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Sinkhorn scaling

Our contributions
Simple and practical algorithm to approximate OT distance between distributions on     points in      time.n Õ(n2"�4)

Based on matrix scaling, an approach pioneered by [Cuturi 2013] 

We give:

New analysis of 50-year-old algorithm (Sinkhorn scaling) 
New algorithm with much better performance in practice (Greekhorn scaling)

Same near-linear time 
convergence guarantee!

Optimal transport
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Statistical primitive with many applications in machine 
learning and optimization 

Given:
C

r, c

: cost matrix 
: probability distributions
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+
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OT distance: min hC,P i
s.t. P 2 Rn⇥n
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P1 = r

P>1 = c
} transport 

polytope
Ur,c

Goal: find satisfyingP̂ 2 Ur,c

hC, P̂ i  min
P2Ur,c

hC,P i+ "

Algorithm
1. Approximately solve program with entropic penalty

min
P2Ur,c

hC,P i � ⌘�1H(P )

2. Round approximate solution to (see paper!)

Alternating Bregman projection onto polytopes Greedy Bregman projection onto simpler polytopes

Greenkhorn scaling

From entropy to scaling

Matrix scaling

AX Y

· ·

· ·

=

row/column sums

= ⇧S(A)

Matrix primitive with many applications in theoretical 
computer science and numerical linear algebra

Given:

r, c

: matrix 
: desired row/column sums

2 Rn⇥n
+A

2 Rn
+

Goal: find positive diagonal matrices         such thatX,Y

⇧S(A) := XAY is the Sinkhorn projection.

[Sinkhorn 1967] showed that it can be computed by 
alternating rescalings of rows and columns, but did not 
give effective bounds on rate of convergence

At each step, rescale all rows or all columns [          time]O(n2)

Nonnegative potential decreases at each step byf(A)

At each step, rescale worst row or column [         time]

Nonnegative potential decreases at each step byf(A)

O(n)

Õ(1) 0

While  ,

(large improvement)

Total runtime: 

1

2n
[⇢(r k A1) + ⇢(c k A>1)] appropriate 

generalization 
of K

⇢(r k A1) + ⇢(c k A>1) � "2

� "2/n � "2/n

After iterations, 

(variant of Pinsker)

Õ(n"�2)

kr �A1k1 + kc�A>1k1 .
q
⇢(r k A1) + ⇢(c k A>1)  "

O(n) · Õ(n"�2) = Õ(n2"�2)

K(r k A1) +K(c k A>1)

Õ(1) 0

While  ,K(r k A1) +K(c k A>1) � "2

� "2 � "2

(large improvement)

After iterations, Õ("�2)

kr �A1k1 + kc�A>1k1 .
q
K(r k A1) +K(c k A>1)  "

(Pinsker)

Total runtime: O(n2) · Õ("�2) = Õ(n2"�2)

Theorem [Cuturi 2013]: The penalized program (✽) has 
a unique solution:

(⇤)

Ur,c

with ⌘ ⇡ "�1
log n

A = exp(�⌘C)

argmin
P2Ur,c

hC,P i � ⌘�1H(P ) = ⇧S(A)

where:

(entrywise)

⇧S(·) is Sinkhorn (Bregman) projection onto Ur,c

Penalized OT reduces to matrix scaling

Empirical results
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Potential based analysis (based on dual program): Potential based analysis (based on dual program):

cost per iteration number of iterations cost per iteration number of iterations


