68

to any other such region by rigid Euclidean motion;69

moreover the class-means are each centrally located70

within their own specific regions, so there is no tendency71

towards higher confusion between any two classes than72

any other two.73

(NC4) Simplification to Nearest Class-Center (NCC):74

For a given deepnet activation, the network classifier75

converges to choosing whichever class has the nearest76

train class-mean (in standard Euclidean distance).77

We give a visualization of the phenomena (NC1)-(NC3) in78

Figure 1�, and define Simplex ETFs (NC2) more formally as79

follows:80

Definition 1 (Simplex ETF). A standard Simplex ETF is a81

collection of points in RC specified by the columns of82

Mı =
Ú

C

C ≠ 1

1
I ≠ 1

C
€

2
, [1]83

where I œ RC◊C is the identity matrix, and C œ RC is the84

ones vector. In this paper, we allow other poses, as well as85

rescaling, so the general Simplex ETF consists of the points86

specified by the columns of M = –UMı œ Rp◊C , where87

– œ R+ is a scale factor, and U œ Rp◊C (p Ø C) is a partial88

orthogonal matrix (U€U = I).89

Properties (NC1)-(NC4) show that a highly symmetric and90

rigid mathematical structure with clear interpretability arises91

spontaneously during deep learning feature engineering, iden-92

tically across many di�erent datasets and model architectures.93

(NC2) implies that the di�erent feature means are ‘equally94

spaced’ around the sphere in their constructed feature space;95

(NC3) says the same for the linear classifiers in their own dual96

space; and moreover, that the linear classifiers are ‘the same97

as’ the class means, up to possible rescaling. These mathe-98

matical symmetries and rigidities vastly simplify the behavior99

and analysis of trained classifiers, as we show in Section 5100

below, which contrasts the kind of qualitative understanding101

previously available from theory, against the precise and highly102

constrained predictions possible with (NC4).103

(NC1)-(NC4) o�er theoretically-established performance104

benefits: stability against random noise and against adversarial105

noise. And indeed, this theory bears fruit. We show that106

�Figure 1 is, in fact, generated using real measurements, collected while training the VGG13 deep-
net on CIFAR10: For three randomly selected classes, we extract the linear classifiers, class-
means, and a subsample of twenty last-layer features at epochs 2, 16, 65, and 350. These entities
are then rotated, rescaled, and represented in three-dimensions by leveraging the singular-value
decomposition of the class-means. We omit further details as Figure 1 serves only to illustrate
Neural Collapse on an abstract level.

Fig. 1. Visualization of Neural Collapse: The figures depict, in three dimensions,
Neural Collapse as training proceeds, from top to bottom. Green spheres represent
the vertices of the standard Simplex ETF (Definition 1), red ball-and-sticks represent
linear classifiers, blue ball-and-sticks represent class-means, and small blue spheres
represent last-layer features. For all objects, we distinguish different classes via
the shade of the color. As training proceeds, last-layer features collapse onto their
class-means (NC1), class-means converge to the vertices of the Simplex ETF (NC2),
the linear classifiers approach their corresponding class-means (NC3). An animation
can be found here.

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Donoho et al.

