Online Learning over a Finite Action Set with Limited Switching

Jason Altschuler \& Kunal Talwar
COLT 2018
Google

Online learning over a finite action set: classical setup

- T-iteration repeated game between algorithm \& adversary:

In each iteration $t \in\{1, \ldots, T\}$

Choice. Simultaneously:
Algorithm (randomly) chooses action $I_{t} \in\{1, \ldots, n\}$
Adversary chooses losses $\ell_{t}:\{1, \ldots, n\} \rightarrow[0,1]$

Feedback. Either:
Prediction from Experts (PFE) setting: Algorithm observes all losses ℓ_{t}
Multi-Armed Bandit (MAB) setting: Algorithm observes only $\ell_{t}\left(I_{t}\right)$

- Classical goal: min cumulative loss w.r.t. meaningful baseline:

$$
\operatorname{Regret}_{T}:=\sum_{t=1}^{T} e_{t}\left(I_{t}\right)-\min _{i^{*} \in\{1, \ldots, n\}} \sum_{t=1}^{T} \ell_{t}\left(i^{*}\right)
$$

Switching as a resource

- Switching between actions is bad in applications

$$
\text { Switches }_{T}:=\sum_{t=2}^{T} \mathbf{1}\left\{I_{t}=I_{t-1}\right\}
$$

- Many such applications [see paper for long list...]
- This motivates viewing switching as a resource.
- Leads to a bi-criteria optimization problem. Formalize by:

Switching-cost: incur additional loss of c every switch. [Expensive but unlimited.]

Switching-budget: limited to S total switches in game. [Free but limited.]

Our goal: understand tradeoff between Regret \& Switches.

Our Contributions

I. Present the first PFE algorithms which w.h.p. achieve the optimal order for both Regret and Switches, resolving COLT 2013 open problem of Devroye, Lugosi, and Neu.

- Many existing algorithms work in expectation, but no h.p. guarantees.
- Efficiently extendable to online combinatorial optimization with limited switching.

2. Using the above and several reductions, we unify previous work and completely characterize the complexity of the switching-budget problem (up to small polylog factors): for both the PFE and MAB problems, for all switching budgets, and for both expectation and h.p. guarantees.

- Shows qualitatively different behaviors for full-info \& partial-info settings.
- Implies duality between switching costs \& switching budgets (a priori, only one reduction is trivial).

Contribution I: first h.p. algorithms for switching-cost PFE

- General framework to convert an algorithm with optimal Regret \& Switches expectation guarantees, into an algorithm with analogous h.p. guarantees:

```
while in iteration <T do
    Run }\mathcal{A}\mathrm{ with fresh randomness. Stop when use }\mp@subsup{S}{}{\prime}=O(\sqrt{}{\frac{T\operatorname{log}n}{\operatorname{log}\frac{1}{\delta}}})\mathrm{ switches.
end
```

- In words: split T iterations into $N \approx \log \frac{1}{\delta}$ variable-length epochs. Restart epoch once uses S ' switches, with fresh randomness.
- Variable-length epoch is (provably) essential.
- Analysis is broken into 2 parts:
I. H.p. switching guarantee: show $\mathbb{P}(\#$ epochs $>N) \leq e^{-N}$
- Can prove in black-box manner with just E [switching] bounds for A (no other info on A needed)

2. H.p. regret guarantee: show cumulative regret concentrates around (\# epochs) \times ($E[R e g r e t]$ in single epoch).

- Can do for FPL-based algorithms.
- This part of the analysis is not black-boxed as it depends on the algorithm A used.
- Examples of algorithms A that work with our framework:
- Multiplicative Follow the Perturbed Leader [Kalai and Vempala, 2005]
- Prediction by Random Walk Perturbation (+ combinatorial version) [Devroye, Lugosi, and Neu, 2013]

Open question: uniform h.p. algorithms?

Contribution 2: complexity landscape of online learning with limited switching

