Online Learning over a Finite Action Set with Limited Switching

Online learning over a finite
action set: classical setup

e T-iteration repeated game between algorithm & adversary:

In each iterationt € {1,..., T}

Choice. Simultaneously:

Algorithm (randomly) chooses action [, € {1,...,n}

Adversary chooses losses ¢, : {1,...,n} — [0,1]

 Feedback. Either:

Prediction from Experts (PFE) setting:
Algorithm observes all losses 7,

Multi-Armed Bandit (MAB) setting:
Algorithm observes only 7 (1))

* Classical goal: min cumulative loss w.r.t. meaningful baseline:

*e{l,...,n} 7
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Regret  := Z (1) — min } Z £ (1)
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Switching as a resource

* Switching between actions is bad in applications

T
Switchesy ;= 2 H{L=1_}
(=2

* Many such applications [see paper for long list...]
* This motivates viewing switching as a resource.

* Leads to a bi-criteria optimization problem. Formalize by:

Switching-cost: incur additional loss of ¢ every switch.

[Expensive but unlimited.]

Switching-budget: limited to S total switches in game.

[Free but limited.]

Our goal: understand tradeoff between Regret & Switches.
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Our Contributions

|. Present the first PFE algorithms which w.h.p. achieve the optimal order for both
Regret and Switches, resolving COLT 2013 open problem of Devroye, Lugosi, and Neu.

® Many existing algorithms work in expectation, but no h.p. guarantees.

e Efficiently extendable to online combinatorial optimization with limited switching.

2. Using the above and several reductions, we unify previous work and completely characterize the

complexity of the switching-budget problem (up to small polylog factors): for both the PFE
and MAB problems, for all switching budgets, and for both expectation and h.p. guarantees.

® Shows qualitatively different behaviors for full-info & partial-info settings.

® Implies duality between switching costs & switching budgets (a priori, only one reduction is trivial).

Contribution I: first h.p. algorithms for switching-cost PFE

® General framework to convert an algorithm with optimal Regret & Switches expectation guarantees, into an

algorithm with analogous h.p. guarantees:

while in iteration <1’ do

Run A with fresh randomness. Stop when use S" = O ( %) switches.
0og g

end

® In words: split T iterations into N & log% variable-length epochs. Restart epoch once uses $° switches, with

fresh randomness.

® Variable-length epoch is (provably) essential.

® Analysis is broken into 2 parts:
|. H.p. switching guarantee: show P(# epochs > N) < e™"
® Can prove in black-box manner with just E[switching] bounds for A (no other info on A needed)

2. H.p. regret guarantee: show cumulative regret concentrates around (# epochs) x (E[Regret] in
single epoch).
® Can do for FPL-based algorithms.
® This part of the analysis is not black-boxed as it depends on the algorithm A used.

® Examples of algorithms A that work with our framework:
® Multiplicative Follow the Perturbed Leader [Kalai and Vempala, 2005]
® Prediction by Random Walk Perturbation (+ combinatorial version) [Devroye, Lugosi, and Neu, 201 3]

Open question: uniform h.p. algorithms?

Contribution 2: complexity landscape of online learning with limited switching
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