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Outline

How theoretical analysis of optimization algorithms relates to their
practical performance.

Theory and practice tend to drive / motivate each other — often with lags
and gaps. Varies widely across different problem classes.

Theory and Practice: Intro

Complexity in Nonlinear Optimization

I History
I Optimization problems from Machine Learning
I Nonconvex Nonlinear Optimization

Theory and Practice in Linear Programming (if time allows)

A personal perspective! Your mileage may vary...
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Continuous Optimization Problems
Unconstrained Minimization:

min
x

f (x), where f : Rn → R is smooth.

Constrained Optimization (“Nonlinear Programming / NLP”):

min
x

f (x) subject to c(x) = 0, d(x) ≥ 0,

c : Rn → Rp and d : Rn → Rm are smooth vector functions (constraints).

Many special cases have been studied, e.g.

f , c , and d all linear (linear programming)

f quadratic, c and d linear (quadratic programming)

constraints c(x) and d(x) linear functions;

c null, d(x) = x (bound-constrained)

d null (equality constrained)
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Linear Programming (LP)

A very important special case is linear programming:

min
x∈Rn

cT x subject to Ax = b, x ≥ 0,

where A ∈ Rm×n, b ∈ Rm.

LP became important during and after WWII for solving practical problems
of resource allocation, and has remained a central problem ever since.

The modern history of optimization dates to the mid-late 1940s, with the
formulation of LP and discovery of the simplex method (Dantzig).

Wright (UW-Madison) Optimization Theory and Practice U.Penn, April, 2024 4 / 40



Some History: Theory and Practice in Optimization

Optimization formulations arose from the needs of applications - starting
with LP. The formulations provide mathematical abstractions around
which theory and algorithms can be developed.

Optimality conditions quickly follow formulations. e.g. theory for
optimality of nonlinear programming (Karush-Kuhn-Tucker, 1948-51).

(Theory around formulations continues to be an important topic, e.g.
weaker optimality conditions, sensitivity to data perturbations; well
posedness, degeneracy, properties that promote faster convergence,...)

Iterative algorithms (starting with simplex for LP) are founded in
optimality conditions. Information about the functions (and their
gradients) is used to generate a sequence of points whose limits or
accumulation points satisfy optimality conditions.

Much optimization research is about devising algorithms that are
“efficient” for certain problem classes or paradigms; using math to analyze
their behavior; and applying them to important practical problems.
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What Kinds of Convergence Theory?

Theory for nonlinear optimization algorithms 1950s-1990s made standard
assumptions (usually: C 2 functions) and derived two main kinds of results:

asymptotic behavior of the iteration sequence: accumulation points /
limits satisfy certain optimality conditions.

local rates: linear, sublinear, superlinear convergence of sequences to
their limits (where some additional properties are satisfied at the
limit). Convergence to a nearby solution from a good initialization.

Also tighter analyses of important subclasses of the main problem classes.

These kinds of analysis shed light on some important features of
algorithms. But they leave other important questions unanswered, e.g.

How many iterations / how much computation will I need to find an
approximate solution?

Given the type of problem I am solving, which algorithms make the
best use of the information I can provide about the functions?
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Complexity in Nonlinear Optimization

Complexity results are a refinement of the asymptotic analysis, typically
requiring some “global” assumptions on the properties of the functions.

The additional assumptions allow quantitative guarantees to be made
about progress toward optimality at each iteration — not just the possibly
minuscule improvement available for generic smooth functions.

For nonlinear optimization, these concepts arose in the USSR
[Nemirovski and Yudin, 1983] and became popular in the west later,
particularly after the machine learning community became heavily engaged
in optimization (2009-)

(In linear programming, complexity was always a central issue.)
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Additional Assumptions.

Typical additional assumptions:

gradients are Lipschitz continuous (“L-smooth”)

‖∇f (y)−∇f (z)‖ ≤ L‖y − z‖;

strong convexity:

f (y) ≥ f (x)+∇f (x)T (y−x)+
1

2
σ‖x−y‖2 for all x , y and some σ > 0.