converge to having equal length, forming equal-sized an-56

gles between any given pair, and being the maximally57

pairwise-distanced configuration constrained to the pre-58

vious two properties. This configuration is identical to59

a previously studied configuration in the mathematical60

sciences known as Simplex Equiangular Tight Frame61

(ETF) (6). See Definition 1.62

(NC3) Convergence to self-duality: The class-means63

and linear classifiers – although mathematically quite64

di�erent objects, living in dual vector spaces – converge65

to each other, up to rescaling. Combined with (NC2), this66

implies a complete symmetry in the network classifiers’67

decisions: each iso-classifier-decision region is isometric68

to any other such region by rigid Euclidean motion;69

moreover the class-means are each centrally located70

within their own specific regions, so there is no tendency71

towards higher confusion between any two classes than72

any other two.73

(NC4) Simplification to Nearest Class-Center (NCC):74

For a given deepnet activation, the network classifier75

converges to choosing whichever class has the nearest76

train class-mean (in standard Euclidean distance).77

We give a visualization of the phenomena (NC1)-(NC3) in78

Figure 1�, and define Simplex ETFs (NC2) more formally as79

follows:80

Definition 1 (Simplex ETF). A standard Simplex ETF is a81

collection of points in RC specified by the columns of82

Mı =
Ú

C

C ≠ 1

1
I ≠ 1

C
€

2
, [1]83

where I œ RC◊C is the identity matrix, and C œ RC is the84

ones vector. In this paper, we allow other poses, as well as85

rescaling, so the general Simplex ETF consists of the points86

specified by the columns of M = –UMı œ Rp◊C , where87

– œ R+ is a scale factor, and U œ Rp◊C (p Ø C) is a partial88

orthogonal matrix (U€U = I).89

Properties (NC1)-(NC4) show that a highly symmetric and90

rigid mathematical structure with clear interpretability arises91

spontaneously during deep learning feature engineering, iden-92

tically across many di�erent datasets and model architectures.93

(NC2) implies that the di�erent feature means are ‘equally94

spaced’ around the sphere in their constructed feature space;95

(NC3) says the same for the linear classifiers in their own dual96

space; and moreover, that the linear classifiers are ‘the same97

as’ the class means, up to possible rescaling. These mathe-98

matical symmetries and rigidities vastly simplify the behavior99

and analysis of trained classifiers, as we show in Section 5100

below, which contrasts the kind of qualitative understanding101

previously available from theory, against the precise and highly102

constrained predictions possible with (NC4).103

(NC1)-(NC4) o�er theoretically-established performance104

benefits: stability against random noise and against adversarial105

noise. And indeed, this theory bears fruit. We show that106

�Figure 1 is, in fact, generated using real measurements, collected while training the VGG13 deep-
net on CIFAR10: For three randomly selected classes, we extract the linear classifiers, class-
means, and a subsample of twenty last-layer features at epochs 2, 16, 65, and 350. These entities
are then rotated, rescaled, and represented in three-dimensions by leveraging the singular-value
decomposition of the class-means. We omit further details as Figure 1 serves only to illustrate
Neural Collapse on an abstract level.

Fig. 1. Visualization of Neural Collapse: The figures depict, in three dimensions,
Neural Collapse as training proceeds, from top to bottom. Green spheres represent
the vertices of the standard Simplex ETF (Definition 1), red ball-and-sticks represent
linear classifiers, blue ball-and-sticks represent class-means, and small blue spheres
represent last-layer features. For all objects, we distinguish different classes via
the shade of the color. As training proceeds, last-layer features collapse onto their
class-means (NC1), class-means converge to the vertices of the Simplex ETF (NC2),
the linear classifiers approach their corresponding class-means (NC3). An animation
can be found here.

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Donoho et al.

Credit: Papyan, Han, and Donoho
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Neural collapse can justify the Layer-Peeled Model



About the ansatz

Recall

{
H(W−L) : ∥W−L∥2 ⩽ C2

}
≈

{
H :

K∑
k=1

1

nk

nk∑
i=1

∥hk,i∥2 ⩽ C ′
2

}

This gives

min
W ,H

1

N

K∑
k=1

nk∑
i=1

L(Whk,i,yk)

s.t.
1

K

K∑
k=1

∥wk∥2 ≤ EW

1

K

K∑
k=1

1

nk

nk∑
i=1

∥hk,i∥2 ≤ EH
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What happens without the ansatz?

Without the ansatz:

min
W ,H

1

N

K∑
k=1

n∑
i=1

L(Whk,i,yk)

s.t.
1

K

K∑
k=1

∥wk∥2 ≤ EW

1

K

K∑
k=1

1

n

n∑
i=1

∥hk,i∥qq ≤ EH

Proposition

Assume K ⩾ 3 and p ≥ K . For any q ∈ (0, 2) ∪ (2,∞), neural collapse does not
emerge in the model above

• Is it possible to directly justify the ansatz?
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Can the Layer-Peeled Model predict something?



Imbalanced training

Datasets often have a disproportionate ratio of observations in each class

As a simple starting point, assume

• The first KA majority classes each contain nA training examples
(n1 = n2 = · · · = nKA

= nA)

• The remaining KB := K −KA minority classes each contain nB examples
(nKA+1 = nKA+2 = · · · = nK = nB)

• Call R := nA/nB > 1 the imbalance ratio

17 / 55
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Convex relaxation

• Define hk as the feature mean of the k-th class

hk :=
1

nk

nk∑
i=1

hk,i

• Introduce a new decision variable

X :=
[
h1,h2, . . . ,hK ,W⊤]⊤ [

h1,h2, . . . ,hK ,W⊤] ∈ R2K×2K

Then

• X is positive semidefinite

•
1

K

K∑
k=1

X(k, k) =
1

K

K∑
k=1

∥hk∥2≤
1

K

K∑
k=1

1

nk

nk∑
i=1

∥hk,i∥2 ≤ EH

•
1

K

2K∑
k=K+1

X(k, k) =
1

K

K∑
k=1

∥wk∥2 ≤ EW
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Convex relaxation

min
X∈R2K×2K

K∑
k=1

nk

N
L(zk,yk)

s.t. zk = [X(k,K + 1),X(k,K + 2), . . . ,X(k, 2K) ]
⊤

1

K

K∑
k=1

X(k, k) ≤ EH ,
1

K

2K∑
k=K+1

X(k, k) ≤ EW

X ⪰ 0

• Not a semidefinite program in the strict sense because a semidefinite
program uses a linear objective function

