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Computing Wasserstein Barycenters: easy or hard?

Why average? De-noise, compute exemplar, interpolate, cluster,…


Why distributions? Point clouds in machine learning, posterior 
distributions in statistics, images in computer vision, object meshes in 
computer graphics, fMRI scans in neuroscience, … 

Ex: point clouds Ex: statistical models

Wasserstein Barycenters

Barycenter: canonical notion of average, given distance.


argminν

k

∑
i=1

d2(μi, ν)

 norms, Kullback-Leibler divergence, etc.Lp Optimal Transport (aka Wasserstein distance)

Wasserstein Barycenter

(computed with our algorithm)

 BarycenterL2

Algorithmic task

Optimization over probability distribution is joint optimization:


1.Mass: easy! Because LP with 1 variable per atom.


2.Support: key issue! Because non-convex & infinite-dimensional.


• Exists barycenter with  small support.… but how to find?O(nk)
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Fundamental algorithmic primitive in data science and machine learning
Prior work

Exponential runtimes in d:  restrict to -net        runtime factors of  

• Intractable beyond low dimension  


• Intractable beyond a few digits of accuracy

Exponential runtimes in k: restrict to special  points        runtime factors of 

• Intractable beyond tiny inputs (e.g., k=10 images)


ε Ω(1/εd)

nk Ω(nk)

Despite considerable attention, all prior algorithms have exponential runtime or are heuristic. 

Our contributions

My related line of work
• Q:  We showed NP-hard in high dim… What about simple restricted settings?
• A:  Yes, the standard algorithm used for Gaussians runs in polynomial time [ACGS’21]


• Key obstacle: analyze gradient descent on non-convex function


• Key insight: geodesic convexity of  and  in Bures-Wasserstein space


• Q:  This is all for Wasserstein Barycenters… General algorithmic understanding? 
• A:  Yes, polynomial-time algorithms for wide range of Multimarginal Optimal Transport 
problems with “structure” [AB’20].  Also understand fundamental limitations [AB’21c]. 


• Key obstacle: different separation oracles require very different algorithms


• Key insight: unified algorithmic framework that captures nearly all applications


− λmin λmax

Ex: images

Integrate horizontal distancesIntegrate vertical distances

Given:  discrete distributions, each on  points in . 


Goal: compute Wasserstein Barycenter in poly(n,k,d) time.

k n ℝd

Using the Wasserstein distance captures the geometry.  

min
π∈ℳ(μ,ν) ∫ c(x, y)dπ(x, y)

Fixed dimension High dimension
Previously: only solve to a few digits of accuracy


Theorem [AB’21a]: For any fixed dimension d, 
can solve exactly in  time.
poly(n, k)

Previously: only solve for tiny input sizes


Theorem [AB’21b]: Unless P=NP, there is 
no algorithm with poly(n,k,d) runtime.

• Uncovers robust phenomenon: 
hardness extends to approximation, seemingly 
simple cases, and other optimal transport metrics


• Enables computing high-precision 
solutions at previously intractable scales

Exponential-size LP reformulation

• Multimarginal Transportation Polytope: tensors with fixed marginals


                                

• Multimarginal Optimal Transport: LP over this polytope


                                         

• Fact: Wasserstein Barycenter optimization is equivalent to MOT with cost


                                              

• Key issue: this LP has  variables


•  is humongous (e.g.,  images)


• Can’t even store cost tensor C or solution P.  And even if you could, can’t solve…

ℳ(μ1, …, μk) = {P ∈ (ℝn
≥0)

⊗k : mi(P) = μi}

min
P∈ℳ(μ1,…,μk) ∑

x1,…,xk

Px1,…,xk
Cx1,…,xk

Cx1,…,xk
= min

y∈ℝd

k

∑
i=1

∥xi − y∥2

nk

nk k = 100

Solution strategy

Classical Steps for solution

Wasserstein 
barycenter

Poly time in fixed dimension

[Intersect power diagrams]

NP-hard in high dimension

[Reduce from clique]

MOT with 
barycenter cost

Separation oracle 
for dual MOT LP

1. LP reformulation 2. Implicit LP ideas
3. Computational geometry & 
computational complexity ideas

Pro: finite size LP

Con:  variablesnk

Pro: combinatorial opt

Con:  possibilitiesnk

Key algorithmic insight: MOT is not a generic LP. Can solve separation oracle efficiently 
by exploiting the structure of low-dimensional power diagrams.

 Resolves computational complexity of Wasserstein Barycenters

 Uncovers “curse of dimensionality” not present for Wasserstein distance computation

Algorithm for fixed dimension (simplified)

Given:  sets of  points in 

Compute: 

k n ℝd

min
y∈ℝd

min
x1∈S1,…,xk∈Sk

k

∑
i=1

∥xi − y∥2

Trivial given :  take closest point to y. y

But, how to optimize non-convex ?

• Piecewise convex on finitely many “pieces”


• Naive bound is  pieces (1 per tuple )


Key lemma: For fixed d, only poly(n,k) pieces!

Key proof technique: Hyperplanes partition  into few regions.


Algorithm: Enumerate pieces. Easily optimize  on each piece. Return best.

F(y)

nk x1, …, xk

ℝd

y

Dual separation oracle (simplified)

Fundamental question: are Wasserstein Barycenters computable in polynomial time?