Also higher-order smoothness results; results on the geometry of the
feasible set (defined by the constraints); sharpness; PL and KL conditions;
....
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Major Focus

We focus mainly on unconstrained optimization of a smooth function:

min
x

f (x), where f : Rn → R is smooth.

There are many issues concerning the relationship between theory and
practice of algorithms that arise even in this setting.

Interesting cases (ubiquitous in ML) where f has additional structure:

expectation: f (x) = Eξh(x ; ξ),

finite sum: f (x) =
1

N

N∑
j=1

fj (x).
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(Approximate) Solutions: Unconstrained Optimization

Consider various conditions for optimality, and approximate optimality:

Function suboptimality: f (x)− f ∗ ≤ ε, where f ∗ is the optimal
function value and ε > 0.

Distance to solution: dist(x ,S) = minx∗∈S ‖x − x∗‖ ≤ ε, where S is
the set of minimizers of f (x).

First-order condition: ∇f (x) = 0.

I When f is convex, this condition is sufficient for x to be a
minimizer of f .

I Approximate first-order condition: ‖∇f (x)‖ ≤ εg .

Second-order condition: ∇2f (x) � 0⇔ λmin(∇2f (x)) ≥ 0.

I For smooth nonconvex functions, this is necessary for x to be a
local minimizer.

I Sufficient condition has strict inequality: λmin(∇2f (x)) > 0.
I Approximate second-order condition: ∇2f (x) � −εH I .
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Why Approximate Solutions?

For nonlinear problems, iterative algorithms converge to a solution only
asymptotically — generally, no iterate xk actually satisfies optimality
conditions exactly.

But for strictly positive tolerances ε (or εg or εH) these algorithms
typically arrive at approximate optimality within a finite number of
iterations — this number being a function of ε.

Typically O(ε−1) or O(ε−2) or O(| log ε|).
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Convergence Rates and Complexity Bounds

Complexities can be given either in rates as a function of iteration k , or
bound on number of iterations required for an ε-approximate solution.

Easy to translate between the two.

Let τk > 0 is the quantity whose bound is decreasing to zero with k, e.g.

τk = ‖∇f (xk )‖, [f (xk )− f ∗], or ‖xk − x∗‖.

When is τk ≤ ε?
sublinear: τk ≤ A

k : k ≥ A
ε ;

sublinear: τk ≤ A√
k

: k ≥ A2

ε2 ;

sublinear: τk ≤ A
k2 : k ≥

√
A√
ε

;

linear: τk ≤ (1− φ)kτ0 : k ≥ 1
φ | log(ε/τ0)|

quadratic: τk ≤ ψτ2
k−1 : k ≥ log | log ε|.
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Oracle Complexity for Nonlinear Optimization

Arithmetic measures of complexity are popular in such problems as linear
programming, convex quadratic programming, linear complementarity.

But for nonlinear optimization, we cannot usually talk about arithmetic
measures of complexity, because the arithmetic cost of evaluating function
information varies greatly across problem instances.

[Nemirovski and Yudin, 1983] propose an oracle model, based on a well
defined “unit of information” (oracle) about the function f , for example:

evaluation of f (x) at a given point x ;

evaluation of (f (x),∇f (x)) at a given x ;

evaluation of an unbiased estimate g of ∇f (x) at a given x .

Oracle complexity of an algorithm is a bound on the number of such units
needed to identify an ε-approximate solution.

The concept of evaluation complexity is similar — the thing we are
“evaluating” can be viewed as an oracle.
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Iteration Complexity

Upper-bound the number of iterations of a given algorithm to find an
ε-approximate solution.

For nonlinear problems, algorithms often have two or three nested
levels of iteration. The most useful iteration complexity analyses find
bounds on the number of iterations at each level (or the total number
of inner iterations).

Iteration complexity are not so appealing when each iteration may
require solution of a nontrivial problem e.g. finding the global
minimizer of some high-degree polynomial.