19 / 55
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Nonconvex optimization via convex optimization

Lemma

Assume p ≥ 2K and L is convex in its first argument. Then the minimizers of the
Layer-Peeled Model can be derived from the minimizer of the convex
relaxation, up to a rotation

• No loss of information when we study the Layer-Peeled Model through a
convex program

• But class means no longer collapse to classifiers
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A numerical surprise

Average cosine of between-minority-class angles
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(c) EW = 1, EH = 5
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(d) EW = 1, EH = 10

(1) When R < R0 for some R0 > 0, average between-minority-class angle
becomes smaller as R increases

(2) Once R ≥ R0, average between-minority-class angle becomes 0: implying
that all minority classifiers collapse!
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Minority Collapse

(1) When R < R0 for some R0 > 0, average between-minority-class angle
becomes smaller as R increases

(2) Once R ≥ R0, average between-minority-class angle becomes 0: implying
that all minority classifiers collapse!

Proposition

Let (H⋆,W ⋆) be any global minimizer of the Layer-Peeled Model. As
R ≡ nA/nB → ∞, we have

limw⋆
k −w⋆

k′ = 0p for all KA < k < k′ ⩽ K

• The prediction on the minority classes becomes completely at random
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Minority Collapse

(1) When R < R0 for some R0 > 0, average between-minority-class angle
becomes smaller as R increases

(2) Once R ≥ R0, average between-minority-class angle becomes 0: implying
that all minority classifiers collapse!

Proposition (Chen 2023)

Let (H⋆,W ⋆) be any global minimizer of the Layer-Peeled Model. When
R ⩾ R∗, we have

w⋆
k = w⋆

k′ for all KA < k < k′ ⩽ K

• The prediction on the minority classes becomes completely at random

• Fairness issue

22 / 55



Illustration of Minority Collapse
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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Intuition for Minority Collapse

min
W ,H

1

N

K∑
k=1

nk∑
i=1

L(Whk,i,yk)

s.t.
1

K

K∑
k=1

∥wk∥2 ≤ EW

1

K

K∑
k=1

1

nk

nk∑
i=1

∥hk,i∥2 ≤ EH

Competition for space!
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Is Minority Collapse a real thing?



Minority Collapse in experiments
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(e) VGG11 on FashionMNIST
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(f) VGG13 on CIFAR10
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(g) ResNet18 on FashionMNIST
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(h) ResNet18 on CIFAR10
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Part II: A Law of Data Separation



Let’s dig into it

Does neural collapse extend to
interior layers?

• Unfortunately, no

• Too many nonlinearities, plus high degrees of
non-uniqueness

• Any other patterns?
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Collaborator

• Hangfeng He (Penn→University of Rochester)
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Chaotic patterns
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“Big” symmetries are gone. How about “small”
symmetries?



A numerical surprise: equi-separation

Layer index
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8-layer feedforward network trained on FashinMNIST using Adam



A numerical surprise

Layer index
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Correlation = −0.997

8-layer feedforward network trained on FashinMNIST using Adam



A sharp comparison
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This is NOT the reality
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This is the reality
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More experimental results

(a) SGD-4 (b) SGD-8 (c) SGD-20

(d) SGD+Momentum-4 (e) SGD+Momentum-8 (f) SGD+Momentum-20

(g) Adam-4 (h) Adam-8 (i) Adam-20 34 / 55
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Separation fuzziness

x̄k := (xk1 + · · ·+ xknk
)/nk: sample mean of Class k

x̄ := (n1x̄1 + · · ·+ nK x̄K)/n: global mean (n := n1 + · · ·+ nK )

Sum of squares between (signal)

SSB :=
1

n

K∑
k=1

nk(x̄k−x̄)(x̄k−x̄)⊤

Sum of squares within (noise)

SSW :=
1

n

K∑
k=1

nk∑
i=1

(xki−x̄k)(xki−x̄k)
⊤

Measure of how well data are separated

D := Tr(SSWSSB+)

• SSB+ is the Moore–Penrose inverse of the matrix SSB

• Inverse signal-to-noise ratio (Papyan et al.’20)

• Weighted projection of noise onto (K − 1)-D space spanned by SSB. Thus
no need to normalize D by the dimension
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It’s well separated

37 / 55



An (empirical) law of deep learning

Dt: separation measure for data before passing through the tth layer

The law of equi-separation

For 1 ⩽ t ⩽ m and some 0 < ρ < 1:

Dt ≈ cρt

• Nonlinearity is crucial

• Equivalently,

logDt+1 − logDt ≈ − log
1

ρ

• ρ = 0.53 above. So half-life: t 1
2
=

log 2

log ρ−1
= 1.1

38 / 55

logDt
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When does it emerge?

