

Neural Information Processing Systems Foundation

Optimal transport

Statistical primitive with many applications in machine learning and optimization

Given:

 $C: \text{cost matrix} \in \mathbb{R}^{n \times n}_+$ r, c: probability distributions $\in \Delta_n$

OT distance: min $\langle C, P \rangle$ s.t. $P \in \mathbb{R}^{n \times n}_+$ transport polytope $P\mathbf{1} = r$ $\mathcal{U}_{r,c}$ $P^{\top}\mathbf{1} = c$ **Goal:** find $\hat{P} \in \mathcal{U}_{r,c}$ satisfying $\langle C, \hat{P} \rangle \le \min_{P \in \mathcal{U}_{r,c}} \langle C, P \rangle + \varepsilon$

Images courtesy M. Cuturi

(*)

Algorithm

I. Approximately solve program with entropic penalty

$$\min_{P \in \mathcal{U}_{r,c}} \langle C, P \rangle - \eta^{-1} H(P)$$

with $\eta \approx \varepsilon^{-1} \log n$

2. Round approximate solution to $\mathcal{U}_{r,c}$ (see paper!)

From entropy to scaling

Theorem [Cuturi 2013]: The penalized program (*) has a unique solution:

$$\underset{P \in \mathcal{U}_{r,c}}{\operatorname{argmin}} \langle C, P \rangle - \eta^{-1} H(P) = \Pi_{\mathcal{S}}(A)$$

where:

 $A = \exp(-\eta C)$ (entrywise)

 $\Pi_{\mathcal{S}}(\cdot)$ is Sinkhorn (Bregman) projection onto $\mathcal{U}_{r,c}$

Penalized **OT** reduces to **matrix scaling**

R. Sinkhorn. Diagonal equivalence to matrices with prescribed row and column sums. The American Mathematical Monthly, 1967.

Massachusetts

$$XAY\mathbf{1} = r$$
$$(XAY)^{\top}\mathbf{1} = c$$