For some f (particularly f arising in machine learning), the cost of linear
algebra can be significant too (but usually doesn’t change the overall
complexity picture).
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Gradient and Momentum Methods

To minimize f , each step of a gradient descent (GD) method has the form

xk+1 = xk − αk∇f (xk ).

Each step of a momentum method combines the latest gradient direction
∇f with the previous step which, in turn, encodes all previous gradients:

Heavy-ball, conjugate gradient:

xk+1 = xk + βk (xk − xk−1)− αk∇f (xk ).

Nesterov accelerated gradient:

xk+1 = xk + βk (xk − xk−1)− αk∇f (xk + βk (xk − xk−1)).

(Choices of αk and βk are critical.)
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Complexity: Upper and Lower Bounds
The term “complexity” usually refers to upper bounds on the work
required by a particular algorithm on a given problem class.

But there is also interest in lower bounds, which are typically defined for
an algorithm class / problem class pair.

Lower bounds usually derived from a worst-case instance:

“There is an instance in the given problem class for which all
algorithms in the algorithm class require at least N(ε) oracle calls
to find an ε-approximate solution.”

An optimal algorithm is one in the algorithm class for which the upper and
lower bounds are the same (within a constant) on the problem class.
Nesterov’s accelerated gradient [Nesterov, 1983] is optimal for

Problem class: Minimization of 1-smooth convex functions f ;

Algorithm class: Methods for which xk − x0 lies in the span of all
gradients encountered up to this iteration.

Wright (UW-Madison) Optimization Theory and Practice U.Penn, April, 2024 16 / 40



Lower Bound Instance for First-Order Gradient Methods
f (x) = 1

2 xT Ax − eT
1 x (so ∇f (x) = Ax − e1), where

A =



2 −1 0 0 . . . . . . 0
−1 2 −1 0 . . . . . . 0
0 −1 2 −1 0 . . . 0

. . .
. . .

. . .

0 . . . −1 2 −1
0 . . . 0 −1 2


, e1 =


1
0
0
...
0

 .

Solution x∗ has components x∗n−i+1 = i
n+1 , for i = 1, 2, . . . , n.

For x0 = 0, kth iterate of a first-order method can have nonzero entries
only in its first k components, so

‖xk − x∗‖2 ≥
n∑

j=k+1

(x∗j )2 ≥ 1

8
‖x0 − x∗‖2,

f (xk )− f ∗ ≥ 3

8(k + 1)2
‖x0 − x∗‖2, k = 1, 2, . . . ,

n

2
− 1.
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Lower-Bound Instance

The 1/k2 rate for f (xk )− f ∗ matches the upper bound.

Not fully satisfying because it only “works” over the first n/2 iterations,
which is not always an interesting regime.

Moreover, if we make small random perturbations to the gradients, they
“fill in” and the argument based on sparsity fails.

Can be fixed (e.g. [Woodworth, 2021]) by generalizing to an
argument based on subspaces.

Finding the optimal linear combination of gradients sounds unrealistic....

But conjugate gradient actually achieves property this when f is
convex quadratic!
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Results for the Worst-Case Example (n = 100)
Nesterov’s method for weakly convex functions does better than GD (at
least after early iterations).
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Results for the Worst-Case Example (n = 100)
Nesterov’s method for strongly convex is worse over the first n/2
iterations, though better than GD asymptotically.
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Upper Bounds: Loose or Tight?
Sometimes the upper bounds reflect typical practical behavior.

In other cases the bounds are loose — practical behavior of an algorithm is
much better than the complexity analysis suggests. WHY?

Conservative assumptions about function properties e.g.
L-smoothness. Local geometry may allow much more progress to be
made at many iterations than worst-case analysis suggests.

Adaptive algorithms can exploit variation of function properties across
the domain. These gains are reflected in practice but it is hard to find
an abstraction that allows theoretical analysis.

I Theory by itself may not lead to good algorithm design.

The worst-case instances are rare in the function class.

I Simplex method for linear programming is the classic example of
bad but rare worst cases.