Earlier than neural collapse

(a) Epoch-0 (b) Epoch=10 (c) Epoch=20

(d) Epoch-30 (e) Epoch=50 (f) Epoch=100

(g) Epoch-200 (h) Epoch=300 (i) Epoch=600
39 / 55
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Earlier than neural collapse

100 200 300 400 500 600

0.8

1.0

1.2
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Epoch

Separation fuzziness of last-layer features
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Ask me anything about this law

Is this law pervasive? Yes

Does this law provide insights into the practice
of deep learning?

Yes

Any intuition about why this law appears? I think so

Can we prove this law? Not yet
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Data, imbalance, and learning rate

(a) CIFAR10-4 (b) CIFAR10-8 (c) CIFAR10-20

(d) Imbalance-4 (e) Imbalance-8 (f) Imbalance-20

(g) Learning rate: 0.01 (h) Learning rate: 0.03 (i) Learning rate: 0.1
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Architecture

(a) AlexNetX-FMNIST (b) AlexNetX-CIFAR10 (c) VGG13X-FMNIST
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Guidelines and insights from the law of equi-separation

The trilogy of the deep learning practice

• Network architecture

• Training

• Interpretation
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Dependence on the depth

Dm ≈ cρm: deep learning is necessarily to be deep

However, a complete story is slightly different

(a) MNIST (b) FashionMNIST (c) CIFAR10

• The choice of depth should consider the complexity of the applications

• Prior literature does not take the data-separation perspective (Srivastava et
al.’15)
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Data-separation perspective on width and shape

(a) Width: 20 (b) Width: 100 (c) Width: 1000

(d) Shape: narrow-wide (e) Shape: wide-narrow (f) Shape: mix

• Very wide neural networks should not be recommended (Tan and Le’19)

• Look vertically rather than horizontally when judging a network
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Equi-separation implies robustness

Overall separation ability R :=
Dm

D1
=

Dm

Dm−1
× Dm−1

Dm−2
× · · · × D2

D1

Perturb each layer:(
Dm

Dm−1
+ ε

)(
Dm−1

Dm−2
+ ε

)
· · ·

(
D2

D1
+ ε

)
= R+R

(
Dm−1

Dm
+

Dm−2

Dm−1
+ · · ·+ D1

D2

)
ε+O(ε2)

The perturbation R

(
Dm−1

Dm
+

Dm−2

Dm−1
+ · · ·+ D1

D2

)
ε is minimized in absolute

value when
Dm

Dm−1
=

Dm−1

Dm−2
= · · · = D2

D1

• Train at least until the law comes into effect

• An analog: if Wakanda wants to double GDP in 10 years, the most robust

way is to fix annual growth rate at 2
1
10 − 1 = 7.2%
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Equi-separation implies better generalization

(a) Unfrozen (b) Frozen

• Frozen training: bottom/top 10 layers are trained while the others are fixed

• Have about the same final separation measure and training loss

• Test accuracy:
Unfrozen: 21.46%
Frozen: 18.25%
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Interpretation from data-separation perspective

What are the basic operational modules in ResNet?

(a) 2 layers in a block (b) 3 layers in a block (c) Mix

• The right module is block for ResNet

• All layers/modules are created equal

• Need to take all layers collectively for interpretation, challenging layer-wise
approaches (Zeiler and Fergus’14)
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The same story for DenseNet (Gao et al.’19)

0 1 2 3 4100

101

102

0 1 2 3 4100

101

102

103

DenseNet161 by identifying a block as a module
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The law from other angles



The law for each class
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The equi-separation law in test

(a) Adam-4-Test (b) Adam-8-Test (c) Adam-20-Test
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Language models?

(a) BERT-CLS (b) BERT-AVG

• Trained on a binary sentiment classification task (SST-2)

• Perhaps because it learns a sequence of token-level representations
instead of sentence-level representations for each layer
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Asking right questions about deep learning theory
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Take-home messages

Layer-Peeled Model: Last-layer weights and features are free except for norm
constraints

• Explain neural collapse

• Predict Minority Collapse

Equi-Separation Law: A data-separation perspective

• All layers/modules are created equal

• Guidelines and insights into architecture design, training, and interpretation

Reference

1 Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse in
Imbalanced Training
with Cong Fang, Hangfeng He, and Qi Long
Proceedings of the National Academy of Sciences (PNAS), 2021

2 A Law of Data Separation in Deep Learning
with Hangfeng He
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