Averaging probability distributions

Fundamental algorithmic primitive in data science and machine learning

Why average!? De-noise, compute exemplar, interpolate, cluster,...

Why distributions? Point clouds in machine learning, posterior
distributions in statistics, images in computer vision, object meshes in
computer graphics, fMRI scans in neuroscience, ...

Ex: point clouds Ex: statistical models Ex: images

Wasserstein Barycenters

Barycenter: canonical notion of average, given distance.
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Using the Wasserstein distance captures the geometry.

Integrate vertical distances Integrate horizontal distances
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Optimal Transport (aka VWasserstein distance)
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Algorithmic task

Given: k discrete distributions, each on n points in R%

Goal: compute Wasserstein Barycenter in poly(n,k,d) time.

Optimization over probability distribution is joint optimization:
I.Mass: easy! Because LP with | variable per atom.

2.Support: key issue! Because non-convex & infinite-dimensional.

® Exists barycenter with O(nk) small support.... but how to find?

Computing Wasserstein Barycenters: easy or hard?
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Fundamental question: are Wasserstein Barycenters computable in polynomial time?

Prior work

Despite considerable attention, all prior algorithms have exponential runtime or are heuristic.

Exponential runtimes in d: restrict to e-net == runtime factors of Q(1/&%

® |ntractable beyond low dimension

® Intractable beyond a few digits of accuracy

Exponential runtimes in k: restrict to special n* points =% runtime factors of Q(n*)

® Intractable beyond tiny inputs (e.g., k=10 images)

Our contributions

Fixed dimension High dimension
Previously: only solve to a few digits of accuracy Previously: only solve for tiny input sizes
Theorem [AB’21a]: For any fixed dimension d, Theorem [AB’21b]: Unless P=NP, there is
can solve exactly in poly(n, k) time. no algorithm with poly(n,k,d) runtime.
® Enables computing high-precision ® Uncovers robust phenomenon:
solutions at previously intractable scales hardness extends to approximation, seemingly
simple cases, and other optimal transport metrics

Resolves computational complexity of Wasserstein Barycenters

Uncovers “curse of dimensionality” not present for Wasserstein distance computation

Solution strategy

Classical Steps for solution
3. Computational geometry &
|. LP reformulation 2. Implicit LP ideas computational complexity ideas
Poly time in fixed dimension
Wasserstein MOT with ’ [Intersect power diagrams]
) — Separation oracle /
barycenter barycenter cost for dual MOT LP
\ NP-hard in high dimension
Pro: finite size LP Pro: combinatorial opt [Reduce from clique]
Con: i variables Con: i possibilities

Key algorithmic insight: MOT is not a generic LP. Can solve separation oracle efficiently

by exploiting the structure of low-dimensional power diagrams.
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Exponential-size LP reformulation

¢ Multimarginal Transportation Polytope: tensors with fixed marginals
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¢ Multimarginal Optimal Transport: LP over this polytope
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® Fact: Wasserstein Barycenter optimization is equivalent to MOT with cost
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® Key issue: this LP has »* variables

e ¥ is humongous (e.g., k = 100 images)

® Can’t even store cost tensor C or solution P. And even if you could, can’t solve...

Algorithm for fixed dimension (simplified)

Dual separation oracle (simplified)

Given: k sets of n points in RY
k

Compute: min  min Z Ix; — yl|?
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Trivial given y: take closest point to y.

But, how to optimize non-convex F(y)?

® Piecewise convex on finitely many “pieces”

e Naive bound is n" pieces (I per tuple x, R
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Key lemma: For fixed d, only poly(n,k) pieces!
Key proof technique: Hyperplanes partition R into few regions.

Algorithm: Enumerate pieces. Easily optimize y on each piece. Return best.

My related line of work

We showed NP-hard in high dim... What about simple restricted settings?
Yes, the standard algorithm used for Gaussians runs in polynomial time [ACGS’21]
¢ Key obstacle: analyze gradient descent on non-convex function

e Key insight: geodesic convexity of —4/4_.. and 4/4 .. in Bures-Wasserstein space
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This is all for Wasserstein Barycenters... General algorithmic understanding?
Yes, polynomial-time algorithms for wide range of Multimarginal Optimal Transport
problems with “structure” [AB’20]. Also understand fundamental limitations [AB’2Ic].
e Key obstacle: different separation oracles require very different algorithms
® Key insight: unified algorithmic framework that captures nearly all applications