The problem has some additional (hidden?) structure that can be
exploited to get tighter complexity bounds.
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Complexity in Optimization: pre-2008

In LP, theoretical CS researchers were always keenly interested in
complexity, and the properties of the simplex method.

In optimization, much work on complexity for convex problems:

The polynomial-time revolution in LP [Khachiyan, 1979],
[Karmarkar, 1984] sparked a lot of work in the optimization
community, on developing new LP methods and extending to
semidefinite programming and conic optimization.

I Including researchers with a “nonlinear” background.

[Nemirovski and Yudin, 1983] was the founding document of “oracle
complexity” (see above).

The interior-point book of [Nesterov and Nemirovskii, 1994] was
extremely influential in promoting a complexity perspective for convex
nonlinear problems (including constrained problems). This emphasis
was reflected in [Boyd and Vandenberghe, 2003].
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Nesterov’s 2004 Book

[Nesterov, 2004] deals largely with complexity issues for nonlinear convex
optimization, with structured nonsmoothness.

Citations show the growth of interest in this topic!
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In the foreword, Nesterov credits Karmarkar’s paper — particularly its
conjunction of good complexity and good computational results — with
the growth of interest in complexity analysis.

(Prescient as usual - interest grew much more after 2004!)
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What Changed Since 2008?

Interaction between machine learning and optimization (OptML)
expanded greatly. Ongoing!

I Joint sessions at 2009 ISMP in Chicago (organized by Bennett,
Scheinberg, Wright).

I [Nemirovski et al., 2009] — a study of stochastic gradient (SGD)
appeared in SIOPT, at a time when SGD was emerging as the
essential algorithm in ML.

I Optimization saw an influx of researchers from ML and
theoretical CS, who brought an intense interest in complexity.

Growing interest in complexity for nonconvex optimization.

I [Nesterov and Polyak, 2006] was highly influential.
I Ubiquity of benign nonconvexity.
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OptML: Stochastic Gradient (SGD)
A quest to improve complexity bounds led directly to new optimization
algorithms for convex finite-sum problems that arise in ML:

f (x) =
1

n

n∑
i=1

fi (x),

(where x are model parameters, each fi depends on a single item of data.)

The basic SGD algorithm uses ∇fik (xk ) for some randomly chosen
ik ∈ {1, 2, . . . , n} as an unbiased proxy for ∇f (xk ). Step is

xk+1 = xk − αk∇fik (xk ).

Later methods combine full-gradient descent (GD) with SGD. Better
complexity + better numerical performance in some settings.

SAG [Schmidt et al., 2016]

SVRG [Johnson and Zhang, 2013]

These and other extensions are used for nonconvex problems too (neural
networks), but the analysis was not extended until later, by Lan et al.
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OptML: Coordinate Descent

Coordinate descent (CD) for minx∈Rn f (x) was popular in applications for
many years. Iteration k :

choose index ik ∈ {1, 2, . . . , n}, randomly or cyclically;

step xk+1 = xk − αk∇ik f (xk )eik where eik is vector of all 0 except for
1 in position ik . (Just one coordinate changes at each iteration.)

Little convergence analysis until until [Nesterov, 2012] (randomized),
[Beck and Tetruashvili, 2013] (cyclic). Review paper: [Wright, 2015].

In important ML applications, CD has potential complexity advantages
over full-gradient descent (GD). Better CD variants over the past 10 years
have been motivated by both:

improving worst-case complexity;

stronger computational performance.

There has been a synergy between the theory and practice.
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OptML: Coordinate Descent
Convergence rates of different variants of CD together with empirical
studies for [Wright, 2015] yielded some deeper insights.

Cyclic (C): Cycle through indices: 1, 2, 3, . . . , n, 1, 2, 3, . . . ;

Random (R): Choose index ik randomly with replacement from
{1, 2, . . . , n}.
Random Permutations (RP): Within each epoch of n iterations,
choose index ik randomly without replacement from {1, 2, . . . , n}.

Convergence theory for C can be applied trivially to RP too.

