
  Theorem:  Consider                        with accuracy parameter          .

  Let            be an optimal set of columns from B. If                              

   And this is tight up to a constant factor.

• We expect           to be well-conditioned                             small

• Significant improvement upon current bounds, which depend on 
worst singular value of any k columns

Further Optimizations for GREEDY
• Bottleneck is computing (marginal) gain of candidate column

• Naive implementation of GREEDY has complexity:

• GREEDY++ has 4 optimizations that preserve our        approximation:

1. JL Lemma [Johnson & Lindenstrauss 1982, Carlos 2006]. 

Randomly project to                              rows.

2. Projection-Cost Preserving Sketches [Cohen et al 2015]. Sketch 

A with              columns.

3. Stochastic Greedy [Mirzasoleiman et al 2015]. Each iteration 

only makes              calls to marginal utility.

4. Updating A and B every iteration [Farahat et al 2013].  After each 

iteration, remove projections of A and B on selected column.

• GREEDY++ has complexity:                             where 
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Generalized CSS (GCSS)

•                                              seeks k columns of B to 
explain A:

• Note this is equivalent to:

• GCSS            maximizing f subject to cardinality constraint

• Intuition: f(S) measures how much the selected columns S 
“explain/cover” A

Motivation for Column Subset 
Selection (CSS)

• Low-rank approximation is useful in many applications, e.g. 

dimensionality reduction, signal denoising, compression, etc. 

• But matrix columns often have inherent meaning (e.g. 

instances by features matrix), and unconstrained low-rank 

approximation does not respect this.

• This motivates CSS, which is low-rank approximation in the 

column space of A:

CSS for Dimensionality Reduction

•  Common application of CSS: feature selection on instances 

by features data matrix

• Unsupervised: doesn’t need labeled data

• Classifier independent: can reuse output for different classifiers

• Interpretable: generate features by subselecting instead of 

arbitrary function

• Efficient during inference: feature subselection instead of matrix 

multiplication (SVD). CSS good if latency sensitive, projection 

matrix prohibitively large, or sparse data

• Has been considered in many previous works: Drineas et al 
2004, Frieze et al 2004, Deshpande et al 2006, Drineas et al 
2008, Boutsidis et al 2009, Farahat et al 2011, Civril et al 
2012, Guruswami et al 2012, Cohen et al 2015, Farahat et al 
2015, Boutsidis et al 2016, to name just a few....

(Distributed) Greedy Coreset 
Algorithm

• GCSS(A, B, k) with L machines

Empirical results
• Small-scale dataset (mnist) to demonstrate accuracy

m = 60K instances

n = 784 features

10 classes

                   

         

• Large-scale dataset (news20.binary) to demonstrate scalability

m = 15K instances  

n = 100K features

0.033% nonzero entries

        2 classes

Our Contributions
• We prove a tight approximation guarantee for the greedy algorithm.

• We give the first distributed implementation with provable 
approximation factors.

• We present further optimizations for the greedy algorithm.

• We find encouraging preliminary empirical results showing these 
algorithms have accuracy comparable with the state-of-the-art and 
are extremely scalable.
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Approximation Guarantee for GREEDY

Proof Sketch

• Key lemma:  If                                   , there exists               s.t.

 

• In words: exists column in           giving large marginal gain to                       

• Observe, by definition,  

• Thus each iteration of                substantially closes gap to              

• After                          such iterations, gets within        of          

denote by f(S)

• Easy to implement in MapReduce

• Nuance: need to randomly partition B in first step (can 

construct arbitrarily bad instances if don’t randomize)

• Gives 2-pass streaming algorithm in random arrival model 

for columns

• Can do multiple rounds for massive datasets and better 

approximations

Approximation Guarantee

Proof Sketch of 1-round result

• Key thought experiment K(x, i):  would               be selected 

  from                                         ? 

• Case 1: Exists machine i such that few               pass K(x,i)                          

                must be large          last stage has good choices.

• Case 2: For all machines i, many               pass K(x, i)            

        in random partition of GREEDY-CORE, each                   
is selected in corresponding machine with high probability.

fraction of matrix covered
by selected features

accuracy of LIBLINEAR 
SVM using selected features

% of matrix covered by selected features.
(Speedup over 2-phase algorithm in parentheses)

(Single-machine) Greedy Algorithm

   Theorem [1-round result]: GREEDY-CORE gives objective       

   value of                              in expectation.

   Theorem [multiple-round result]:                           rounds

   gives objective value of                               in expectation.


