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Motivation for Column Subset
Selection (CSS)

* Low-rank approximation is useful in many applications, e.g.
dimensionality reduction, signal denoising, compression, etc.
argmin |4 — X||
X, rank(X )=k
* But matrix columns often have inherent meaning (e.g.

instances by features matrix), and unconstrained low-rank

approximation does not respect this.

* This motivates CSS, which is low-rank approximation in the

column space of A:

argmin ||A — HA[S]A”%‘
SCln], |S|=k

¢

CSS for Dimensionality Reduction

 Common application of CSS: feature selection on instances

by features data matrix

» Unsupervised: doesn’t need labeled data
e Classifier independent: can reuse output for different classifiers

* Interpretable: generate features by subselecting instead of

arbitrary function

e Efficient during inference: feature subselection instead of matrix
multiplication (SVD). CSS good if latency sensitive, projection

matrix prohibitively large, or sparse data

* Has been considered in many previous works: Drineas et al
2004, Frieze et al 2004, Deshpande et al 2006, Drineas et al
2008, Boutsidis et al 2009, Farahat et al 201 |, Civril et al
2012, Guruswami et al 2012, Cohen et al 2015, Farahat et al
2015, Boutsidis et al 2016, to name just a few....

Generalized CSS (GCSS)

o GCSS(AeR™™4 BeR™"2 k) seeks k columns of B to
explain A:

argmin  |A-pgrs1Al%
Sclngl, |S|=k

* Note this is equivalent to:

argIimnax ”HB[S]AH%‘
Sc[nB], |S|=I€ T

denote by f(S)

* GCSS <= maximizing f subject to cardinality constraint

* Intuition: f(S) measures how much the selected columns $
“explain/cover” A
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(Single-machine) Greedy Algorithm

S«

fori=1:k
Pick column B; that maximizes f(Su{B;})
S« Su {BJ}

Return S

Our Contributions

* We prove a tight approximation guarantee for the greedy algorithm.

* We give the first distributed implementation with provable

approximation factors.

* We present further optimizations for the greedy algorithm.

* We find encouraging preliminary empirical results showing these
algorithms have accuracy comparable with the state-of-the-art and

are extremely scalable.

Approximation Guarantee for GREEDY
( B

heorem: Consider GCSS(A, B, k) with accuracy parameter € > 0 .
Let OPT} be an optimal set of columns from B.If =0 (samin(kOPTk))

F(GREEDY,) > (1 -¢) f(OPTy)

\And this is tight up to a constant factor. j

1

o (OPTY) small

* We expect QPT, to be well-conditioned wmp

* Significant improvement upon current bounds, which depend on
worst singular value of any k columns

Proof Sketch

/-Key lemma: If f(GREEDY,) < f(OP1}), there exists v e OPT}, s.t. \

2
F(GREEDY, U) - f(GREEDY, ) > 0, (OPTy) /(O 1) = J(GREEDY, )

4k f(OPTy,
_ OFt)

* In words: exists column in OPT, giving large marginal gain to GREEDY,

* Observe, by definition, f(GREEDY,.,) > f(GREEDY, uv)

* Thus each iteration of GREEDY substantially closes gap to f(OPT}y)

(f(OPT,) - f(GREEDY,))?

Omin(OPT 4% f(OPTy)

0 f(OPTy,)

—_—

f(GREEDY,) f(GREEDY,uv) f(GREEDY,.,;)

e After r=0 (Mmin(’“OPTk)) such iterations, gets within 1-¢ of f(OPTy)

Further Optimizations for GREEDY

* Bottleneck is computing (marginal) gain of candidate column
* Naive implementation of GREEDY has complexity:
O(k-(ng-(kmnya))) = O(k*mnang)

iterations T complexity of marginal utility
marginal utility calls

 GREEDY++ has 4 optimizations that preserve our 1 -¢ approximation:

|. JL Lemma [Johnson & Lindenstrauss 1982, Carlos 2006].

klog(max(nA,nB))

) rows.
€

Randomly project to m'»

Projection-Cost Preserving Sketches [Cohen et al 2015]. Sketch

: k
A with n/y ~ — columns.
E

Stochastic Greedy [Mirzasoleiman et al 2015]. Each iteration

1 . "
only makes %Blog— calls to marginal utility.
£

Updating A and B every iteration [Farahat et al 2013]. After each

iteration, remove projections of A and B on selected column.

1

» GREEDY++ has complexity: O (knBﬁlogﬁlogf) where 7 =max (%, np)

€

Google

(Distributed) Greedy Coreset
Algorithm

* GCSS(A, B, k) with L machines

B

- e
-

S, = GREEDY [A. T
SlzGREEDY(A,Tl 32k ) SzzGREEDY(A,Tz, 32k ) L b (OPTy)

, Omin(OPTy) gﬂﬂ‘V
Designated machine

|

S =GREEDY [ A LLJS- 12k
B ’7:=1 z,amin(OPTk:)

* Easy to implement in MapReduce

* Nuance: need to randomly partition B in first step (can

construct arbitrarily bad instances if don’t randomize)

* Gives 2-pass streaming algorithm in random arrival model

for columns

* Can do multiple rounds for massive datasets and better

approximations

Approximation Guarantee

Theorem [1-round result]: GREEDY-CORE gives objective

O'min(OPTk) '
O'maX(OPTk;)

value of Q( f(OPTk)) In expectation.

O'maX(OPTk) . 1
O'min(OPTk) 19

gives objective value of Q((1-¢)f(OPTy)) in expectation.

Theorem [multiple-round result]: O( ) rounds

Proof Sketch of 1-round result

* Key thought experiment K(x, i): would x € OPT}, be selected

from GREEDY (A, Ti vz, -—@&pm) ?

* Case 1: Exists machine i such that few x € OPT}, pass K(x,i)

—» f(S;) must be large == last stage has good choices.

* Case 2: For all machines i, many = € OPT}, pass K(x, i)

= in random partition of GREEDY-CORE, each = ¢ OPT},
is selected in corresponding machine with high probability.

Empirical results

* Small-scale dataset (mnist) to demonstrate accuracy
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* Large-scale dataset (news20.binary) to demonstrate scalability

Rand 2-Phase DISTGREEDY PCA

m = |5K instances 549 | 81.8(1.0) | 802(723) | 858(1.3)
" = 100K features 592 | 844 (1.0) | 829(164) | 83.6(1.4)
67.6 | 87.9(1.0) 855 (2.4) 90.6 (1.7)

0.033% nonzero entries

2 classes % of matrix covered by selected features.
(Speedup over 2-phase algorithm in parentheses)