On convex quadratic f , theoretical rates are slower for C / RP than for R.
But most problems show little difference in convergence behavior between
the three variants.

Exception: When the Hessian has one dominant eigenvalue whose
eigenvector is in general orientation, C achieves its worst-case (slower)
behavior. But rates for RP track rates for R!

Explained in [Lee and Wright, 2018], [Wright and Lee, 2020].
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OptML: Parallel Algorithms

Since 2011, there has been a huge literature on parallel variants of SGD
and CD, in which complexity analysis plays a central role.

Motivation: Problems in ML are huge and need parallelism in practice.

Anticipated in [Bertsekas and Tsitsiklis, 1989]

I (not much about complexity there)

Parallel Asynchronous SGD: Hogwild! [Niu et al., 2011].

Parallel Asynchronous CD: [Liu et al., 2015, Liu and Wright, 2015].

Many parallel synchronous variants too.

Parallel SGD techniques central to federated learning.

Computation and communication considerations in FL are complicated,
and many complex variants of SGD have been proposed that suit different
platforms and contexts. [Woodworth, 2021] has some lower-bound theory.

Practice tends to drive theory in this area!
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OptML: Benign Nonconvexity
Not much interesting complexity in finding the the global minimizer of
general nonconvex functions [Nemirovski and Yudin, 1983] — it’s hard!

But many nonconvex problems in ML are benign, easily solved despite the
nonconvexity.

matrix problems with explicit low-rank (“Burer-Monteiro”)
parametrizations e.g. [Burer and Monteiro, 2003],
[Burer and Monteiro, 2005], [Chi et al., 2019];

tensor problems with certain low-rank decompositions e.g.
[Han et al., 2020];

phase retrieval [Candès et al., 2015]; phase synchronization
[Boumal, 2016];

AC power flow e.g. [Zhou and Low, 2021];

dictionary learning e.g. [Sun et al., 2016];

neural networks (NNs).

Ju Sun’s excellent page: https://sunju.org/research/nonconvex/
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Benign Nonconvexity: Structures and Properties

For these and other nonconvex problems, there are algorithms that can
find useful solutions with interesting complexity bounds.

Several structures and properties promote benign nonconvexity:

All local minima are global minima in some problems.

All saddle points are strict saddle points, so are easy to escape from
(e.g. by detecting negative curvature in the Hessian, or making a
small random step);

Polyak- Lojasiewicz condition: ‖∇f (x)‖2 ≥ 2c(f (x)− f ∗).

Correlated gradient (regularity) condition:

∇f (x)T (x − x∗) ≥ α‖x − x∗‖2
2 + β‖∇f (x)‖2

2, some α, β > 0;

Some problems allow smart initialization schemes that place x0 near a
global minimizer.

Here, empirical observations are giving rise to interesting new theory!
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Example: Matrix Sensing
Recall Matrix Sensing (Application III):

min
X

1

2m

m∑
j=1

(Aj (X )− yj )
2.

When symmetric X has low rank r , write X = ZZ T where Z ∈ Rn×r .

Aj (X ) = 〈Aj ,ZZ T 〉 for some symmetric Aj ∈ Rn×n.

Assume that the Aj satisfy a restricted isometry property (RIP):

(1− δq)‖X‖2
F ≤

1

m

m∑
j=1

〈Aj ,X 〉2 ≤ (1 + δq)‖X‖2
F ,

for all X with rank at most q and some δq ∈ (0, 1).

Formulation is thus

min
Z

h(Z ) :=
1

2m

m∑
j=1

(〈Aj ,ZZ T 〉 − yj )
2.
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Example: Matrix Sensing

If the properties above hold with q = 2r and δ2r ∈ (0, .1], then

All local minima of F are global;

All stationary points of F that are not strict have negative curvature
in ∇2F (Z ).

[Bhojanapalli et al., 2016]

Can initialize cleverly: The matrix

Y :=
1

m

m∑
j=1

yj Aj

is close to the solution ZZ T if the conditions above hold. Steepest descent
on F converges from such a starting point.
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Benign Nonconvexity in Overparametrized Neural Networks

Modern neural networks have many more parameters (weights) x
than needed to exactly fit the training data.

The finite-sum loss function N−1
∑N

i=1 fi (x) to be minimized is
nonconvex.

Still, gradient methods and SGD, if run long enough, achieve zero
loss. That is, they fit the training data perfectly!

Shockingly, they don’t overfit. The solutions found by these methods
still do well at predicting data outside the training set (but from the
same distribution). Implicit regularization.

Understanding these phenomena in theoretical deep learning is engaging
the interest of some top people in statistics, learning, PDEs, .... Examples:
[Belkin et al., 2018], [Belkin et al., 2019],[Belkin, 2021],
[Bartlett et al., 2021] [Chizat and Bach, 2020], [Mei et al., 2018],
[Weinan et al., 2020a], [Weinan et al., 2020b].
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Complexity for Smooth Nonconvex Optimization

Motivated by [Nesterov and Polyak, 2006], there are many works on
complexity bounds for methods that find approximate second-order points:

‖∇f (x)‖ ≤ εg , ∇2f (x) � −εH I .

These methods vary in practicality. Some are motivated by a desire to
optimize complexity; others are derived from known practical approaches.

[Nesterov and Polyak, 2006] finds step p by solving the quadratic
Taylor-series expansion added to a cubic term:

pk = arg min
p
∇f (xk )T p +

1

2
pT∇2f (xk )p +

1

6
M‖p‖3,

where M is a Lipschitz constant for ∇2f .

When εH = ε
1/2
g , requires O(ε

−3/2
g ) iterations.

Actually proposed much earlier [Griewank, 1981], with different motivation.
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Smooth Nonconvex: Other Approaches

Line-search with negative curvature
[Royer and Wright, 2018, Royer et al., 2020];

Trust region [Agarwal et al., 2016], [Curtis et al., 2021];

Gradient descent with perturbations to avoid saddle points
[Jin et al., 2017a, Jin et al., 2017b]

Local convexification [Carmon et al., 2018].

Typically have iteration complexity O(ε
−3/2
g ) or O(ε−2

g ).

Some have oracle complexity bounds too (where the “oracle” is a gradient

evaluation or a Hessian-vector product). This is typically O(ε
−7/4
g ).

These bounds are highly pessimistic, but can be improved in certain
settings, including some benign nonconvex settings, e.g.
[O’Neill and Wright, 2023] obtains O(| log ε|) bounds for low-rank matrix
problems.
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Pessimistic (or Nonexistent) Complexity Bounds Arise
Elsewhere in Nonconvex Optimization
Newton and quasi-Newton methods are highly successful on nonconvex
optimization, but convergence theory is only local.

except that when a self-concordance property is satisfied, can prove
global complexity for Newton’s method.

Limited-memory quasi-Newton (L-BFGS) doesn’t even have interesting
local convergence theory: Essentially, “with safeguards, L-BFGS is not too
much worse than gradient descent.” In practice it is much better.

Convergence / complexity results for nonlinear conjugate gradient methods
are also limited, but these methods often work well on large problems.

[Nemirovski and Yudin, 1983] give a lower-bound case in which it is
no better than gradient descent.

[Karimi and Vavasis, 2021] for convex problems: Nonlinear CG with
temporary switching to accelerated gradient when insufficient progress
is made. Gets optimal rates for convex and strongly convex, plus
good practical performance.
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Pursuit of Good Complexity Doesn’t Necessarily Lead to
Good Algorithms

The quest for methods that achieve optimal theoretical complexity often
does not yield good practical methods — though the theory can be
interesting, and can lead to practical methods later.

LP Ellipsoid Method: [Khachiyan, 1979]

Sorting Networks - networks that sort n numbers by a succession of
pairwise comparisons.

I Simple networks (e.g. bitonic) do O(n log2 n) comparisons.
I Optimal networks (AKS) require O(n log n), but there is a

constant 1060 in the O() term.

Log-barrier for bound-constrained minimization
[O’Neill and Wright, 2021] optimal in theory, but much slower than
the projected Newton method in [Xie and Wright, 2021].
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Closing the Gaps Between Theory and Practice
There is a lot of interesting research still to do in closing gaps between
complexity upper bounds and practical behavior of algorithms.

Are the hard problems rare? (“Small measure” in the space of
problem data?)

Can all hard problems be converted to easy problems via a small
perturbation? (Smoothed analysis)

Can we close the gap by refining / dividing the problem class?

Can we explain observed differences in algorithm behavior by theory?

Examples of the last point:

Weird behavior of coordinate-descent variants on convex quadratics
with one dominant eigenvalue: eventually explained in
[Lee and Wright, 2018], [Wright and Lee, 2020].

Powell’s work on the difference between BFGS and DFP
quasi-Newton methods in the mid-1980s.
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Conclusions

Fletcher (1987): Optimization is a “fascinating blend of theory and
computation, heuristics and rigor.”

(Quoted in the foreword of [Nocedal and Wright, 1999].)

Interplay between theory and practice has always driven optimization.

Within optimization — particularly optimization problems from ML, and
nonconvex problems — complexity theory has attained prominence as a
means to design interesting algorithms and understand their properties.

“Engineering” algorithms is still important to their practical applicability.

Much work remains in using complexity and other theoretical perspectives
to explain the behavior of interesting algorithms on interesting problems.
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Liu, J., Wright, S. J., Ré, C., Bittorf, V., and Sridhar, S. (2015).
An asynchronous parallel stochastic coordinate descent algorithm.
Journal of Machine Learning Research, 16:285–322.
arXiv:1311.1873.

Mei, S., Montanari, A., and Nguyen, P.-M. (2018).
A mean field view of the landscape of two-layer neural networks.
Proceedings of the National Academy of Sciences, 115(33):E7665–E7671.

Wright (UW-Madison) Optimization Theory and Practice U.Penn, April, 2024 6 / 20



References VII

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. (2009).
Robust stochastic approximation approach to stochastic programming.
SIAM Journal on Optimization, 19(4):1574–1609.

Nemirovski, A. S. and Yudin, D. B. (1983).
Problem Complexity and Method Efficiency in Optimization.
John Wiley.

Nesterov, Y. (1983).

A method for unconstrained convex problem with the rate of convergence O(1/k2).
Doklady AN SSSR, 269:543–547.

Nesterov, Y. (2004).
Introductory Lectures on Convex Optimization: A Basic Course.
Springer Science and Business Media, New York.

Nesterov, Y. (2012).
Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22:341–362.

Nesterov, Y. and Nemirovskii, A. S. (1994).
Interior Point Polynomial Methods in Convex Programming.
SIAM Publications, Philadelphia.

Wright (UW-Madison) Optimization Theory and Practice U.Penn, April, 2024 7 / 20



References VIII

Nesterov, Y. and Polyak, B. T. (2006).
Cubic regularization of Newton method and its global performance.
Mathematical Programming, Series A, 108:177–205.
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Linear Programming: Optimality

min
x∈Rn

cT x subject to Ax = b, x ≥ 0.

A ∈ Rm×n, b ∈ Rm.

Optimality conditions: ∃λ ∈ Rm, s ∈ Rn such that

Ax = b, (1a)

ATλ+ s = c , (1b)

xi si = 0, i = 1, 2, . . . , n, (1c)

(x , s) ≥ 0. (1d)

System of (mildly) nonlinear equations, with bounds.

Approximate solutions to the LP typically satisfy all conditions except
(1c), which is replaced by

µ :=
1

n
xT s =

1

n

n∑
i=1

xi si ≤ ε, for some ε > 0.
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Real-number model: LP

The real number complexity model of [Blum et al., 1998], applied to LP,
assumes that

Each (nonzero) entry in (A, b, c) requires 1 unit of storage.

each arithmetic operation with one or two real numbers requires 1
unit of computation.

This model is much closer to floating-point computations than the
traditional bit-complexity model, which assumes that the data (A, b, c) are
rational and is motivated by the Turing machine model of computation.

For interior-point methods for LP, take product of the bound on the
number of iterations and the linear algebra cost per iteration, which is
(naively) O(n3).

Classically, get bounds between O(n3.5| log ε|) and O(n5| log ε|)
real-number operations. (But see later!)
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Simplex Method for LP: Complexity

The simplex method developed by Dantzig in the 1940s was (and is) highly
effective in practice, typically requiring a modest multiple of n iterations.
Despite much research over 75 years, no polynomial variant is known.

[Klee and Minty, 1972] devised an LP for which the number of simplex
pivots is exponential in n.

Remarkable example of a wide gap between complexity theory and
practical performance. Efforts to close it include:

[Borgwardt, 1987] average-case analysis: average number of pivots
over some distribution of LP data (A, b, c).

[Spielman and Teng, 2004] smoothed analysis: “maximum over
inputs of the expected performance of an algorithm under small
random perturbations of that input.” Show that simplex has
smoothed complexity polynomial in n.
(Also polynomial in 1/(std dev of the perturbations).)
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LP in Polynomial Time
The poor worst-case complexity of simplex was a strong motivator for the
search for polynomial-time methods.

The first — the ellipsoid method of [Khachiyan, 1979] — is impractical.

The “projective algorithm” of [Karmarkar, 1984] was a breakthrough.

Claims for good practical performance too, not fully vindicated.

But it connected to an earlier stream of work in optimization (log
barrier: [Frisch, 1955]) and sparked development of related methods
that quickly proved to be competitive: primal-dual interior-point
(PDIP) methods.

PDIP methods apply a continuation technique to the KKT conditions (1),
replacing complementarity condition xi si = 0 by xi si = µ > 0 and

Driving µ ↓ 0 in a carefully controlled way;

Maintaining x and s strictly positive throughout: “interior-point”;

Taking Newton-like steps, with backtracking to keep x , s positive.
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Complexity of PDIP Variants: Classical Approaches

Classical theory for PDIP (1988-1994) has iteration complexity ranging
from O(n1/2| log ε|) to O(n2| log ε|), for different variants.

There is an almost inverse relationship between “power of n” and
“number of iterations required in practice.”

For a given method, number of iterations is almost independent of n.

The analysis is elementary: an end-to-end complexity result can be
proved in a single lecture of a graduate course.
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Complexity of PDIP Variants: Newer Approaches

PDIP methods with improved complexity have been developed recently by
Yin Tat Lee, Sidford, Madry, Cohen, Song, van den Brand, and others (see
e.g. [van den Brand et al., 2020], [van den Brand, 2020],
[Cohen et al., 2021]). Tied to

cost of n × n matrix multiplication O(nω) for ω ≈ 2.38, or

number of nonzeros in A.

In fact, LP complexity has essentially caught up to matrix multiplication
complexity (to within an O(log n) factor).
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Recent Progress in LP Complexity (Yin Tat Lee, 2021)
min cT x s.t. Ax = b, x ≥ 0.

Red: LP complexity; Blue: matrix multiplication complexity.

Current LP record of 2 + 1
18 assumes that matrix mult complexity is ω = 2.
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Theoretically Faster LP Methods

Some of these methods are based on practical PDIP methods, but

Compute the iterates and Newton steps only approximately;

Don’t form and factor the coefficent matrices from scratch for the
Newton steps — low-rank updates from earlier iterations give a
sufficiently accurate step.

Some use weighted variants of the central path;

Some exploit special properties of particular problems e.g. max-flow.

Aaron Sidford: “An exercise in dynamic data structures” A unified
description of factorization updating is [van den Brand, 2021].

Practice → Theory: What was thought of as a grungy numerical software
implementation issue — maintaining matrix factorizations efficiently — is
a key aspect of these theoretical developments.

The improvements are not (yet) relevant to practice.
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